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1 Introduction
Recently, a vector equilibrium problem has received lots of attention because it unifies sev-
eral classes of problems, for instance, vector variational inequality problems, vector opti-
mization problems, vector saddle point problems and vector complementarity problems,
for details, see [] and the references therein. Moreover, many authors further investigated
several general types of it, for instance, see [–].

Let I be a finite index set and i ∈ I . Assume that Ei, Fi and Zi are locally convex Hausdorff
spaces, Xi ⊂ Ei and Yi ⊂ Fi are two nonempty convex subsets. Let X =

∏
i∈I Xi and Y =

∏
i∈I Yi. Assume that Ci : X → Zi is a set-valued mapping, the values of which are closed

convex cones with apex at the origin, Ci(x) � Zi and int Ci(x) �= ∅. Let Z∗
i be the dual of Zi,

Si : X → Xi and Ti : X → Yi be set-valued mappings with nonempty values. Assume that
fi : X × Y × Xi → Zi, gi : X × Y × Yi → Zi are two trifunctions.

One of the general types, a system of simultaneous generalized vector quasi-equilibrium
problems (for short, (SSGVQEP)), as follows, is considered: find (x̄, ȳ) ∈ X × Y such that
∀i ∈ I , x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄),

fi(x̄, ȳ, ui) ∈ Ci(x̄), ∀ui ∈ Si(x̄),

gi(x̄, ȳ, vi) ∈ Ci(x̄), ∀vi ∈ Ti(x̄).

The problem (SSGVQEP) was introduced by Ansari in []. By suitable choices of fi, gi, Si

and Ti, (SSGVQEP) reduces to several classical systems of (quasi-)equilibrium problems
and systems of variational inequalities, which are studied in the literatures (see [–] and
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the references therein). Furthermore, by suitable conditions and suitable choices of i, (SS-
GVQEP) contains vector equilibrium problems as special cases. A solution of (SSGVQEP)
is an ideal solution. It is better than other solutions such as weak efficient solutions, effi-
cient solutions and proper efficient solutions (see [, –] and the references therein).
Therefore, it is meaningful to study the existence result for the solution set of (SSGVQEP).

The classical concept of Hadamard well-posedness requires not only the existence and
uniqueness of the optimal solution but also the continuous dependence of the optimal so-
lution on the problem data. Recently, the classical concept together with its generalized
types has been studied in other more complicated situations such as scalar optimization
problems, vector optimization problems, nonlinear optimal control problems, and so on,
see [, –] and the references therein. However, as far as we know, there are few re-
sults about Hadamard well-posedness of (SSGVQEP). Therefore, it is necessary to study
Hadamard well-posedness of (SSGVQEP).

In this paper, by using demicontinuity and natural quasi-convexity, we obtain an
existence theorem of solutions for (SSGVQEP). Moreover, we introduce the defini-
tion of Hadamard well-posedness for (SSGVQEP) and discuss sufficient conditions for
Hadamard well-posedness of (SSGVQEP). The rest of the paper goes as follows. In Sec-
tion , we recall some necessary notations and definitions. In Section , we obtain the
existence theorem of solutions for (SSGVQEP). In Section , we investigate Hadamard
well-posedness of (SSGVQEP).

2 Preliminaries and notations
Let us recall some notations and definitions of vector-valued mappings and set-valued
mappings together with their properties.

Let X, Y be two topological spaces and F : X → Y be a set-valued mapping. Assume
that x ∈ X. If for any open set V with F(x) ⊂ V , there exists a neighborhood N of x such
that

⋃

x′∈N

F
(
x′) := F(N) ⊂ V ,

F is called upper semi-continuous (u.s.c. for short) at x. If F is u.s.c. at each point of X, F is
called u.s.c. If for any z ∈ F(x) and any neighborhood N of z, there exists a neighborhood
U of x such that ∀y ∈ U , we have

F(y) ∩ N �= ∅,

F is called lower semi-continuous (l.s.c. for short) at x. If F is l.s.c. at every point of X,
F is called l.s.c. In addition, F is called continuous if F is both l.s.c. and u.s.c. If the set
Graph(F), i.e., Graph(F) = {(x, y) : x ∈ X, y ∈ F(x)}, is a closed set in X × Y , F is called a
closed mapping. F is called compact if the closure of F(X), i.e., F(X), is compact, where
F(X) =

⋃
x∈X F(x).

