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1 Introduction and the main result
Given T > 0, let (2, F, F;, P;t > 0) be a complete filtration space and IF = {F;;t > 0} be a
filtration satisfying the usual conditions which are generated by the following two mutually
independent stochastic processes:

(i) a d-dimensional Brownian motion {B(t); ¢ > 0};

(i) a Poisson random measure N on R* x E, where E = R’ — {0} with the Borel o -field

B(E). A is the intensity (Lévy measure) of N with the property that

/(1 A |z|2)k(dz) <00
E

and p is the compensator of N with w(dt, dz) = dti(dz). Then
{K[((O,t] x A) = (N - 1)((0,£] x A), F;t > 0} is a compensated Poisson process
which is a cadlag martingale for all A € B(E) satisfying A(A) < oo.

Fubini theorems giving conditions for change of the order of integration in multiple inte-
grals are useful in all forms of calculus. The first such result of stochastic Fubini theorems
perhaps belongs to Doob [1]. After that, there are two directions on this topic. One is to
generalize the Ito integrals; the other is to study the theorem under the weaker integrabil-
ity conditions (see [2—5] and the references therein). In those works, suppose that M is a
stochastic process and (X, X, ) is a o -finite measure space,and ¢ : X x [0, T] x @ — Ris
a stochastic process satisfying certain measurability properties. Under some integrability
conditions, the following stochastic Fubini theorem holds:

// qb(x,s)dM(s)d,u(x):/ /qﬁ(x,s)du(x)dM(s), te[0,T]. (1.1)
xJo 0o Jx
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The usual technique to prove (1.1) is the approximation method, i.e., firstly, (1.1) is
proved for a simple process ¢, which is used to approximate ¢ in appropriate processes
space, then it is proved by taking the appropriate limit. In this work, we treat a spe-
cial case: X = [0, T]. In this case ¢ is only a process in [0, 7], and does the Fubini the-
orem hold? The key point is that the Lebesgue integral should be F-adapted so that
the Ito integral makes sense. In this paper, we want to prove this type of stochastic Fu-
bini theorem by using the backward stochastic differential equation (BSDE, for short)
method.

For simplicity, we consider only the case d = [ = 1 throughout this paper; the general
cases can be treated by a similar method. For any # > 1, denote by |x| the Euclidean norm
of x € R”. Also, we define the following classes of processes which will be used in the
sequel.

« Foranyte[0,T], L2 .(©;R”) is the space of all F;-measurable and R”-valued random

variables & satisfying |‘§| =E|£]? < c0.

(@R
« LZ(2;D([0, T];R™) is the space of all F-adapted cadlag stochastic processes X(-)

satisfying | X(-)|? = E(sup,o, 7 1X(8)]*) < 00.

L&(D([0,T;R™))

. L%(Q, c([o, T]; R”)) is the subspace ofL%F(Q;D([O, T1;R™)) whose element has
continuous paths a.s.

. L%F(Q'Lz(o T;RR")) is the space of all F-predictable and R”-valued stochastic

—E [ [ IK(t,2)]>A(dz) dt < cc.

« For general p,q > 1, L5.(Q;L(0, T; R”)) denotes the space of all F-adapted processes
Y () satisfying | Y (- )|Lp L0, TR) E(fo |Y ()7 dt)?'1 < 0.

The main theorem of thlS paper is stated as follows.

processes K(-,-) satisfying |K(:, )| H(QL2(0,TR™)

Theorem 1.1 For any Y(-) € L4(;L%*(0, T;R")), K(-,-) € LIZD‘]F(Q;Lz(O, T;R") and any
g(),h(-) € L*(0, T), we have

/t ¢ /t Y () dB(u) ds - /t ' / " ) du (s) dB(s),

f[ Th(s) /[ S fE K(u,2)N(du, dz) ds = /t ' /E / Th(u) duK (s, z)N(ds, dz).

