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Abstract
In this paper we investigate the degree of approximation of a function belonging to
the generalized Zygmund class Z(ω)

p (p≥ 1) by Hausdorff means of its Fourier series.
We also deduce a corollary and mention a few applications of our main results.
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1 Introduction
During the last few decades the degree of approximation of functions belonging to var-
ious Lipschitz classes (Lipα, Lip(α, p), Lip(ξ (t), p), W (Lp, ξ (t)) etc.) has been studied by
various investigators (see [–] and the references therein) using different summability
methods such as Cesàro, Hölder, Euler and their products. Each of the matrices involved in
these methods is a Hausdorff matrix and the product of two Hausdorff matrices is again a
Hausdorff matrix [–]. Also, multiplication of two Hausdorff matrices is commutative.
Thus in view of these remarks, Rhoades [–], Singh, Srivastava [] have obtained the
degree of approximation of functions belonging to various Lipschitz classes using Haus-
dorff means. To the best of our knowledge, the approximation of functions belonging to
the generalized Zygmund class by Hausdorff means has not been investigated so far. This
motivated us to work in this direction. Here we recall some definitions for our purpose.

Let Lp := Lp[, π ] = {f : [, π ] → R;
∫ π

 |f (x)|p dx < ∞}, p ≥  be the space of all π-
periodic integrable functions. The Lp-norm of such a function f ([], p.) is defined by

‖f ‖p :=

⎧
⎨

⎩

( 
π

∫ π

 |f (x)|p dx)/p,  ≤ p < ∞;

ess sup<x≤π |f (x)|, p = ∞.

For a given function f ∈ Lp, let

sn(f ) := sn(f ; x) =
a


+

n∑

k=

(ak cos kx + bk sin kx) =
n∑

k=

uk(f ; x) (.)
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denote the partial sums, called trigonometric polynomials of degree (or order) n, of the
first (n + ) terms of the Fourier series of f at a point x.

Note  Here we shall use the notations of Lal et al. [].

Let ω : [, π ] → R be an arbitrary function with ω(t) >  for  < t ≤ π and
limt→+ ω(t) = ω() = . As in [], define

Z(ω)
p :=

{

f ∈ Lp :  ≤ p < ∞, sup
t �=

‖f (· + t) + f (· – t) – f (·)‖p

ω(t)
< ∞

}

and

‖f ‖(ω)
p := ‖f ‖p + sup

t �=

‖f (· + t) + f (· – t) – f (·)‖p

ω(t)
, p ≥ .

The completeness of Z(ω)
p can be discussed by considering the completeness of Lp (p ≥ ),

and hence the space Z(ω)
p is a Banach space under the norm ‖ · ‖(ω)

p .
Some other forms of the generalized Zygmund classes have been investigated by

Leindler [], Móricz and Németh [] and Móricz []. Throughout this paper ω and
v will denote the Zygmund moduli of continuity such that ω(t)/v(t) is positive and non-
decreasing in t. For well-known properties of modulus of continuity and modulus of
smoothness, in our case Zygmund modulus of continuity, one can refer the excellent
monograph of Zygmund ([], pp.-).

Note that

‖f ‖(v)
p ≤ max

(

,
ω(π )
v(π )

)

‖f ‖(ω)
p < ∞.

Thus we have Z(ω)
p ⊆ Z(v)

p ⊆ Lp, p ≥ .

Note  (i) If ω(t) = tα , then the Z(ω) and Z(ω)
p classes reduce to the Zα and Zα,p classes,

respectively.
(ii) If we take p → ∞, then the Z(ω)

p class reduces to the Z(ω) class and the Zα,p class
reduces to the Zα class.

(iii) Let  ≤ β < α < . If ω(t) = tα and v(t) = tβ , then, clearly, ω(t)/v(t) is non-decreasing,
while ω(t)/tv(t) is a non-increasing function of t.

2 Preliminaries
Hausdorff matrices were first introduced by Hurwitz and Silverman () as the collec-
tion of lower triangular matrices that commute with the Cesàro matrix of order one. Haus-
dorff () reintroduced this class in the process of solving the moment problem over a
finite interval []. A Hausdorff matrix H ≡ (hn,k) is an infinite lower triangular matrix
[] defined by

hn,k =

⎧
⎨

⎩

(n
k
)�n–kμk ,  ≤ k ≤ n;

, k > n,

where the operator � is defined by �μn ≡ μn – μn+ and �k+μn ≡ �k(�μn).
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A Hausdorff matrix is regular iff
∫ 

 |dγ (u)| < ∞, where the mass function γ (u) is con-
tinuous at u =  and belongs to BV [, ] such that γ () = , γ () = ; and for  < u < ,
γ (u) = [γ (u + ) + γ (u – )]/. In this case {μn} has the representation μn =

∫ 
 un dγ (u).

