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Abstract
In this paper, we introduce two iterative algorithms for finding the solution of the
sum of two monotone operators by using hybrid projection methods and shrinking
projection methods. Under some suitable conditions, we prove strong convergence
theorems of such sequences to the solution of the sum of an inverse-strongly
monotone and a maximal monotone operator. Finally, we present a numerical result
of our algorithm which is defined by the hybrid method.
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1 Introduction
The monotone inclusion problem is very important in many areas, such as convex opti-
mization and monotone variational inequalities, for instance. Splitting methods are very
important because many nonlinear problems arising in applied areas such as signal pro-
cessing, machine learning and image recovery which mathematically modeled as a non-
linear operator equation which this operator can be consider as the sum of two nonlinear
operators. The problem is finding a zero point of the sum of two monotone operators; that
is,

find z ∈ H such that  ∈ (A + B)z, ()

where A is a monotone operator and B is a multi-valued maximal monotone operator. The
set of solutions of () is denoted by (A + B)–(). We know that the problem () included
many problems; see for more details [–] and the references therein. In fact, we can for-
mulate the initial value problem of the evolution equation  ∈ Tu + ∂u

∂t , u = u(), as the
problem () where the governing maximal monotone T is of the form T = A + B (see []
and the references therein). The methods for solving the problem () have been studied
extensively by many authors (see [, ] and []).

In , Moudafi and Thera [] introduced the iterative algorithm for the problem ()
where the operator B is maximal monotone and A is (single-valued) Lipschitz continuous
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and strongly monotone such as the iterative algorithm

⎧
⎨

⎩

xn = JB
λ wn,

wn+ = swn + ( – s)xn – λ( – s)Axn,
()

with fixed s ∈ (, ) and under certain conditions. They found that the sequence {xn} de-
fined by () converges weakly to elements in (A + B)–().

On the other hand, Nakago and Takahashi [] introduced an iterative hybrid projection
method and proved the strong convergence theorems for finding a solution of a maximal
monotone case as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x = x ∈ H ,

yn = Jrn (xn + fn),

Cn = {z ∈ H : ‖yn – z‖ ≤ ‖xn + fn – z‖},
Qn = {z ∈ H : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn (x),

()

for every n ∈ N ∪ {}, where rn ⊂ (,∞). They proved that if lim infn→∞ rn >  and
limn→∞ ‖fn‖ = , then xn → z = PA–()(x). Furthermore, many authors have introduced
the hybrid projection algorithm for finding the zero point of maximal monotones such
as [] and other references. Recently, Qiao-Li Dong et al. [] introduced a new hybrid
projection algorithm for finding a fixed point of nonexpansive mappings. Under suitable
assumptions, they proved that such sequence converge strongly to a solution of fixed
point T . Moreover, by using a shrinking projection method, Takahashi et al. [] intro-
duced a new algorithm and proved strong convergence theorems for finding a common
fixed point of families of nonexpansive mappings.

In this paper motivated by the iterative schemes considered in the present paper, we will
introduce two iterative algorithms for finding zero points of the sum of an inverse-strongly
monotone and a maximal monotone operator by using hybrid projection methods and
shrinking projection methods. Under some suitable conditions, we obtained strong con-
vergence theorems of the iterative sequences generated by the our algorithms. The or-
ganization of this paper is as follows: Section , we recall some definitions and lemmas.
Section , we prove a strong convergence theorem by using hybrid projection methods.
Section , we prove a strong convergence theorem by using shrinking projection meth-
ods. Section , we report a numerical example which indicate that the hybrid projection
method is effective.

2 Preliminaries
In this paper, we let C be a nonempty closed convex subset of a real Hilbert space H .
Denote PC(·) is the metric projection on C. It is well known that z = PC(x) if

〈x – z, z – y〉 ≥  for all y ∈ C.

Moreover, we also note that

∥
∥PC(x) – PC(y)

∥
∥ ≤ ‖x – y‖ for all x, y ∈ H
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and

∥
∥PC(x) – x

∥
∥ ≤ ‖x – y‖ for all y ∈ C

(see also []). We say that A : C → H is a monotone operator if

〈Ax – Ay, x – y〉 ≥  for all x, y ∈ C,

and the operator A : C → H is inverse-strongly monotone if there is α >  such that

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖ for all x, y ∈ C.