As an application, under suitable conditions, we obtain the well-posedness of the fol-

lowing two BSDEs:
T s T
yr —y(t) = / f f(u, Y(u)) dB(u)ds + / Y(s)dB(s), in[0,T] (1.3)
and
T s T
yr —y(t) =/ / 2(w,y(w), Y (u)) dB(u) ds + / Y(s)dB(s), in [0, T]. (1.4)

The development of BSDEs theory has lasted for 40 years. Linear BSDEs were first intro-
duced in 1973 by Bismut in [6] as the equations for the conjugate variable in the stochastic
version of the Pontryagin maximum principle. Pardoux and Peng in [7] first studied the
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general nonlinear BSDEs of the following form in 1990:
T T
yr—y(£) = / L(s,y(s), Y (s)) ds + f by(s,y(s), Y (s)) dB(s), in [0, T). (1.5)
t t

Since 1990, there has appeared a large number of works published related to the theory
and applications for BSDEs (see [8—15] for examples).

It seems that (1.4) belongs to the following backward stochastic Volterra integral equa-
tion:

T T
y(t) = k(t) —/ 1(t,5,5(5), Y (£,5)) ds —/ Y(t,s)dB(s), in[0,T],

which was studied in [15, 16]. Because of the special form, we can transform (1.3) and
(1.4) into (1.5). Hence the second component Y of the solution just depends on one time
variable.

The paper is organized as follows. In Section 2, we present some fundamental results,
well-posedness of BSDEs and prove Theorem 1.1 by virtue of BSDEs. In Section 3, we
apply Theorem 1.1 to solve BSDEs (3.1) and (3.2) and get the well-posedness under subtle
Lipschitz conditions.

2 Proof of the main result
The following BSDE with jump has been studied in some works, such as [11, 17]:

dy(t) =f(t,y(t), Y (£), K(t,-)) dt + Y (t) dB(t) + [ K(¢, 2N(dt,dz), in[0,T],

2.1)
WT)=yr,
where f satisfies £(-,0,0,0) € L;(€; (0, T;R")), and
[f(t,,Y,K)-£(£5,Y,K)|
<L(ly-3+1Y =Y +|K = Klpepemumn) aetel0,T]as., (2.2)

foranyy,5,Y,Y e R", K,K € L*(E, B(E), ;; R").

The following lemma is about the well-posedness of (2.1). The proof can be found
in [11, 17]. Hence, it is omitted. For simplicity, we denote H = L]ZF(SZ;D([O, T);R™) x
LE(QL2(0, T;R™)) x Ly o(2L2(0, T;R")) with the canonical norm.

Lemma 2.1 For any yr € LZFT(Q;R”), equation (2.1) admits a unique adapted solution

(), Y(-),K(-,-)) € H. Furthermore, there is a constant C > 0, depending only on L and T,
such that

| (J’()» Y()’ K() )) i’}-[ = C(lf(; 0; 0, 0) |L%(Q;L1(O,T;R")) + |)’T |L2}_T(Q;RM))~ (23)
In order to prove Theorem 1.1, we first consider the following BSDE in [0, T]:
T s s ~
yr —y(t) = / <g(s)/ Y (u) dB(u) + h(s) / /K(u, z)N(du, dz)) ds
t t t E

T T
+ / Y(s) dB(s) + / fE K(s,2)N(ds, dz). (2.4)
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g(-) and k(-) € L}(0, T) such that for any ¢ € [0, T},

T T
/ gls)ds+1>3, / h(s)ds+1> 38, (2.5)
t t

where § is a positive constant.
The well-posedness of (2.4) is presented in the following theorem.

Theorem 2.2 Under assumption (2.5), for any yr € Li-T(Q;R”), equation (2.4) admits a
unique adapted solution (y(-), Y(-),K(-,-)) € H such that

|(J’(-)y Y(-),K(, )) i’)—[ = C|yT|L2]__T(Q;]Rn), (2.6)
where C is a constant depending on § and T.

