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Abstract
In this paper, we consider a size-dependent renewal risk model with stopping time
claim-number process. In this model, we do not make any assumption on the
dependence structure of claim sizes and inter-arrival times. We study large deviations
of the aggregate amount of claims. For the subexponential heavy-tailed case, we
obtain a precise large-deviation formula; our method substantially relies on a
martingale for the structure of our models.
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1 Introduction
Consider the following renewal risk model. Let {Xk , k ∈ N} and {θk , k ∈ N} be claim sizes
and inter-arrival times, respectively. Assume that (Xk , θk), k ∈ N, form a sequence of in-
dependent and identically distributed (i.i.d.) copies of a generic random pair (X, θ ) with
marginal distribution functions F =  – F on [,∞) and G on [,∞), with dependent com-
ponents X and θ . The claim arrival times are τk =

∑k
i= θi, k ∈ N, with τ = . The number

of claims is defined by

N∗
t = inf

k
{k ∈N : τk ≥ t}, (.)

then N∗
t is a stopping time. In this way, the aggregate amount of claims over the [, t] is of

the form

S∗
t =

N∗
k∑

k=

Xk , S∗
 = X = , t ≥ . (.)

Note that N∗
t = supk{k ∈ N : τk ≤ t} � Nt if τk = t, whereas N∗

t = Nt +  if τk �= t.
We study large deviations of S∗

t in (.). We only consider the case of heavy-tailed claim-
size distributions. One of the most important classes of heavy-tailed distributions is the
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class S of subexponential distributions. By definition, a distribution F on [,∞) is subex-
ponential if F(x) =  – F(x) for all x ≥  and the relation

lim
x→∞

F∗n(x)
F(x)

= n (.)

holds for all n ≥ , where F∗n denotes the n-fold convolution of F . Clearly, (.) implies

lim
x→∞

P(X + X + · · · + Xn > x)
P(max{X, . . . , Xn} > x)

= , (.)

where X, X, . . . is a sequence of i.i.d. r.v.’s with the common distribution function (d.f.) F .
See Embrechts et al. [] for a nice review of subexponential distributions in the context of
insurance and finance.

Our main result is given now.

Theorem . Consider the aggregate amount of claims S∗
t in (.), assume that F ∈ S ,

E[X] = μ ∈ (,∞) and E[θ ] = /λ ∈ (,∞). Then, for arbitrarily given γ > , we have uni-
formly for all x ≥ γ t

P
(
S∗

t – μλt > x
)
∼ λtF(x), t → ∞. (.)

A non-standard renewal risk model with dependent components X and θ , which was
firstly proposed by Albrecher and Teugels [] and further studied by Boudreault et al.
[], Cossette et al. [], Badescu et al. [], and among many others. Recently, Asimit and
Badescu [] introduced a general dependence structure for (X, θ ), via the conditional tail
probability of X given θ ; see also Li et al. []. In particular, Chen and Yuen [] considered
that there is a random variable θ̃ such that

Pr(θ > t|X > x) ≤ Pr(θ̃ > t) (.)

holds for t ≥  and large enough x, they studied the large deviations of the aggregate
amount of C heavy-tailed claims, where C ⊂ S (see Embrechts et al. []).

We now comment on the approaches used in this work. First, in Theorem ., we do
not make an assumption on the dependence structure of (X, θ ). The existing results usu-
ally require a conditional tail probability of X given θ , e.g., Chen and Yuen [] made the
assumption (.), to say the least. Second, we extend the asymptotic behavior of the large
deviations of S∗

t to the case of S heavy-tailed claims. Finally, we construct a martingale to
prove our result.

The rest of the paper is organized as follows. Section  recalls various preliminaries and
prepares a few lemmas. Section  presents the proof of the main result. We end the paper
with conclusions in Section .

2 Preliminaries
Throughout this paper, for two positive functions a(·) and b(·), we write a(x) � b(x) if
lim supx→∞ a(x)/b(x) ≤ , write a(x) � b(x) if lim infx→∞ a(x)/b(x) ≥ , and write a(x) ∼
b(x) if both. Very often we equip limit relationships with certain uniformity, which is cru-
cial for our purpose. For instance, for two positive bivariate functions a(·, ·) and b(·, ·), we



Zhang et al. Journal of Inequalities and Applications  (2017) 2017:82 Page 3 of 7

say that a(·, ·) ∼ b(·, ·) holds uniformly for x ∈ � �= ∅ if

lim
t→∞ sup

x∈�

∣
∣
∣
∣
a(x; t)
b(x; t)

– 
∣
∣
∣
∣ = .