A detailed discussion and further interesting properties of Hausdorff matrices can be seen
in [–, , ] and the references given there.

The Hausdorff means of a trigonometric Fourier series of f is defined by

Hn(x) := Hn(f , x) =
n∑

k=

hn,ksk(f , x), ∀n ≥ .

The Fourier series of a function f is said to be summable to s by Hausdorff means if
Hn(x) → s as n → ∞.

We need the following lemmas in the proofs of our theorems.

Lemma  Let g(u, t) := Im[
∑n

k=
(n

k
)
uk(–u)n–kei(k+(/))t] for  ≤ u ≤  and  ≤ t ≤ π . Then

∣
∣
∣
∣

∫ 


g(u, t) dγ (u)

∣
∣
∣
∣ =

⎧
⎨

⎩

O((n + )t),  ≤ t ≤ /(n + );

O((n + )–t–), /(n + ) ≤ t ≤ π .

Proof We can write

g(u, t) = ( – u)n Im

[

eit/
n∑

k=

(
n
k

)(
ueit

 – u

)k
]

= Im
[
eit/( – u + ueit)n],

which is continuous for u ∈ [, ]. If M = sup≤u≤
dγ (u)

du ([], p.), then

∫ 


g(u, t) dγ (u) ≤ M

∫ 


g(u, t) du

= O()
∫ 


Im

[
eit/( – u + ueit)n]du

= O() Im

[
( – u + ueit)n+

(eit/ – e–it/)(n + )

]

u=

= O() Im

[
ei(n+)t – 

(eit/ – e–it/)(n + )

]

= O() Im

[
ei(n+)t – 

i sin(t/)(n + )

]

= O
(

 – cos(n + )t
(n + ) sin(t/)

)

= O
(

sin(n + )t/
(n + ) sin(t/)

)

.

Case (i): For  ≤ t ≤ /(n + ), we have

∣
∣
∣
∣

∫ 


g(u, t) dγ (u)

∣
∣
∣
∣ = O

(
(n + )t

)
,

since | sin kt| ≤ k| sin t| ∀k ∈N.
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Case (ii): For /(n + ) ≤ t ≤ π , we have

∣
∣
∣
∣

∫ 


g(u, t) dγ (u)

∣
∣
∣
∣ = O

(
(n + )–t–),

using | sin t| ≤  for all t and (sin t)– ≤ π/t for  < t ≤ π/. This completes the proof of
Lemma . �

Lemma  Let KH
n (t) := [π sin(t/)]– ∫ 

 g(u, t) dγ (u). Then

∣
∣KH

n (t)
∣
∣ =

⎧
⎨

⎩

O(n + ),  ≤ t ≤ /(n + );

O((n + )–t–), /(n + ) ≤ t ≤ π .

Proof The proof follows directly using (sin t)– ≤ π/t for  < t ≤ π/ and Lemma . �

Analogous to Lemma  of Das et al. [], Lal and Shireen [] have proved the following.

Lemma  ([], p. ) Let f ∈ Z(ω)
p , then for  < t ≤ π ,

(i) ‖φ(·, t)‖p = O(ω(t)).

(ii) ‖φ(· + y, t) + φ(· – y, t) – φ(·, t)‖p =

⎧
⎨

⎩

O(ω(t)),

O(ω(y)).
(iii) If ω(t) and v(t) are defined as in Theorem , then

∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p = O
(

v(y)
ω(t)
v(t)

)

,

where φ(x, t) = f (x + t) + f (x – t) – f (x).

3 Main result and discussion
Fundamental physical quantities such as electro-magnetic field, pressure, voltage-change
in time are called time waveforms or signals []. The Fourier approximation of signals
(functions) that originated from the second theorem of Weierstrass has become an excit-
ing interdisciplinary field of research for the last  years. These approximations have
assumed important new dimensions due to their wide applications in signal analysis [],
in general and in digital signal processing [] in particular, in view of the classical Shan-
non sampling theorem [].