Proof We divide the proof into two steps.
Step 1. By Lemma 2.1, we know that the following BSDE

yr = y(t)

T, AT
_ f ( / ) du + 1) Y(s) dB(s)
T T
+/t /}5(./5 h(u)du+1>1<(s,z)N(ds,dz) (2.7)

admits a unique solution (y(-), Y(-), K(-,-)) satisfying

T T
‘(y(), (/ g(u)du + 1) Y(), (/ h(u) du + l)K(-, -)) ‘H < CIyTIszT(Q;Rn), (2.8)

where C depends only on 7. Hence, by virtue of (2.5), it follows that

T
|Y(-)| 51/8‘(/ g(u)du+1>Y(~) ,

, (2.9)
K(,)| < 1/5‘ (/ h(u)du + 1)1((-,-)‘.
Then, by (2.8) and (2.9), we deduce that
|G YLK Gy = Clyrliz, (ipny (2.10)

where C depends on § and 7.
Step 2. By (2.7), we can easily obtain

t T
3(6) = 3(0) = /0 ( / g(u)du+1)y<s)d3(s)

t T
+ /0 /E ( / h(u)du+1>I((s,z)]\7(ds,dz). (2.11)
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Applying Ité’s formula to ( ftT g(s)ds +1) fot Y (1) dB(u), one can get

t, pT
/ (/ gu)du + 1> Y (s)dB(s)
0 s
T
= (/ g(s)ds+1)/ Y (1) dB(u) + / g(s)/ () dB(u) ds. (2.12)

Similarly, one has

/0 t /E ( / Th(u)du+1>1<(s,z)1?z(ds,dz)
= ( /t Th(s) ds+1> /0 t /E K(u,2)N(du, dz)
+ /O th(s) fo s /E K(u, 2)N(du, dz) ds. (2.13)

Substituting (2.12) and (2.13) into (2.7) yields

¥(2) — ¥(0)

- o) | Y (u) dB(u)ds + | ho) [ S [ Kt oy ds

. ( /t Tg(s)ds+1> /0 ' Y(w) dBw) + ( /t Th(s)ds+1> /0 t /E K(w )N (du, d2)
- /0 49 /0 Y () dB(u) ds + fo ko) /O S [ Kt o s

+ / ' es)ds / Y0 dBG) + / sy ds / t /E K, 2N (du, dz)

e [roase [ [ koo

([ o[ 10 0

([ [+ f o [+ / o [ - f o) [[) [ KN as

o Y+ / t RS

(ot s yracns

+ ( /0 H(s) /0 - /t (s) /t ) /E K(w, DN (du, dz) ds

+/0tY(s)dB(s) +‘/Ot/]51((s,z)ﬁ(ds,dz). (2.14)
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Taking t = T in (2.14), one has

J/T—y(O)=/OTg(S)fOS Y (u) dB(u) ds+/ / /K(uz N (du,dz) ds

T
+ /0 Y(s)dB(s) + /0 /E K(s,2)N(ds, dz). (2.15)

Subtracting (2.14) from (2.15), we just obtain (2.4). Hence (y(-), Y(-),K(:,-)) is a unique
solution to (2.4). The desired estimate (2.6) follows from (2.10). That completes the
proof. d

As a corollary, we give the proof of the stochastic Fubini theorem stated in Theorem 1.1.

Proof of Theorem 1.1 Set

T s .
£ = fo <g+(s) fo Y () dB(w) + 1 (5) fo fE I((u,z)ﬁ(du,dz)) ds

T T
+/0 Y(s)dB(s)+/0 /ISK(S,Z)K[(ds,dz), (2.16)

where g*(-), i*(-) are the positive parts of g(-), 4(-), respectively. By Holder’s inequality and
the It6 isometry, we have

|S|L2 (Q]R"

T s 2
4(TIE /0 (g+(s))2< /0 Y(u)dB(u)) ds
s 2
+ TTE/T(hJ'(s))2 </ /K(u,z)ﬁ(ds, dz)) ds
0 o JE

+ Y +|K?