For this case, the operator A is called α-inverse-strongly monotone. It is easy to see that
every inverse-strongly monotone is monotone and continuous. Recall that B : H → H is
a set-valued operator. Then the operator B is monotone if 〈x – x, z – z〉 ≥  whenever
z ∈ Bx and z ∈ Bx. A monotone operator B is maximal if for any (x, z) ∈ H × H such
that 〈x – y, z – w〉 ≥  for all (y, w) ∈ Graph B implies z ∈ Bx. Let B be a maximal monotone
operator and r > . Then we can define the resolvent Jr : R(I + rB) → D(B) by Jr = (I + rB)–

where D(B) is the domain of B. We know that Jr is nonexpensive and we can study the
other properties in [–].

Lemma . ([]) Let C be a closed convex subset of a real Hilbert space H , x ∈ H . and
z = PCx. If {xn} is a sequence in C such that ωw(xn) ⊂ C and

‖xn – x‖ ≤ ‖x – z‖,

for all n ≥ , then the sequence {xn} converges strongly to a point z.

Lemma . ([]) Let {αn} and {βn} be nonnegative real sequences, a ∈ [, ) and b ∈ R
+.

Assume that, for any n ∈N,

αn+ ≤ aαn + bβn.

If
∑∞

n= βn < +∞, then limn→∞ αn = .

Lemma . ([]) Let C be a closed convex subset a real Hilbert space H , and x, y, z ∈ H .
Then, for given a ∈R, the set

U =
{

v ∈ C : ‖y – v‖ ≤ ‖x – v‖ + 〈z, v〉 + a
}

is convex and closed.

Lemma . ([]) Let C be a nonempty closed convex subset of a real Hilbert space H , and
A : C → H an operator. If B : H → H is a maximal monotone operator, then

F
(
Jr(I – rA)

)
= (A + B)–().
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3 Hybrid projection methods
In this section, we introduce a new iterative hybrid projection method and prove a strong
convergence theorem for finding a solution of the sum of an α-inverse-strongly monotone
(single-value) operator and a maximal monotone (multi-valued) operator.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Suppose
that A : C → H is an α-inverse-strongly monotone operator and let B : H → H be a maxi-
mal monotone operator with D(B) ⊆ C and (A + B)–() �= ∅. Define a sequence {xn} by the
algorithm

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, z ∈ C,

yn = αnzn + ( – αn)xn,

zn+ = Jrn (yn – rnAyn),

Cn = {z ∈ C : ‖zn+ – z‖ ≤ αn‖zn – z‖ + ( – αn)‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn (x),

()

for all n ∈N∪ {}, where Jrn = (I + rnB)–, {αn} and {rn} are sequences of positive real num-
bers with  ≤ αn ≤ β for some β ∈ [, 

 ) and  < rn ≤ α. Then the sequence {xn} converges
strongly to a point p = P(A+B)–()(x).

Proof From Lemma ., we see that Cn is closed convex for every n ∈ N ∪ {}. First, we
show that (A + B)–() ⊂ Cn for all n ∈ N ∪ {}. Since A : C → H is an α-inverse-strongly
monotone operator, we have I – rnA is nonexpensive. Indeed,

∥
∥(I – rnA)x – (I – rnA)y

∥
∥ =

∥
∥(x – y) – rn(Ax – Ay)

∥
∥

= ‖x – y‖ – rn〈x – y, Ax – Ay〉 + r
n‖Ax – Ay‖

≤ ‖x – y‖ – rn(α – rn)‖Ax – Ay‖

≤ ‖x – y‖.

Let n ∈ N∪ {} and w ∈ (A + B)–(). Thus, we have

‖zn+ – w‖ =
∥
∥Jrn (yn – rnAyn) – Jrn (w – rnAw)

∥
∥

≤ ∥
∥(yn – rnAyn) – (w – rnAw)

∥
∥

≤ ‖yn – w‖

=
∥
∥αnzn + ( – αn)xn – w

∥
∥

≤ αn‖zn – w‖ + ( – αn)‖xn – w‖.

This implies that w ∈ Cn for all n ∈N∪ {} and hence

(A + B)–() ⊂ Cn, ()
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for all n ∈N∪ {}. Next, we prove that (A + B)–() ⊂ Qn for all n ∈ N∪ {} by the mathe-
matical induction. For n = , we note that

(A + B)–() ⊂ C = Q.

Suppose that (A + B)–() ⊂ Qk for some k ∈ N. Since Ck ∩ Qk is closed and convex, we
can define

xk+ = PCk∩Qk (x).

It follows that

〈xk+ – z, x – xk+〉 ≥  for all z ∈ Ck ∩ Qk .

