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Abstract
This paper presents a linear decomposition approach for a class of nonconvex
programming problems by dividing the input space into polynomially many grids. It
shows that under certain assumptions the original problem can be transformed and
decomposed into a polynomial number of equivalent linear programming
subproblems. Based on solving a series of liner programming subproblems
corresponding to those grid points we can obtain the near-optimal solution of the
original problem. Compared to existing results in the literature, the proposed
algorithm does not require the assumptions of quasi-concavity and differentiability of
the objective function, and it differs significantly giving an interesting approach to
solving the problem with a reduced running time.
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1 Introduction
Consider a class of nonconvex programming problems:

(P) :

⎧
⎨

⎩

min f (x) = ϕ(a�
 x, a�

 x, . . . , a�
k x),

s.t. x ∈ � = {x ∈R
n|Ax ≤ b, x ≥ },

where k ≥ , ϕ : Rk → R+ is a continuous function, � is a nonempty polytope, b ∈ R
s,

A ∈ R
s×n, and a, a, . . . , ak ∈ R

n are linear independent vectors. The function f is called
a low-rank function with rank k over a polytope � defined by Kelner and Nikovola [].
With this broader definition, multiplicative programming, quadratic programming, bilin-
ear programming, as well as polynomial programming can be all put into the category of
problem (P), whose important applications can be found in some surveys (e.g., [–]). In
general, nonconvex programming problems of this form (P) are known to be NP-hard,
even minimizing the product of two linear functions with rank two over a polytope is
NP-hard ([]). As shown by Mittal and Schulz [], the optimum value of problem (P) can-
not be approximated to within any factor unless P = NP. Hence, for solving problem (P)
some extra assumptions (A)-(A) on the properties of the function f will be required as
follows:
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(A) ϕ(y) ≤ ϕ(y′), if yi ≤ y′
i, for each i = , . . . , k;

(A) ϕ(λy) ≤ λcϕ(y) for all y ∈R
k
+,λ >  and some constant c;

(A) a�
i x > , for i = , . . . , k.

An exhaustive reference on optimizing low-rank functions can be found in Konno and
Thach []. Konno et al. [] proposed cutting plane and tabu-search algorithms for low-
rank concave quadratic programming problems. Porembski [] gave a cutting plane solu-
tion approach for general low-rank concave minimization problems with a small number
of variables. Additionally, some solution algorithms have been developed for the special
cases of problem (P) (e.g. [–]). The above solution methods are efficient heuristics,
without providing a theoretical analysis on the running time or performance of the algo-
rithms.

The main purpose of this article is to present an approximation scheme with provable
performance bounds for solving globally problem (P) to obtain an ε-approximate solution
for any ε >  in time polynomial in the input size and 

ε
. For the special cases of problem (P),

there exists extensive work about the solution of ε-approximation problems. Vavasis []
gave an approximation scheme for low-rank quadratic optimization problems. Depetrini
and Locatelli [] presented a fully polynomial-time approximation scheme (FPTAS) for
minimizing the sum or product of ratios of linear functions over a polyhedron. Kelner
and Nikolova [] developed an expected polynomial-time smoothed algorithm for a class
of low-rank quasi-concave minimization problems whose the objective function satisfies
the Lipschitz condition. Daniele and Locatelli [] proposed an FPTAS for minimizing
product of two linear functions over a polyhedral set. Additionally, for minimizing the
product of two non-negative linear cost functions, Goyal et al. [] gave an FPTAS under
the condition of the convex hull of the feasible solutions in terms of linear inequalities
known. The algorithm in [] works for minimizing a class of low-rank quasi-concave
functions over a convex set, and this algorithm solves a polynomial number of linear op-
timization problems. Mittal and Schulz [] presented an FPTAS for minimizing a general
class of low-rank functions over a polytope, and their algorithm is based on constructing
an approximate Pareto-optimal front of the linear functions that constitute the objective
function.