L2(L2(0,T;R™)) L2 p( L2 (0,T;]R”))>

(T|g |L2 or) T 1)|Y|L2(Q 12(0,T;R) T 4(T|h+ |L2(0 T) 1)|[(|i%)YF(Q;L2(O,T;R”))

< 00. (2.17)

By the proof of Theorem 2.2, it is easy to get that

W(T) - y(¢) =KT(g+(s)/s Y(u)dB(u) + b (s / f[( u,2)N(du, a’z))d
+/ s)dB(s / /K s,2)N(ds,dz), in[0,T], (2.18)

with terminal condition y(7T') = & admits a unique solution (y(-), Y(-), K(-,-)). And (2.18) is
equivalent to

T, oT
y(T)—-y(t) = / (/ g () du + 1) Y (s) dB(s)

T T
+ /t /E ( / h*(u)dm1)1<(s,z)1?z(ds,dz). (2.19)
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Combining (2.18) and (2.19), we can get

/t e /t Y () dB(u) ds = /t ' / " ) Y 5) dBG),

. \ . . (2.20)
/ I (s) / / K(u,2)N(du, dz) ds = / / / I (u) duK (s, 2)N (ds, dz).
t t E t EJs
Similarly, we have

/ g (s)/ Y (u) dB( u)ds-/ / u)duY (s) dB(s),
! (2.21)
f / / K(u,2)N(du, dz) d. / / / ~(u) duK (s, z)N(ds, dz).

Addition of (2.20) and (2.21) gives (1.2), which completes the proof. O

3 An application: well-posedness of two BSDEs

In this section, we consider only the BSDEs driven by one-dimensional Brownian motions.
The other cases such as BSDEs driven by high dimension Brownian motions and BSDEs
with jumps can also be treated in a similar procedure. Let (2, F, F, P; t > 0) be a complete
filtration space and B(-) be a one-dimensional standard Brownian motion whose natural
filtration is given by F = {F;};50. As an application of Theorem 1.1, we prove the well-
posedness of the following two BSDEs:

T ps T
yr — y(t) :/ / f(u, Y(u)) dB(u)ds + / Y(s)dB(s), in[0,T] (3.1)

and

T s T
yr —y(t) = / / g(u,y(u), Y () dB(u) ds + f Y(s)dB(s), in[0,T]. (3.2)

Here, generators f(-,-) and g(-, -, -) satisfy the following assumptions:
(H1) f(,0) € L(2L2(0, T;R")),

~ 1 ~
f&.Y)-f&.Y)| < =——IY-Y| aetel0,T]as.,
T+6

and
(H2) g(-,0,0) € Lz(2;L%(0, T;R™)),

. N 1 -
g6, Y) - g5, V)| < Lly -3 + s Yl aetelTlas,

respectively, where y,7, Y, Ye R”, and L and 0 are positive constants.

Theorem 3.1 Under assumption (H1), for any yr € LZfT(Q'R”), equation (3.1) ad-
mits a unique adapted solution (y(-),Y(:)) € L? #(; C([0, T;R™)) x L2 7(2; L*(0, T;R"))
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such that
|60, Y0) ’L?F(Q;C([O,T];R”))xL]ZF(Q;L2(0,T:R"))
= C(|yT|L§,__T(Q;R”) + lf(.’0)|LJ%-(Q;L2((),T;R”)))’ (33)
where C is a constant depending on 6 and T.
Proof We divide the proof into three steps.