In this paper we prove two theorems on approximation of a function by Hausdorff means
of its Fourier series in terms of Zygmund modulus of continuity.

Theorem  Let f be a π periodic function, Lebesgue integrable on [–π ,π ] and belonging
to the generalized Zygmund class Z(ω)

p , p ≥ . Then the degree of approximation of a signal
(function) f , using Hausdorff means of its Fourier series, is given by

En(f ) = inf
n

‖Hn – f ‖(v)
p = O

(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

, (.)

where ω and v denote the Zygmund moduli of continuity such that ω(t)/v(t) is positive and
non-decreasing.
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Theorem  In addition to the conditions of Theorem , if t–ω(t)/v(t) is non-increasing,
then the degree of approximation of a signal (function) f in Z(ω)

p (p ≥ ), using Hausdorff
means of its Fourier series, is given by

En(f ) = O
(

ω((n + )–)
v((n + )–)

log(n + )
)

. (.)

Now, in view of Note , we present a corollary of our results.

Corollary  Let f be a π periodic function, Lebesgue integrable on [–π ,π ] and belonging
to the Zygmund class Zα,p, p ≥ . Then the degree of approximation of a signal (function)
f , using Hausdorff means of its Fourier series, is given by

En(f ) = inf
n

‖Hn – f ‖(β)
p =

⎧
⎨

⎩

O((n + )β–α),  ≤ β < α < ;

O((n + )– log(n + )), β = ,α = .

Proof The result can be obtained by putting ω(t) = tα and v(t) = tβ in Theorems  and . �

Remark  We observe that these results are analogous to those of Lal and Shireen
[]. Similar estimates for Hölder classes have been discussed by Das et al.[] and
Leindler [].

Remark  The method (C, k) is a Hausdorff method corresponding to the mass function
γ (u) = k

∫ u
 ( – t)k– dt. The Hölder method (H , k) is a Hausdorff method corresponding

to the mass function, γ (u) =
∫ u




(k–)! (log(/t))k– dt ([], pp.-). For the mass function

γ (u) =

⎧
⎨

⎩

, if  ≤ u < a;

, if a ≤ u ≤ ,

where a = /( + q), q > , it is easy to verify that μk = /( + q)k and

hn,k =

⎧
⎨

⎩

(n
k
)
qn–k( + q)–n, if  ≤ k ≤ n;

, if k > n.

Thus the Hausdorff matrix H ≡ (hn,k) reduces to the Euler matrix (E, q) of order q > .

In view of the above remark, our results also hold for different summability methods
such as Cesàro, Hölder, Euler and their products.

4 Proof of main result
4.1 Proof of Theorem 1
It is well known [] that

sk(f , x) – f (x) =


π

∫ π


φ(x, t)

sin(k + –)t
sin(t/)

dt. (.)
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Since
∑n

k= hn,k =  for each n in any regular Hausdorff matrix H ([], p.), so we
have

Hn(x) – f (x) =


π

∫ π


φ(x, t)

n∑

k=

hn,k
sin(k + –)t

sin(t/)
dt

=


π

∫ π



φ(x, t)
sin(t/)

n∑

k=

∫ 



(
n
k

)

uk( – u)n–k dγ (u) Im
(
ei(k+–)t)dt

=


π

∫ π



φ(x, t)
sin(t/)

∫ 


Im

[ n∑

k=

(
n
k

)

uk( – u)n–kei(k+–)t

]

dγ (u) dt

=


π

∫ π



φ(x, t)
sin(t/)

∫ 


g(u, t) dγ (u) dt.

Let

ln(x) := Hn(x) – f (x) =
∫ π


φ(x, t)KH

n (t) dt. (.)

Then

ln(x + y) + ln(x – y) – ln(x) =
∫ π



[
φ(x + y, t) + φ(x – y, t) – φ(x, t)

]
KH

n (t) dt.