In this paper, by exploiting the feature of problem (P), a suitable nonuniform grid for
solving problem (P) is first constructed over a given (k – )-dimensional box. Based on
the exploration of the grid nodes, the original problem (P) can then be transformed and
decomposed into a polynomial number of subproblems, in which each subproblem is cor-
responding to a grid node and is easy to solve by considering a linear program. Thus, the
main computational effort of the proposed algorithm only consists in solving linear pro-
gramming problems related to all nodes, which do not grow in size from a grid node to
the next node. Furthermore, it is verified that through solving these linear programs, we
can obtain an ε-approximation solution of the primal problem (P). The proposed algo-
rithm has several features as follows. First, in contrast with [, , ], the rank k of the
objective function considered by the proposed algorithm is not limited to only around
two. Second, the proposed algorithm does not require differentiable and the inverse of
the single variable function about the objective function, and it works for minimizing a
class of more general functions, while Goyal and Ravi [] and Kelner and Nikolova []
both require the quasi-concavity assumption of the objective function. Third, although
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the nonuniform grid constructed for the algorithms in [] and ours is based on subdivid-
ing a (k – )-dimensional hyper-rectangle, the algorithm in [] requires iterations that are
not necessary for our algorithm and the one in []. Moreover, at each iteration of the algo-
rithm in [], it is required to solve a single variable equation and the corresponding linear
optimization problem for each grid node. Finally, we emphasize here that the efficiency of
the algorithms (of [, ] and ours) strongly depends upon the number of grid nodes (or
subproblems solved) that are associated with the dimension of the grid points, under the
condition of the same input size and the tolerance ε value. In fact, the nonuniform grid
in [] derives from parting a k-dimensional hypercube. Therefore, from the procedure of
the algorithm and its computational complexity analysis it can be seen that our work is in-
dependent of [, ] and the proposed algorithm differs significantly giving an interesting
alternative approach to solve the problem with a reduced running time.

The structure of this paper is as follows. The next section describes the equivalent prob-
lem and its decomposition technique. Section  presents the algorithm and the computa-
tional cost of such an algorithm. Finally, some conclusions are drawn in Sections  and ,
and discussions presented.

2 Equivalent problem and its decomposition technique
2.1 Equivalent problem
For solving problem (P), we will propose an equivalent problem (P). To this end, let us
firstly denote

li = min
x∈�

a�
i x, ui = max

x∈�
a�

i x, i = , . . . , k. (.)

Assume that, without loss of generality, k = arg max{ ui
li
|i = , . . . , k}, and define a rectangle

H given by

H = [l, u] × [l, u] × · · · × [lk–, uk–]. (.)

Thus, by introducing variable y ∈ Rk–, problem (P) is equivalent to the following problem:

(Q) :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min ϕ(y, . . . , yk–, a�
k x)

s.t. a�
i x ≤ yi, i = , . . . , k – ,

x ∈ �,

y = (y, . . . , yk–) ∈ H .

The key equivalent theorem for problems (P) and (Q) is given as follows.

Theorem  x∗ ∈ Rn is a global optimum solution of problem (P) if and only if (x∗, y∗) ∈
Rn+k– is a global optimum solution of problem (Q), where y∗

i = a�
i x∗ for each i = , . . . , k – .

In addition, the global optimal values of problems (P) and (Q) are equal.

Proof If x∗ is a global optimal solution of problem (P), let

y∗
i = a�

i x∗, i = , . . . , k – .
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It is obvious that (x∗, y∗) ∈ Rn+k– is a feasible solution of problem (Q). Let (x, y) be any
feasible solution of problem (Q), i.e.,

a�
i x ≤ yi, i = , . . . , k – , x ∈ �. (.)

According to the definition of y∗ and the optimality of x∗, we must have

ϕ
(
y∗

 , . . . , y∗
k–, a�

k x∗) = ϕ
(
a�

 x∗, . . . , a�
k–x∗, a�

k x∗) ≤ ϕ
(
a�

 x, . . . , a�
k–x, a�

k x
)
. (.)

Additionally, from (.) and the assumption (A), it follows that

ϕ
(
a�

 x, . . . , a�
k–x, a�

k x
) ≤ ϕ

(
y, . . . , yk–, a�

k x
)
. (.)

Thus, (.) and (.) mean that (x∗, y∗) is a global optimal solution to problem (Q).
Conversely, suppose that (x∗, y∗) is a global optimal solution for problem (Q), then we

have

a�
i x∗ ≤ y∗

i , i = , . . . , k – , x∗ ∈ �.