From (A + B)–() ⊂ Ck ∩ Qk , we see that

(A + B)–() ⊂ Qk+.

Therefore

(A + B)–() ⊂ Qn, ()

for all n ∈N∪{}. Combining the inequalities () and (), it follows that {xn} is well defined.
Since (A + B)–() is a nonempty closed convex set, there is a unique element p ∈ (A +

B)–() such that

p = P(A+B)–()(x).

From xn = PQn (x), we have

‖xn – x‖ ≤ ‖q – x‖ for all q ∈ Qn.

Due to p ∈ (A + B)–() ⊂ Qn, we have

‖xn – x‖ ≤ ‖p – x‖, ()

for any n ∈ N∪ {}. It follows that {xn} is bounded. As xn+ ∈ Cn ∩ Qn ⊂ Qn, we have

〈xn – xn+, x – xn〉 ≥ ,

and hence

‖xn+ – xn‖ =
∥
∥(xn+ – x) – (xn – x)

∥
∥

= ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖. ()
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By () and (), we have

N∑

n=

‖xn+ – xn‖ ≤
N∑

n=

(‖xn+ – x‖ – ‖xn – x‖)

= ‖xN+ – x‖ – ‖x – x‖

≤ ‖q – x‖ – ‖x – x‖.

Since N is arbitrary,
∑∞

n= ‖xn+ – xn‖ is convergent and hence

‖xn+ – xn‖ →  as n → ∞. ()

Since xn+ ∈ Cn ∩ Qn ⊂ Cn, we have

‖zn+ – xn+‖ ≤ αn‖zn – xn+‖ + ( – αn)‖xn – xn+‖

= αn
(‖zn – xn‖ + 〈zn – xn, xn – xn+〉 + ‖xn – xn+‖)

+ ( – αn)‖xn – xn+‖

≤ αn
(‖zn – xn‖ + ‖xn – xn+‖) + ( – αn)‖xn – xn+‖

= αn‖zn – xn‖ + ( + αn)‖xn – xn+‖

≤ β‖zn – xn‖ + ‖xn – xn+‖,

for all n ∈N. By Lemma . and β ∈ [, 
 ), we get

‖zn – xn‖ →  as n → ∞. ()

In fact, since ‖zn+ – xn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖, for all n ∈ N, it follows by () and
() that

‖zn+ – xn‖ →  as n → ∞. ()

Note that

‖xn – yn‖ =
∥
∥xn – αnzn – ( – αn)xn

∥
∥

= αn‖xn – zn‖
≤ β‖xn – zn‖,

for all n ∈N. Thus, we see that

‖xn – yn‖ →  as n → ∞. ()

Moreover, we note that
∥
∥Jrn (I – rnA)xn – xn

∥
∥

≤ ∥
∥Jrn (I – rnA)xn – Jrn (I – rnA)yn

∥
∥ +

∥
∥Jrn (I – rnA)yn – zn+

∥
∥ + ‖zn+ – xn‖

≤ ‖xn – yn‖ + ‖zn+ – xn‖,
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for all n ∈N. By () and (), we see that

∥
∥Jrn (I – rnA)xn – xn

∥
∥ →  as n → ∞. ()

From (), it follows by the demiclosed principle (see []) that

ωw(xn) ⊂ F
(
Jrn (I – rnA)

)
= (A + B)–().

Hence by Lemma . and (), we can conclude that the sequence {xn} converges strongly
to p = P(A+B)–()(x). This completes the proof. �

If we take A =  and αn =  for all n ∈ N ∪ {} in Theorem ., then we obtain the fol-
lowing result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
B : H → H be a maximal monotone operator with D(B) ⊆ C. Assume that (B)–() �= ∅.
A sequence {xn} generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C,

zn+ = Jrn (xn),

Cn = {z ∈ C : ‖zn+ – z‖ ≤ ‖xn – z‖},
Qn = {z ∈ C : 〈xn – z, x – xn〉 ≥ },
xn+ = PCn∩Qn (x),

for all n ∈ N ∪ {}, where Jrn = (I + rnB)– and {rn} is a sequence of positive real numbers
with  < rn ≤ α for some α > . Then xn → p = P(B)–()(x).

4 Shrinking projection methods
In this section, we introduce a new iterative shrinking projection method and prove a
strong convergence theorem for finding a solution of the sum of an α-inverse-strongly
monotone (single-value) operator and a maximal monotone (multi-valued) operator.