Step 1. Suppose that f(-,Y(-)) € LIZF(Q;LZ(O, T;R")). Then by Theorem 1.1 we rewrite
equation (3.1) as follows:

T
yr —y(t) = / ((T - s)f(s, Y(s)) + Y(s)) dB(s), in[0,T]. (3.4)
t
We know that the following BSDE admits a unique adapted solution (y(-), Z(-))

dy(t) = Z(¢t)dB(t), in[0,T],
WT)=yr.

(3.5)

We define an operator S : L%(Q2;L*(0, T;R")) — LA(2;L%(0, T;R")) by S(X(¢)) = Z(¢) -
(T - t)f(¢,X(t)) for a.e. t. For any X3, X» € L%(%;L*(0, T; R")) and a.e. £,

S(X1(0) = S(X2(0))| = (T = )|f (£, X:(0)) - f (&, Xa(2)) |
<(T-t)/(T +0)|X1(t) - Xa(2)|

< TIT +0)|X1(t) - Xa(t)|.

We see that S is contractive. Hence, by the Banach fixed point theorem, S admits a unique
fixed point Y (-) € LA(2%;L*(0, T; R")) such that S(Y(-)) = Y(-), i.e.,

(T-0)f(Y®)+Y()=Z(t) aetel0,T] (3.6)

By (3.5) and (3.6), we conclude that (y(-), Y(-)) is the unique solution to (3.1).
Step 2. In this step, we check that for this Y (), f(-, Y(-)) € LA(S%5 L*(0, T; R"))

2
V(" Y(')) ’LIZF(Q;H(O,T;RH))
2 2
= ZV(" Y(')) -/ 0)‘L%(Q;L2(O,T;]R")) + ZTV("O)|L%F(Q;L2(0,T;W))
2
=2/(T +0)l Y'ié(g;ﬂ(o,mv)) +2TIfC, O)|L%(Q;L2(0,T;Rn)>

< OQ.

Step 3. In this step, we show that (3.3) holds.
By Jensen’s inequality, Doob’s maximal inequality and equation (3.5), we see that

2
sup E(yr|Fy) 54]E|yT|2. (3.7)
te[0,T])

2
E| sup y(t)’ =K

te[0,T)
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Applying Itd’s formula to |y(-)|%, we get
T 2
]E/ (T -0)f (6 Y(®) +Y(@)| dt <Elyr|*. (3.8)
0
On the other hand, one has
T
E / (T -0)f (&, Y®) + YO de
0
T 2
= [ (7 =06 Y0) ~7(6.0) + Y| - [T e 0)) e
> ! E /T 2 ' ?
=3 (T -0)(f(t,Y(®) -f(£0) + Y ()| dt—S]E/ (T -)f(£,0)|"dt. (3.9)
0 0
By |a +b|?> > (1-¢)|a|® + 1 —1/¢|b|?, where ¢ > 1, and assumption (H1), we can obtain
T 2
]E/O (T -0(f(t,Y(®) -f(t,0) + Y(t)| dt

T T
z(l—s)E/O (T-5)(f (2 Y(2) —f(t,O))]de(l—l/e)]E/O Y| dt

T 2 T
2(1-8)1@/0 (;;;) |Y(t)|2dt+<1—§>E/0 Y| dt

2
> [(1—8)(%) + (1— %)}E/OT\Y@)WL (3.10)

Taking ¢ = T—;Ze, by (3.10), we have

T 9 ] 2 T 9
]E/O (T -0(f(t, Y(®) - f(,0)) + Y(£)| dt > (m) E/O |Y ()| dt. (3.11)
(3.11), together with (3.9), yields
T
E / (T -0)f (6, Y(8) + Y| dt
0

2
> 1( 0 ) E/T|Y(t)|2dt—3T2E/TV(t,o)|2dt. (3.12)
0 0

=o\T+0

Combining (3.8) and (3.12), one has

2 2 2
’Y(')|L§(Q;L2(0,T;R”)) = C(Eb’ﬂ + lf("0)|L%F(Q;L2(0,T;R”)))’ (3.13)
where C is a constant depending on 6 and 7. That completes the proof. 0

We list two examples from which we can see that the Lipschitz constant 1/(T +6) cannot
be improved.