By the assumption of ϕ, we can obtain

ϕ
(
a�

 x∗, . . . , a�
k–x∗, a�

k x∗) ≤ ϕ
(
y∗

 , . . . , y∗
k–, a�

k x∗).

For any given x ∈ �, if we let yi = a�
i x, i = , . . . , k – , then (x, y) is a feasible solution to

problem (Q) with y = (y, . . . , yk–) ∈ Rk–. Thus, from the optimality of (x∗, y∗) it follows
that

ϕ
(
a�

 x∗, . . . , a�
k–x∗, a�

k x∗) ≤ ϕ
(
y∗

 , . . . , y∗
k–, a�

k x∗)

≤ ϕ
(
y, . . . , yk–, a�

k x
)

= ϕ
(
a�

 x, . . . , a�
k–x, a�

k x
)
.

This means that x∗ is a global optimal solution to problem (P). �

By Theorem , we can conclude that, for solving the problem (P), we may globally solving
its equivalent problem (Q) instead. Besides, it is easy to understand that the problems
(P) and (Q) have the same global optimal value. Hence, we will propose a decomposition
approach for the problem (Q) below.

2.2 Linear decomposition technique
Problem (Q) has a relatively low-rank decomposition structure because, in contrast to
problem (P), the nonconvexity of the objective function only involves the term a�

k x if we
fix a y = (y, . . . , yk–) ∈ H . In order to solve problem (Q), based on this observation, for any
given θ ∈ (, ) we want to construct a polynomial size grid by subdividing H into smaller
rectangles, such that the ratio of successive divisions is equal to ( + θ ) in each dimension.
Thus, a polynomial size grid will be generated over H , where the set of the grid nodes can
be given by

Bθ =
{

(υ,υ, . . . ,υk–)|υi ∈Dθ
i , i = , . . . , k – 

}
, (.)
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where Dθ
i = {li, li( + θ ), . . . , li( + θ )ri} with

ri = arg max
{
τ ∈ N|li( + θ )τ ≤ ui

}
, i = , . . . , k – . (.)

Note that under the assumption (A), li >  must hold for each i. Clearly, for any
(y, y, . . . , yk–) ∈ H , there exists a point (υ,υ, . . . ,υk–) ∈ Bθ such that

yi ∈ [
υi, ( + θ )υi

]
for each i = , . . . , k – .

Thus, H can be approximated by the set Bθ . Next, for each grid node υ ∈ Bθ , consider the
corresponding subproblem as follows:

P(υ) :

⎧
⎪⎪⎨

⎪⎪⎩

ω(υ) = min ϕ(υ, a�
k x),

s.t. a�
i x ≤ υi, i = , . . . , k – ,

x ∈ �.

Notice that, by the assumption (A) of ϕ, for a given υ ∈ Bθ , problem P(υ) is equivalent
to a linear problem P(υ):

P(υ) :

⎧
⎪⎪⎨

⎪⎪⎩

min a�
k x,

s.t. a�
i x ≤ υi, i = , . . . , k – ,

x ∈ �.

That is, for a fixed point υ ∈ Bθ , xυ is the optimal solution of problem P(υ) if and only if
xυ is an optimal solution for problem P(υ).

Clearly, for each υ ∈ Bθ , the corresponding subproblems P(υ) can easily be solved by a
linear program P(υ). Thus, we can decompose a nonconvex programming problem (Q)
into a series of subproblems, and we can obtain its approximation global solution via the
solutions of those linear programming problems when concerning all nodes υ over Bθ .

3 Algorithm and its computational complexity
In this section, we will propose an effective algorithm for getting the approximation solu-
tion to problem (P), and then analyze its computational complexity.

3.1 ε-approximation algorithm
In what follows we will introduce an algorithm for solving problem (P), and the algorithm
is able to return an ε-approximate solution of problem (P).