Theorem . Let C be a nonempty closed convex subset of a real Hilbert space H . Suppose
that A : C → H is an α-inverse-strongly monotone operator and let B : H → H be a maxi-
mal monotone operator with D(B) ⊆ C and (A + B)–() �= ∅. Define a sequence {xn} by the
algorithm

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, z ∈ C,

yn = αnzn + ( – αn)xn,

zn+ = Jrn (yn – rnAyn),

Cn+ = {z ∈ Cn : ‖zn+ – z‖ ≤ αn‖zn – z‖ + ( – αn)‖xn – z‖},
xn+ = PCn+ x,

()

for all n ∈ N ∪ {}, where C = C, Jrn = (I + rnB)–, {αn} and {rn} are sequences of positive
real numbers with  ≤ αn ≤ β for some β ∈ [, 

 ) and  < rn ≤ α. Then the sequence {xn}
converges strongly to a point p = P(A+B)–()(x).
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Proof From Lemma ., we see that Cn is closed convex for every n ∈ N ∪ {}. First, we
show that (A + B)–() ⊂ Cn for all n ∈ N∪ {}. For n = , we have

(A + B)–() ⊂ C = C.

Suppose that (A + B)–() ⊂ Ck for some k ∈ N. Since A : C → H is an α-inverse-strongly
monotone operator, we see that I – rnA is nonexpensive. Let w ∈ (A + B)–(). Thus w ∈ Ck

and

‖zk+ – w‖ ≤ αk‖zk – w‖ + ( – αk)‖xk – w‖.

That is, w ∈ Ck+. So, we have

(A + B)–() ⊂ Cn, ()

for all n ∈N∪ {}. It follows that {xn} is well defined.
Since (A + B)–() is a nonempty closed convex set, there is a unique element p ∈ (A +

B)–() such that

p = P(A+B)–()(x).

From xn = PCn (x), we have

‖xn – x‖ ≤ ‖q – x‖ for all q ∈ Cn.

Due to p ∈ (A + B)–() ⊂ Cn, we have

‖xn – x‖ ≤ ‖p – x‖, ()

for any n ∈ N ∪ {}. It follows that {xn} is bounded. As xn+ ∈ Cn+ ⊂ Cn and xn = PCn (x),
we have

〈xn – xn+, x – xn〉 ≥ ,

for all n ∈N. This implies that

‖xn+ – xn‖ = ‖xn+ – x‖ – ‖xn – x‖ – 〈xn+ – xn, xn – x〉
≤ ‖xn+ – x‖ – ‖xn – x‖, ()

for all n ∈N. From () and (), we have

N∑

n=

‖xn+ – xn‖ ≤
N∑

n=

(‖xn+ – x‖ – ‖xn – x‖)

= ‖xN+ – x‖ – ‖x – x‖

≤ ‖q – x‖ – ‖x – x‖.
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Since N is arbitrary, we see that
∑∞

n= ‖xn+ – xn‖ is convergent. Thus, we have

‖xn+ – xn‖ →  as n → ∞. ()

From xn+ ∈ Cn+ and {αn} ⊂ [,β), it implies that

‖zn+ – xn+‖ ≤ αn‖zn – xn+‖ + ( – αn)‖xn – xn+‖

≤ αn‖zn – xn‖ + ( + αn)‖xn – xn+‖

≤ β‖zn – xn‖ + ‖xn – xn+‖, ∀n ∈ N.

By Lemma . and β ∈ [, 
 ), we obtain

‖zn – xn‖ →  as n → ∞. ()

In fact, since ‖zn+ – xn‖ ≤ ‖zn+ – xn+‖ + ‖xn+ – xn‖, for all n ∈ N, it follows by () and
() that

‖zn+ – xn‖ →  as n → ∞. ()

Note that

‖xn – yn‖ =
∥
∥xn – αnzn – ( – αn)xn

∥
∥

= αn‖xn – zn‖
≤ β‖xn – zn‖,

for all n ∈N. This implies that

‖xn – yn‖ →  as n → ∞. ()

Moreover, we note that

∥
∥Jrn (I – rnA)xn – xn

∥
∥

≤ ∥
∥Jrn (I – rnA)xn – Jrn (I – rnA)yn

∥
∥ +

∥
∥Jrn (I – rnA)yn – zn+

∥
∥ + ‖zn+ – xn‖

≤ ‖xn – yn‖ + ‖zn+ – xn‖,

for all n ∈N. By () and (), we see that

∥
∥Jrn (I – rnA)xn – xn

∥
∥ →  as n → ∞. ()

From (), it follows by the demiclosed principle (see []) that

ωw(xn) ⊂ F
(
Jrn (I – rnA)

)
= (A + B)–().