Example 3.2 For any 6 > 0, suppose that yr = feT(s - 0)/(T — 0)dB(s) and f(s,x) =
—X10,61(8)%/(T = 8) = x(0,11(8)x/(T — 0) with Lipschitz constant 1/(T —6). Then equation (3.1)
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can be written as
T
yr=30= [ =0T -0)x0nOY6)dBE, in[0,T).

Forany n € L%((0,0) x O R), let

20) = x0.01(®) / (s—0)/(T - 6) dB(s),
0
Y, () = x001&n@) + xe,1(t), Vte[0,T].

It is easy to check that (y(-), Y, () € L%(2 C([0, T];R)) x LA(S25L%(0, T;R)) is an adapted
solution of (3.1). Since n is arbitrary, the solution of (3.1) is not unique.

Example 3.3 Set y; = B(T) and f(t,x) = —x/T whose Lipschitz constant is 1/T. If equa-

tion (3.1) has an adapted solution (y,Y) € L%(Q; C([0, T];R)) x L]%(SZ;LZ(O, T;R)), then by
Theorem 1.1, (3.1) becomes

T
yr=y0)= [ 3Y0d80) .14

Since (B(+),1) is the unique adapted solution of yr — y(t) = ftT Z(t) dB(t), we get that
Y(t) = T/tZ(8) xe0y(£) = T/t xq1505(8).

It is clear that |Y(-)|L%(Q;L2<O,T;R)) = +00. Hence (3.1) with f(t,x) = —x/T,yr = B(T) does not
have a square integrable adapted solution.

From the previous two examples, we know that in equation (3.1), Lipschitz constant
1/(T + 0) cannot be improved. But in the one-dimensional case, we can obtain a better

result.

Theorem 3.4 Suppose that in equation (3.1), yr € LﬁfT(Q; R), f(-,0) € LZ(; L*(0, T; R)),
and

T +0)(x1 —x2) < f (1) —f(%2) S L(xp —x2), Vo > %o,

where 6 and L are positive constants and L > 1/(T + 0). Then BSDE (3.1) admits a unique
solution.

Proof Set h(t,x) = (T — t)f(t,x) + x. It is easy to see that
O/(T +0)(x1 — x2) < h(t,x1) — h(t,x2) < (TL +1)(%1 — x2), Va1 > 2o,
By Theorem 4.1 in [7], we conclude that (3.1) admits a unique solution. a

For B >0 and X € L(22;L%(0, T; R")), ||X||% denotes IEfOT eP'|X(t)|> dt. Hy denotes the
space L%($2; L*(0, T; R")) endowed with the norm || - |-
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Theorem 3.5 Under assumption (H2), for any yr € L%_-T(Q;R"), equation (3.2) admits a
unique adapted solution (y(-), Y(-)) such that

|(3’( ), Y () )|L2 (QC([0, TTRM) xLA(RL2(0,TRM))

= C(IyTle (R |g("O'O)|L§(Q;L2(0,T;R")))’ (3.15)
where C is a constant depending on L and T.

Proof We divide the proof into two steps.
Step 1. For any y(-), Y (-) € L2(2; L(0, T; R")), by virtue of the martingale representation
theorem, the following BSDE admits a unique solution (y(-), Y(-))

T s T
yr —y(t) = / / g(u,j}(u), Y(u)) dB(u)ds + / Y(s)dB(s), in][0,T]. (3.16)

t
Step 2. We use the Banach fixed point theorem for the mapping ® from Hg x Hg to
itself, which maps (¥(-), Y(-)) onto (y(-), Y(-)), where g is determined later.
For any (¥;(-), Yi(-)), suppose that the corresponding solution to (3.16) is (y:(-), Yi(-)),
i=1,2.
In order to use Theorem 1.1, we first check that g(-,7;(), Yi(:)) € L2(S;L*(0, T;R")). In-
deed, applying the same method as that in Step 2 of Theorem 3.1, one has