Based on the particularities of problem (P), a given rectangle H is firstly subdivided to
construct a necessary nonuniform grid Bθ . The prime problem (P) can then transformed
and decomposed into a series of subproblems on the basis of the exploration of the grid
nodes. Each subproblem is associated with a grid node in the proposed algorithm, and
it can be solved by a linear program. An necessary and specific description is given as
follows. Given ε ∈ (, ), let θ = (+ε) 

c –. The grid nodes set Bθ can be generated by (.)-
(.). For each υ ∈ Bθ , solve problem P(υ) to get the solution xυ , and the optimal value
to the corresponding problem P(υ) is denoted ω(υ) = ϕ(υ, a�

k xυ), here, let ω(υ) = +∞ if
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Algorithm  Algorithm statement

Step  (Initialization) Let ε ∈ (, ), θ = ( + ε) 
c – . Set L̃ = +∞.

Step  Sub-divide H into smaller hypercubes, such that the ratio of two successive
divisions is  + θ in each dimension. Denote the corner of each subhypercube
υ = (υ, . . . ,υk–), which is stored in the set Bθ .

Step  while Bθ 
= ∅ do begin
Select υ = (υ, . . . ,υk–) ∈ Bθ , solve problem P(υ) to obtain an optimal

solution xv, and denote the optimal value w(υ) = ϕ(υ, aᵀ
k xυ ) to the

corresponding problem P(υ).
if L̃ > ω(υ)

update x̃ = xυ and L̃ = ω(υ),
end if

Bθ = Bθ \ {υ}.
end while.

the feasible set to P(υ) is empty. The process is repeated until all the points of Bθ are
considered. The detailed algorithm is Algorithm .

The following theorem shows that the proposed algorithm can reach an optimal solution
to problem (P).

Theorem  Given ε > , an ε-optimal solution x̃ to problem (P) from the proposed algo-
rithm can be obtained in the sense that

f (x̃) ≤ ( + ε)f
(
x∗),

where x∗ is the optimal solution of problem (P).

Proof Let

y∗
i = a�

i x∗, i = , . . . , k – . (.)

From x∗ being the optimal solution of problem (P), we have

li ≤ y∗
i = a�

i x∗ ≤ ui, i = , . . . , k – .

This implies that (y∗
 , y∗

, . . . , y∗
k–) ∈ H , so there exists some υ∗ ∈ Bθ which satisfies

( + θ )–υ∗
i ≤ y∗

i ≤ υ∗
i , i = , . . . , k – . (.)

Thus, combining with the assumptions of ϕ, we have

f
(
x∗) = ϕ

(
y∗

 , . . . , y∗
k–, a�

k x∗) ≥ ( +θ )–cϕ
(
υ∗, ( +θ )a�

k x∗) ≥ ( +θ )–cϕ
(
υ∗, a�

k x∗). (.)

Now, suppose that x̄ is the optimal solution of problem P(v∗). Then x∗ ∈ � together with
(.)-(.) implies that x∗ is a feasible solution of problem P(v∗). Thus we have

ϕ
(
υ∗, a�

k x∗) ≥ ϕ
(
υ∗, a�

k x̄
)
. (.)
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Additionally, let υ̃ = arg min{ω(υ)|υ ∈ Bθ }. Since x̃ is the optimal solution of problem
P(υ̃), it follows that a�

i x̃ ≤ ṽi, i = , . . . , k – , thus, we can get

ϕ
(
υ̃, a�

k x̃
) ≥ ϕ

(
a�

 x̃, a�
 x̃, . . . , a�

k x̃
)

= f (x̃). (.)

According to the definitions of ṽ and x̄, we have

ϕ
(
υ∗, a�

k x̄
) ≥ ϕ

(
υ̃ , a�

k x̃
)
. (.)

Hence, from (.)-(.) and θ = ( + ε) 
c – , we can conclude that

f (x̃) ≤ ( + ε)f
(
x∗),

and so x̃ is the approximation solution to problem (P). �

By Theorem  we also have the following corollary.
According to the above discussion, the ε-approximation solution to problem (P) can be

obtained by solving |Bθ | (the number of grid nodes in Bθ ) linear programming problems
P(υ) with υ ∈ Bθ . However, it is not necessary to solve each P(υ) associated with each
υ ∈ Bθ for searching the solution of problem (P), that is, by using the following proposition
we can obtain an improvement of the algorithm.