By Lemma . and (), we can conclude that the sequence {xn} converges strongly to
p = P(A+B)–()(x). This completes the proof. �
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If we take A =  and αn =  for all n ∈ N ∪ {} in Theorem ., then we obtain the fol-
lowing result.

Corollary . Let C be a nonempty closed convex subset of a real Hilbert space H . Let
B : H → H be a maximal monotone operator with D(B) ⊆ C. Assume that (B)–() �= ∅.
A sequence {xn} generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x ∈ C,

zn+ = Jrn (xn),

Cn+ = {z ∈ Cn : ‖zn+ – z‖ ≤ ‖xn – z‖},
xn+ = PCn+ x,

for all n ∈ N ∪ {}, where C = C, Jrn = (I + rnB)– and {rn} is a sequence of positive real
numbers with  < rn ≤ α for some α > . Then xn → p = P(B)–()(x).

5 Numerical results
In this section, we firstly follow the ideas of He et al. [] and Dong et al. []. For C = H ,
we can write () in Theorem . as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, z ∈ H ,

yn = αnzn + ( – αn)xn,

zn+ = Jrn (yn – rnAyn),

un = αnzn + ( – αn)xn – zn+,

vn = (αn‖zn‖ + ( – αn)‖xn‖ – ‖zn+‖)/,

Cn = {z ∈ C : 〈un, z〉 ≤ vn},
Qn = {z ∈ C : 〈xn – z, xn – x〉 ≤ },
xn+ = pn, if pn ∈ Qn,

xn+ = qn, if pn /∈ Qn,

()

where

pn = x –
〈un, x〉 – vn

‖un‖ un,

qn =
(

 –
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉

)

pn +
〈x – xn, xn – pn〉
〈x – xn, wn – pn〉wn,

wn = xn –
〈un, xn〉 – vn

‖un‖ .

Let R be the two dimensional Euclidean space with usual inner product 〈x, y〉 = xy +
xy for all x = (x, x)T , y = (y, y)T ∈ R and denote ‖x‖ =

√
x + x.

Define the operator A′ : R → R as

A′(x) =
(

,



x

)T

for all x = (x, x) ∈ R.
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Table 1 This table illustrates that in our examples (23) derived from (4) has a competitive
efficacy

x(0) Iter. x = (x1, x2)T E(x)

(4, 3) 4520 (1.573198640818142, 1.573198530023523) 3.521317011074167e–08
(–2, 8) 5420 (0.944819548758385, 0.944819526356611) 1.185505467234501e–08
(3, –4) 3307 (99.631392375764780, 99.631402116509490) 4.888391102078766e–08
(–1, –3) 4110 (–0.781555402714756, –0.781555394005797) 5.571556279844247e–09

It is obvious that A′ is nonexpansive and hence I – A′ is 
 -inverse-strongly monotone (see

[, ]). Thus we have the mapping A = I – A′ : R → R as

A(x) =
(

x, x –



x

)T

for all x = (x, x) ∈ R

is 
 -inverse-strongly monotone. Let W = {(x, x) ∈ R : x = x}. Then W is a linear sub-

space of R. Define

NW =
{

(x, y) : x ∈ W and y ∈ W ⊥}
.

This implies that NW is maximal monotone (see []). It is easily seen that (A +
NW )–() �= ∅. We take {r(n)} = { 

n+ } ⊂ (, ) (note α = 
 ). Then {r(n)} is a sequence of pos-

itive real numbers in (, α), and {α(n)} = . (note β = .). Let x() = (, ), (–, ), (, –)
and (–, –) be the initial points and fixed z() = (, ). Denote

E(x) =
‖x(n) – Jr(n) (x(n) – r(n)Ax(n))‖

‖x(n)‖ .

Since we do not know the exact value of the projection of x onto the set of fixed points
of Jrn (I – rnA), we take E(x) to be the relative rate of convergence of our algorithm. In the
numerical result, E(x) < ε is the stopping condition and ε = –. Moreover, we have shown
that the competitive efficacy of our example, see Table .

6 Conclusions
We have proposed two new iterative algorithms for finding the common solution of the
sum of two monotone operators by using hybrid methods and shrinking projection meth-
ods. The convergence of the proposed algorithms is obtained and the numerical result of
the hybrid iterative algorithm is also effective.
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