Using the generalized Minkowski inequality ([], p.), we get

∥
∥ln(· + y) + ln(· – y) – ln(·)∥∥p

=
{


π

∫ π



∣
∣ln(x + y) + ln(x – y) – ln(x)

∣
∣p dx

}/p

=
{


π

∫ π



∣
∣
∣
∣

∫ π



[
φ(x + y, t) + φ(x – y, t) – φ(x, t)

]
KH

n (t) dt
∣
∣
∣
∣

p

dx
}/p

≤
∫ π



{


π

∫ π



∣
∣[φ(x + y, t) + φ(x – y, t) – φ(x, t)

]
KH

n (t)
∣
∣p dx

}/p

dt

=
∫ π



(∣∣KH
n (t)

∣
∣p)/p

{


π

∫ π



∣
∣φ(x + y, t) + φ(x – y, t) – φ(x, t)

∣
∣p dx

}/p

dt

=
∫ π



∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

=
∫ /(n+)



∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

+
∫ π

/(n+)

∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

:= I + I, say. (.)
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Using Lemma , Lemma  {part(iii)} and the monotonicity of ω(t)/v(t) with respect to t,
we have

I =
∫ (n+)–



∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

= O
(∫ (n+)–


v(y)

ω(t)
v(t)

(n + ) dt
)

= O
(

(n + )v(y)
∫ (n+)–



ω(t)
v(t)

dt
)

= O
(

(n + )v(y)
ω((n + )–)
v((n + )–)

∫ (n+)–


dt

)

= O
(

v(y)
ω((n + )–)
v((n + )–)

)

. (.)

Using Lemma  and Lemma  {part(iii)}, we get

I =
∫ π

(n+)–

∥
∥φ(· + y, t) + φ(· – y, t) – φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

= O
(∫ π

(n+)–
v(y)

ω(t)
v(t)

(n + )–t– dt
)

= O
(

(n + )–v(y)
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

. (.)

Thus, from (.), (.) and (.),

∥
∥ln(· + y) + ln(· – y) – ln(·)∥∥p

= O
(

v(y)
ω((n + )–)
v((n + )–)

)

+ O
(

(n + )–v(y)
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

,

sup
y�=

‖ln(· + y) + ln(· – y) – ln(·)‖p

v(y)

= O
(

ω((n + )–)
v((n + )–)

)

+ O
(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

.

(.)

Again using Lemmas  and , we have

∥
∥ln(·)∥∥p ≤

(∫ (n+)–


+

∫ π

(n+)–

)∥
∥φ(·, t)

∥
∥

p

∣
∣KH

n (t)
∣
∣dt

= O
(

(n + )
∫ (n+)–


ω(t) dt

)

+ O
(

(n + )–
∫ π

(n+)–
t–ω(t) dt

)

= O
(
ω

(
(n + )–)) + O

(

(n + )–
∫ π

(n+)–
t–ω(t) dt

)

. (.)
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Now, from (.) and (.), we obtain

∥
∥ln(·)∥∥(v)

p =
∥
∥ln(·)∥∥p + sup

y�=

‖ln(· + y) + ln(· – y) – ln(·)‖p

v(y)

= O
(
ω

(
(n + )–)) + O

(

(n + )–
∫ π

(n+)–
t–ω(t) dt

)

+ O
(

ω((n + )–)
v((n + )–)

)

+ O
(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

:=
∑

i=

O(Ji), say. (.)

Now we write J in terms of J and further J, J in terms of J.
In view of the monotonicity of v(t), we have

ω(t) =
ω(t)
v(t)

v(t) ≤ v(π )
ω(t)
v(t)

= O
(

ω(t)
v(t)

)

for  < t ≤ π .

Hence, for t = (n + )–,

J = O(J). (.)

Again by the monotonicity of v(t),

J = (n + )–
∫ π

(n+)–

t–ω(t)
v(t)

v(t) dt

≤ (n + )–v(π )
∫ π

(n+)–

t–ω(t)
v(t)

dt = O(J). (.)

Using the fact that ω(t)/v(t) is positive and non-decreasing, we have

J = (n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt

≥ ω((n + )–)
v((n + )–)

(n + )–
∫ π

(n+)–
t– dt =

ω((n + )–)
v((n + )–)

(n + )–(n +  – π–)

≥ ω((n + )–)
v((n + )–)

,

as (n + )–(n +  – π–) > (n + )–n ≥ /. Therefore

J = O(J). (.)

Combining (.) with (.), we get

∥
∥ln(·)∥∥(v)

p = O(J) = O
(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

.



Singh et al. Journal of Inequalities and Applications  (2017) 2017:101 Page 9 of 11

Hence

En(f ) = inf
n

∥
∥ln(·)∥∥(v)

p = O
(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

.

This completes the proof of Theorem .

4.2 Proof of Theorem 2
Following the proof of Theorem , we have

En(f ) = O
(

(n + )–
∫ π

(n+)–

t–ω(t)
v(t)

dt
)

.