Proposition  Let x̂ = arg min{a�
k x|x ∈ �}. Then x̂ is an optimal solution of problem P(υ)

for any υ ∈ B̂θ , where

B̂θ =
{
υ ∈ Bθ |a�

i x̂ ≤ υi, i = , . . . , k – 
}

. (.)

Proof Suppose that x̄υ is any feasible solution of problem P(υ) with υ ∈ B̂θ . By using the
definition of x̂ we can see that x̂ is a feasible solution of problem P(υ) for any υ ∈ B̂θ . With
the increase of the function ϕ, it follows that

ϕ
(
υ, a�

k x̂
) ≤ ϕ

(
υ, a�

k x̄υ
)
, ∀υ ∈ B̂θ ,

which concludes the proof. �

Proposition  shows that x̂ is the optimal solution of subproblem P(υ) for any υ ∈ B̂θ .
Therefore, in practical implementations, we only are required to solve the subproblem
P(υ) associated with the points contained in the set Bθ \ B̂θ . A further note on B̂θ is as
follows.

For any θ ∈ (, ), by the definition of H , let

qi = arg min
{

p ∈N|ŷi ≤ li( + θ )p ≤ ui
}

for i = , . . . , k – , (.)

where ŷi = a�
i x̂ with x̂ = arg min{a�

k x|x ∈ �}. Combining the definition of ri, i = , . . . , k – 
with the above result, the set B̂θ can be given by

B̂θ =
{(

l( + θ )σ , . . . , lk–( + θ )σk–
)|σi ∈ {qi, . . . , ri}, i = , . . . , k – 

}
. (.)
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Algorithm  The improved algorithm

Step  (Initialization) Let ε ∈ (, ), θ = ( + ε) 
c – , x̂ = arg min{a�

k x|x ∈ �}.
Step  By using (.) and (.) get the grid nodes sets Bθ and B̂θ . Set Tθ = Bθ \ B̂θ and

let L̃ = ϕ(υ, a�
k x̂) with υ ∈ B̂θ .

Step  while Tθ 
= ∅ do begin
Select υ = (υ, . . . ,υk–) ∈ Tθ , solve problem P(υ) to obtain an optimal

solution x(υ). The optimal value to the corresponding problem P(υ) is denoted
ω(υ).

if L̃ > ω(υ)
let x̃ = x(υ), L̃ = ω(υ),

end of if
Tθ = Tθ \ {υ}.

end while.

Let

Tθ = Bθ \ B̂θ . (.)

This means the ε-approximation solution to problem (P) can be obtained only by solving
|Tθ | (the number of points in the set Tθ ) linear programming subproblems P(υ) for all
υ ∈ Tθ . Thus the proposed algorithm can be improved by Algorithm .

Notice that, when the proposed improved algorithm stops, we can obtain an ε-optimal
solution x̃ to problem (P) with the objective value L̃.

3.2 Computational complexity for the algorithm
Now we consider the complexity analysis of the proposed improved algorithm. By (.)-
(.), we can conclude that the number of the grid nodes belonging to B̂θ is at least

k–∏

i=

log(+θ )

(
ui

ŷi

)

, (.)

where ŷi = a�
i x̂ with x̂ = arg min{a�

k x|x ∈ �}. On the other hand, we know from (.) that
the total number of the points in the set Bθ is equal to

∏k–
i= ri, ri satisfying (.). Thus, it

follows that the number of the elements in Bθ is at most

k–∏

i=

log(+θ )

(
ui

li

)

. (.)

Combining (.) with (.), the proposed improvement algorithm requires that the num-
ber of the grid nodes considered in actually computation is not more than

� =
k–∏

i=

(

log(+θ )
ui

li

)

–
k–∏

i=

(

log(+θ )
ui

ŷi

)

. (.)