Clearly, the asymptotic relation a(·, ·) ∼ b(·, ·) holds uniformly for x ∈ � if and only if

lim sup
t→∞

sup
x∈�

a(x; t)
b(x; t)

≤  and lim inf
t→∞ inf

x∈�

a(x; t)
b(x; t)

≥ .

To obtain our desired results, we need to mention the following useful lemma.

Lemma . Consider the renewal counting process N∗
t in (.). Under the assumption

E[θ ] = /λ < ∞. Then, for any p ≥ , we have

E
[
N∗

t
]p ∼ (λt)p, as t → ∞. (.)

Proof First, for arbitrarily ε > , by definition of N∗ and E[θ ] = /λ, we have

P
{

N∗
t > (λ + ε)t

}
= P

{(λ+ε)t∑

j=

θj ≤ t

}

= P

{


(λ + ε)t

(λ+ε)t∑

j=

θj ≤ 
λ + ε

}

→ . (.)

Similarly,

P
{

N∗
t < (λ – ε)t

} → . (.)

Combining (.) and (.), we have

N∗
t

t
P→ λ. (.)

It remains to show

sup
t≥

E

(
N∗

t
t

)p

< ∞, for ∀p ≥ .

Indeed, for any δ > ,

E

(
N∗

t
t

)p

= p
∫ ∞


up–

P
{

N∗
t > ut

}
du

= p(λ + δ)p
∫ ∞


up–

P
{

N∗
t > (λ + δ)ut

}
du

≤ p(λ + δ)p
∫ ∞


up–

P

{(λ+δ)ut∑

j=

θj ≤ t

}

du. (.)
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For the case when u ≥  is an integer

P

{(λ+δ)ut∑

j=

θj ≤ t

}

≤ P

{ u⋂

k=

{ k(λ+δ)t∑

j=(k–)(λ+δ)t+

θj ≤ t

}}

=

(

P

{(λ+δ)t∑

j=

θj ≤ t

})u

.

By the law of large numbers

P

{(λ+δ)t∑

j=

θj ≤ t

}

→  (t → ∞).

So we have the bound, for any constant c > ,

P

{(λ+δ)ut∑

j=

θj ≤ t

}

≤ e–cu. (.)

Combining (.) and (.), uniformly for large u and t,

E

(
N∗

t
t

)p

≤ p(λ + δ)p
∫ ∞


up–e–cu du < ∞. (.)

By (.) and (.), we obtain Lemma .. �

3 Proof of Theorem 1.1
By F ∈ S and (.), we need only to prove

P

{
max
k≤N∗

t
(Xk – μ) > x

}
∼ λtF(x) for t, x → ∞.

Write ξk = I{Xk –μ>x}. First,

I{maxk≤N∗
t

(Xk –μ)>x} ≤
N∗

t∑

k=

ξk .

By Wald’s equation

P

{
max
k≤N∗

t
(Xk – μ) > x

}
≤ (

EN∗
t
)
P{X > x + μ}.

From Lemma . and F(x + μ) ∼ F(x) (see class S ⊂ L and definition of L, Embrechts et
al. []), we have

P

{
max
k≤N∗

t
(Xk – μ) > x

}
� λtF(x) for t, x → ∞. (.)

On the other hand,

I{maxk≤N∗
t

(Xk –μ)>x} ≥
N∗

t∑

k=

ξk –
∑

≤j<k≤N∗
t

ξjξk . (.)
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All we need is to bound the second term. Notice that

Mn ≡
∑

≤j<k≤n

ξj(ξk – Eξk), n = , , . . .

is a martingale. By Doob’s stopping rule,

EMN∗
t = EM = .

Or

E

( ∑

≤j<k≤N∗
t

ξj(ξk – Eξk)
)

= .

Hence,

E

( ∑

≤j<k≤N∗
t

ξjξk

)

= Eξ ·E
( ∑

≤j<k≤N∗
t

ξj

)

= Eξ ·E
(N∗

t –∑

j=

ξj
(
N∗

t – j
)
)

.