From the assumption that t–ω(t)/v(t) is positive and non-increasing with t, we have

En(f ) = O
(

(n + )–(n + )
ω((n + )–)
v((n + )–)

∫ π

(n+)–
t– dt

)

= O
(

ω((n + )–)
v((n + )–)

log(n + )
)

.

This completes the proof of Theorem .

5 Conclusions
Analysis and approximation of signals (or functions) are of great importance in science
and engineering because a signal conveys the attribute of some physical phenomenon.
Functions in Lp (p ≥ )-spaces are assumed to be most appropriate for practical purposes;
for example, L, L and L∞ are of particular interest for engineers in digitization. Fourier
methods are commonly used for signal analysis and system design in modern telecom-
munications, radar and image processing systems. The theory of classical Fourier analysis
can be extended to discrete time signals and leads to many effective algorithms that can
be directly implemented on general computers or special purpose digital signal processing
devices. Thus the study of error estimate of functions in various function spaces such as
Lipschitz, Holder, Zygmund, Besov spaces etc. using some summability means of trigono-
metric Fourier series, also known as trigonometric Fourier approximation (TFA) in the
literature, has received a growing interest of investigators over the past few decades. The
scientists and engineers use the properties of TFA in designing digital filters. A few more
applications have been mentioned in Section .

The problem of determining the order of best approximation plays a very important role
in approximation theory. In this paper we compute the best approximation of a function
f in the generalized Zygmund class Zω

p (p ≥ ) by Hausdorff means of partial sums of
trigonometric Fourier series of f . We also deduce a corollary for the Zα,p class. Further
we observe that our estimates are analogous to those of Hölder classes. Since, in view
of Remark , the popular summability methods such as Cesàro, Hölder, Euler and their
product methods are particular cases of Hausdorff method, so our results also hold for
these methods.

Besov spaces serve to generalize more elementary function spaces and are effective in
measuring the smoothness properties of functions. The best approximation of functions
in Besov spaces by Hausdorff means may be the future interest of a few investigators in
the direction of this work.



Singh et al. Journal of Inequalities and Applications  (2017) 2017:101 Page 10 of 11

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally and significantly in writing this paper. All authors read and approved the final
manuscript.

Author details
1Department of Mathematics, University of Petroleum and Energy Studies, Bidholi Campus, Dehradun, Uttarakhand,
248007, India. 2Department of Mathematics, Indian Institute of Technology, Roorkee, Uttarakhand, 247667, India.
3Department of Mathematics, Indiana University, Bloomington, IN 47405-7106, USA.

Acknowledgements
The first author is thankful to the Ministry of Human Resource Development, India for financial support to carry out this
research work.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 20 December 2016 Accepted: 11 April 2017

References
1. Ditzian, Z: Lipschitz classes and convolution approximation processes. Math. Proc. Camb. Philos. Soc. 90(1), 51-61

(1981)
2. Krasniqi, XZ: On the degree of approximation of functions of the Lipschitz class by (E,q)(C,α,β) means. J. Numer.

Math. Stoch. 4(1), 40-47 (2012)
3. Lal, S: On degree of approximation of functions belonging to the weighted (Lp ,ξ (t)) class by (C, 1)(E, 1) means.

Tamkang J. Math. 30(1), 47-52 (1999)
4. Lal, S, Singh, PN: On approximation of Lip(ξ (t),p) function by (C, 1) (E, 1) means of its Fourier series. Indian J. Pure Appl.

Math. 33(9), 1443-1449 (2002)
5. Lal, S, Mishra, A: Euler-Hausdorff matrix summability operator and trigonometric approximation of the conjugate of a

function belonging to the generalized Lipschitz class. J. Inequal. Appl. 2013, 59 (2013)
6. Mittal, ML, Singh, U, Mishra, VN, Priti, S, Mittal, SS: Approximation of functions (signals) belonging to Lip(ξ (t),p)-class

by means of conjugate Fourier series using linear operators. Indian J. Math. 47(2-3), 217-229 (2005)
7. Mittal, ML, Rhoades, BE, Sonker, S, Singh, U: Approximation of signals of class Lip(α,p) by linear operators. Appl. Math.

Comput. 217(9), 4483-4489 (2011)
8. Mittal, ML, Singh, MV: Approximation of signals (functions) by trigonometric polynomials in Lp-norm. Int. J. Math.

Math. Sci. 2014, 267383 (2014)
9. Nigam, HK: Degree of approximation of a function belonging to weighted (Lr ,ξ (t)) class by (C, 1)(E,q) means.