Theorem  Let x̂ = arg min{a�
k x|x ∈ �}, L = mini=,...,k–{ ui

ŷi
} with ŷi = a�

i x̂, and let
U=maxi=,...,k–

ui
li

. When k is fixed, the running time of the improved algorithm for obtaining



Shen and Wang Journal of Inequalities and Applications  (2017) 2017:74 Page 9 of 11

an ε-optimal solution for problem (P), is bounded from above by

O
(

log
U
L

· ck–ξ k–

εk– · cost
(|π |, n

)
)

,

where ξ ∈ (log L, log U), and cost(|π |, n) is the time taken to solve a linear program in n
variables and input size of |π | bits.

Proof By Step  of the improved algorithm, it follows that

log(+θ )

(
ui

ŷi

)

≥ log(+θ ) L =
c log L

log( + ε)

and

log(+θ )

(
ui

li

)

=
log( ui

li
)

log( + θ )
=

c log( ui
li

)
log( + ε)

≤ c log U
log( + ε)

.

From the above results and (.), we have

� ≤
(

c log U
log( + ε)

)k–

–
(

c log L
log( + ε)

)k–

=
ck–

[log( + ε)]k–

[
(log U)k– – (log L)k–]. (.)

Thus, the upper bound of the number of grid points � is

ck–

εk–

[
(log U)k– – (log L)k–]. (.)

The result of (.) holds because log( + ε) ≈ ε for small ε values. By using the Lagrange
mean value theorem, there exists some ξ ∈ (log L, log U) such that

(log U)k– – (log L)k– = (k – )ξ k–(log U – log L). (.)

Thus we can know from (.)-(.) that the total number of the grid nodes considered
in the improved algorithm is not more than

(k – )ξ k–ck–(log U – log L)
εk– .

Note that log U and log L are computed in polynomial time about the input size of the
problem. Additionally, for each grid node υ in the set Tθ , a corresponding linear pro-
gramming problem P(υ) is required to solve. Therefore, for a fixed k, the running time
required by the improved algorithm for obtaining an ε-optimal solution for problem (P),
is bounded from above by

O
(

log
U
L

· ck–ξ k–

εk– · cost
(|π |, n

)
)

, (.)

where ξ ∈ (log L, log U). �
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In view of the above theorem we can conclude that the running time of the proposed
improved algorithm is polynomial in input size and 

ε
for fixed k, hence the algorithm is

an FPTAS (fully polynomial-time approximation scheme) for the problem (P).
Comparison with [, ]: The algorithm in [] searches for the optimal objective value

in a k-dimensional grid, in which requires one to check the feasible of a linear program
for each grid node, thus the total number of linear programs solved by their method is

O( ck (log M
m )k

εk ) with M \ m = max\min{a�
i x|x ∈ �, i = , . . . , k}. In the algorithm [], the

number of linear optimization problems that are solved over a convex set in each iteration
is O( ck–(log R)k–

εk– ), where R = max{ ui
li
|i = , . . . , k}. Also, at each iteration of their algorithm

[], the ratio of the upper and lower bounds of the objective value can be reduced by a
constant factor, hence the number of iterations is O( c

ε
· log

z
U

z
L

), where z
U (z

L) denotes the
initial upper (lower) bound on the objective value. This implies that the algorithm in []
solves O(log

z
U

z
L

· ck (log R)k–

εk ) linear optimization problems over a convex set. In this article,

as can be seen in (.), the proposed algorithm solves O(log U
L · ck–ξk–

εk– ) different linear
programs, and the running time is associated with (k – )th order in 

ε
, compared with the

kth order in 
ε

in [, ].

4 Conclusions
In this article, we present a new linear decomposition algorithm for globally solving a class
of nonconvex programming problems. First, the original problem is transformed and de-
composed into a polynomial number of equivalent linear programming subproblems, by
exploiting a suitable nonuniform grid. Second, compared with existing results in the lit-
erature, the proposed algorithm does not require the assumptions of quasi-concavity and
differentiability of the objective function, and further, the rank k of the objective function
is not limited to only around two. Finally, the computational complexity of the algorithm
is given to show that it differs significantly giving an interesting alternative approach to
solve the problem (P) with a reduced running time.

5 Results and discussion
In this work, a new linear decomposition algorithm for globally solving a class of non-
convex programming problems is presented. As further work, we think the ideas can be
extended to more general type optimization problems, in which each a�

i x in the objective
function to problem (P) is replaced with a convex function.
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