Write Zn =
∑n

j= ξj. Notice that

N∗
t –∑

j=

ξj
(
N∗

t – j
)

=
N∗

t –∑

n=

Zn.

Therefore,

E

(N∗
t –∑

j=

ξj
(
N∗

t – j
)
)

= E

(N∗
t –∑

n=

Zn

)

=
∞∑

n=

E(ZnI{N∗
t ≥n+})

=
∞∑

n=

E(ZnI{τn+≤t}). (.)

For each n,

E(ZnI{τn+≤t}) =
n∑

j=

E(ξj · I{τn+≤t})

≤
n∑

j=

E(ξj · I{∑n+
k �=j θk≤t})

=
n∑

j=

Eξ · P
{ n∑

k=

θk ≤ t

}

= nEξ · P{
N∗

t ≥ n
}

. (.)
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By (.) and (.), ∃c >  such that

E

(N∗
t –∑

j=

ξj
(
N∗

t – j
)
)

≤ Eξ ·
∞∑

n=

nP
{

N∗
t ≥ n

} ≤ c ·Eξ ·E(
N∗

t
).

Combining our computation and Lemma .,

E

( ∑

≤j<k≤N∗
t

ξjξk

)

≤ c · (Eξ ) ·E(
N∗

t
) ≤ c

(
λt · F(x)

) = o
(
λtF(x)

)
.

By (.), therefore,

P

{
max
k≤N∗

t
(Xk – μ) > x

}
� λtF(x) for t, x → ∞. (.)

Hence, by (.) and (.), we have

P

{
max
k≤N∗

t
(Xk – μ) > x

}
∼ λtF(x) for t, x → ∞.

4 Conclusions
As was remarked by a few researchers in the area, precise large-deviation results of size-
dependent renewal risk models are particularly useful for evaluating some risk measures
such as the conditional tail expectation of the aggregate amount of claims from a large
insurance portfolio. Finally, we would like to point out that equation (.) agrees with ex-
isting ones in the literature. This indicates that the aggregate amount of S∗

t defined by (.)
does not affect the asymptotic behavior of the large deviations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Acknowledgements
This work is supported by National Natural Science Foundation of China (No. 11271155, 11371168, J1310022, 11501241),
Jilin Province Natural Science Foundation (20130101066JC, 20150520053JH), and Science and Technology Research
Program of Education Department in Jilin Province for the 12th Five-Year Plan (440020031139). Science and technology
projects program fund of Qiqihar City (No. RKX-201513).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 12 November 2016 Accepted: 23 March 2017

References
1. Embrechts, P, Kltippelberg, C, Mikoseh, T: Modeling Extremal Events for Insurance and Finance. Springer, Berlin (1997)
2. Albrecher, H, Teugels, JL: Exponential behavior in the presence of dependence in risk theory. J. Appl. Probab. 43(1),

257-273 (2006)
3. Boudreault, M, Cossette, H, Landriault, D, Marceau, E: On a risk model with dependence between interclaim arrivals

and claim sizes. Scand. Actuar. J. 5, 265-285 (2006)
4. Cossette, H, Marceau, E, Marri, F: On the compound Poisson risk model with dependence based on a generalized

Farlie-Gumbel-Morgenstern copula. Insur. Math. Econ. 43(3), 444-455 (2008)
5. Badescu, AL, Cheung, ECK, Landriault, D: Dependent risk models with bivariate phase-type distributions. J. Appl.

Probab. 46(1), 113-131 (2009)
6. Asimit, AV, Badescu, AL: Extremes on the discounted aggregate claims in a time dependent risk model. Scand. Actuar.

J. 2, 93-104 (2010)



Zhang et al. Journal of Inequalities and Applications  (2017) 2017:82 Page 7 of 7

7. Li, J, Tang, Q, Wu, R: Subexponential tails of discounted aggregate claims in a time-dependent renewal risk model. Adv.
Appl. Probab. 42, 1126-1146 (2010)

8. Chen, Y, Yuen, KC: Precise large deviations of aggregate laims in a size-dependent renewal risk model. Insur. Math.
Econ. 51(2), 457-461 (2012)


	Precise large deviations of aggregate claims in a size-dependent renewal risk model with stopping time claim-number process
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Publisher's Note
	References