— S 2
lg(£,5:(6), Yi(®)) |L%F(Q;L2(0,T;R"))

S 2|g(tr,)7l(t)’ Yl(t)) _g(t’ 01 0)|i2 Q;L2 (0,T;R™)) + 2|g(; 0: O)|LH2;(Q;L2(O,T;]R”))

= 4L2|yl )|L2 (S:L2(0,T;R™)) +1/(T + 9)2|Y( )|L2 (L2(0,T;R™))
+2[g(-,0,0) |L§(Q;L2(0,T;R"))
< 00.
Hence, by Theorem 1.1, for i = 1,2, (3.16) turns to
T -
yi(T) - yi(t) = / ((T - 9)g(s,7:(s), Yi(s)) + Yi(s)) dB(s), in[0,T]. (3.17)
t

Set Ay =y1 -y, AY = Y1 = Y, Ay =31 — 2, AY = Y1 = Y5 and Ag(:) = g(-,31(-), Y(-)) -
2(¥2(-), Ya(-)). Applying It&'s formula to e (y,(-) — y(-))?, we have

fz“}T(Ay(T))2 - e‘f”(Ay(L‘))2

T T
=B eﬁS(Ay(s))2 ds + 2] eﬂS(Ay(s)) [(T - s)(Ag(s)) + (A Y(s))] dB(s)

T
+/ e’ss[(T—s)(Ag(s)) + (AY(s))]2 ds
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Setting y1(T) = yo(T') and taking expectation, we get

T T
]Ee“’?t(Ay(t))2 + ,BE/ e‘BS(Ay(s))2 ds+IE/ e’SS(AY(s))2 ds
T T
= —E/ eﬁS(T—s)z(Ag(s))zds—ZIEf eﬂt(T—s)Ag(s)AY(s) ds, Vtel0,T].
Lett=0,
,3||AJ/||% + ||AY||,%3

T
< 2E/ eP(T —s) <LAJ_/(S) + A?(s))AY(s) ds
0

1
2T +6)

T
1
< 51L2]E/ eﬁs(T—s)Z(A)_/(s))zds+ 8—||AY||§,
0 1

T
1) - 2 1
— 2 R (T -s52(AY(s)) ds+ —||AY]>
T /Oe( 5)*(AY(s)) S+82|| I
T2 - 1 1
< T2 AJ| + —2 A2+ (= + = )|AY)?,
<l T UMY + o AT + ( -+ - 1A

which is equivalent to

1-1_1 272

( e L’T &2 -
Ay|% + —E A |AY)3 < Ay + ————||AY]3).
1Ay LAY 1871 + 4orar g 1AY I
Take ¢, &2 and B satisfying
e1>1, & >1, i+i<1,
i) o (3.18)
B 45112(T+0)2°
272
% <1

We know these &1, &, and S exist. For example, one can take &; = 2(1;“), & =2,and 8 =
261 L2 T2 (T +6)? 276 +6>
(T+0)2+T2 472
exists a fixed point, which is the unique solution of BSDE (3.2).

By the same method used in Step 3 of Theorem 3.1, we can show that (3.15) holds. That
completes the proof. d

, where o = . For this B, we see that ® is a contraction and that there

4 Conclusions

In this paper, we consider a stochastic Fubini theorem with two time variables. In that Fu-
bini theorem, one time variable is related to the Lebesgue integral, and the other is related
to the It integral, in which the adapted property is crucial. We prove the result by solving
a BSDE which is different from the existing method. As an application, we apply the theo-
rem to study the well-posedness of two special BSDEs under subtle Lipschitz conditions.
Besides this, we provide two examples to state that aforementioned Lipschitz conditions

cannot be improved.
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