Tamkang J. Math. 42(1), 31-37 (2011)
10. Qureshi, K: On the degree of approximation of functions belonging to the class of Lipα . Indian J. Pure Appl. Math.

13(8), 898-903 (1982)
11. Qureshi, K: On the degree of approximation of functions belonging to class Lip(α,p). Tamkang J. Math. 16(3), 21-27

(1985)
12. Petersen, GM: Regular Matrix Transformations. McGraw-Hill, London (1966)
13. Rhoades, BE: Hausdorff summability methods. Trans. Am. Math. Soc. 101, 396-425 (1961)
14. Rhoades, BE: A method of Hausdorff summability. Math. Z. 81, 62-75 (1963)
15. Rhoades, BE, Sharma, NK: Spectral results for some Hausdorff matrices. Acta Sci. Math. 44(3-4), 359-364 (1982)
16. Rhoades, BE: On the degree of approximation of functions belonging to the weighted (Lp ,ξ (t)) class by Hausdorff

means. Tamkang J. Math. 32(4), 305-314 (2001)
17. Rhoades, BE: On the degree of approximation of functions belonging to a Lipschitz class by Hausdorff means of its

Fourier series. Tamkang J. Math. 34(3), 245-247 (2003)
18. Rhoades, BE, Ozkoklu, K, Albayrak, I: On the degree of approximation of functions belonging to a Lipschitz class by

Hausdorff means of its Fourier series. Appl. Math. Comput. 217(16), 6868-6871 (2011)
19. Rhoades, BE: The degree of approximation of functions, and their conjugates, belonging to several general Lipschitz

classes by Hausdorff matrix means of the Fourier series and conjugate series of a Fourier series. Tamkang J. Math.
45(4), 389-395 (2014)

20. Singh, U, Srivastava, SK: Approximation of conjugate of functions belonging to weighted Lipschitz classW(Lp ,ξ (t)) by
Hausdorff means of conjugate Fourier series. J. Comput. Appl. Math. 259, 633-640 (2014)

21. Chui, CK: An Introduction to Wavelets. Wavelet Analysis and Its Applications, vol. 1. Academic Press, San Diego (1992)
22. Lal, S: Shireen: Best approximation of functions of generalized Zygmund class by Matrix-Euler summability mean of

Fourier series. Bull. Math. Anal. Appl. 5(4), 1-13 (2013)
23. Leindler, L: Strong approximation and generalized Zygmund class. Acta Sci. Math. 43(3-4), 301-309 (1981)
24. Móricz, F, Németh, J: Generalized Zygmund classes of functions and strong approximation by Fourier series. Acta Sci.

Math. 73(3-4), 637-647 (2007)
25. Móricz, F: Enlarged Lipschitz and Zygmund classes of functions and Fourier transforms. East J. Approx. 16(3), 259-271

(2010)
26. Zygmund, A: Trigonometric Series, 3rd edn. Cambridge University Press, Cambridge (2002)
27. Akgun, FA, Rhoades, BE: Properties of some q-Hausdorff matrices. Appl. Math. Comput. 219(14), 7392-7397 (2013)
28. Albayrak, I, Rhoades, BE: The question of equivalence for generalized Hausdorff matrices. J. Math. Anal. Appl. 328(1),

414-428 (2007)



Singh et al. Journal of Inequalities and Applications  (2017) 2017:101 Page 11 of 11

29. Das, G, Nath, A, Ray, BK: An estimate of the rate of convergence of Fourier series in the generalized Hölder metric. In:
Anal. Appl., pp. 43-60 (2002)

30. Cohen, L: Time Frequency Analysis. Prentice Hall, New Jersey (1995)
31. Proakis, JG: Digital Communications. McGraw-Hill, New York (1995)
32. Psarakis, EZ, Moustakides, GV: An L2- based method for the design of 1-D zero phase FIR digital filters. IEEE Trans.

Circuits Syst. I, Fundam. Theory Appl. 44, 591-601 (1997)
33. Leindler, L: A relaxed estimate of the degree of approximation by Fourier series in generalized Hölder metric. Anal.

Math. 35(1), 51-60 (2009)


	Approximation of functions in the generalized Zygmund class using Hausdorff means
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result and discussion
	Proof of main result
	Proof of Theorem 1
	Proof of Theorem 2

	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	Publisher's Note
	References