Definition  ([]) Let Y , Z be topological vector spaces. A vector-valued mapping f :
Y → Z is called demicontinuous if for each closed half space M ⊂ Z,

f –(M) =
{

x ∈ Y : f (x) ∈ M
}

is closed in Y .



Zhang and Zeng Journal of Inequalities and Applications  (2017) 2017:58 Page 3 of 10

Definition  Let (Z, P) be an ordered topological vector space, E be a nonempty convex
subset of a vector space X, and f : E → Z be a vector-valued mapping.

(i) f is called convex if for every x, x ∈ E and for every λ ∈ [, ], one has

f
(
λx + ( – λ)x

) ∈ λf (x) + ( – λ)f (x) – P.

(ii) f is called properly quasi-convex if for every x, x ∈ E and λ ∈ [, ], one has either
f (λx + ( – λ)x) ∈ f (x) – P or f (λx + ( – λ)x) ∈ f (x) – P.

(iii) f is said to be naturally quasi-convex if for every x, x ∈ E, λ ∈ [, ], there exists
μ ∈ [, ] such that

f
(
λx + ( – λ)x

) ∈ μf (x) + ( – μ)f (x) – P.

It is clear that every properly quasi-convex or convex mapping is naturally quasi-convex,
but a naturally quasi-convex mapping may not be convex or properly quasi-convex.

3 Results and discussion
In this section, we will consider the existence results of (SSGVQEP) and give an example
to show that our existence theorem extends the corresponding result in []. Moreover,
we will introduce Hadamard-type well-posedness for (SSGVQEP) and establish sufficient
conditions of Hadamard-type well-posedness for (SSGVQEP).

3.1 Existence of solutions for (SSGVQEP)
In this subsection, we will consider the existence results of (SSGVQEP) and give example
to show that our existence theorem extends the corresponding result in [].

Let Z be a locally convex Hausdorff space, P ⊂ Z be a closed convex and pointed cone,
and int P �= ∅. We denote

T =
{

x∗ ∈ Z∗ : ∀x ∈ – int P, x∗(x) <  and ∀x ∈ P, x∗(x) ≥ 
}

.

We can deduce from [], p., Theorem , that T �= ∅.

Lemma  For arbitrary x ∈ Z, if (x∗, x) ≥  for all x∗ ∈ T , then x ∈ P.

Proof If we assume that (x∗, x) ≥  for all x∗ ∈ T , but x /∈ P. Let A = {λx + ( – λ)p : λ ∈
(, ), p ∈ – int P}, then we have A is an open convex set,

P ∩ A = ∅ and (– int P) ⊂ A. ()

If not, there exist y ∈ P, λ ∈ (, ) and p ∈ – int P such that y = λx + ( – λ)p. Thus,

x =

λ

(

λ · y
λ

+ ( – λ)(–p)
)

∈ P.

It is a contradiction. Thus, () holds. By [], p., Theorem , there exists x∗′ ∈ Z∗ such
that for all y ∈ P,

x∗′
(y) ≥ ,
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and for all y ∈ A,

x∗′
(y) < .

Then x∗′ (x) <  and x∗′ ∈ T . However, this contradicts the fact that (x∗, x) ≥  for all
x∗ ∈ T . �

The following well-known Kakutani-Fan-Glicksberg theorem is our main tool.

Lemma  ([]) Let X be a locally convex Hausdorff space, E ⊂ X be a nonempty, convex
compact subset. Let F : E → E be u.s.c. with nonempty, closed and convex set F(x), ∀x ∈ E.
Then F has a fixed point in E.

Lemma  ([], Theorems , ) Assume that X and Y are two locally convex Hausdorff
spaces and X is also compact. The set-valued mapping F : X → Y is u.s.c. with compact
values if and only if it is a closed mapping.

Theorem  Let i ∈ I . Assume that Ei, Fi and Zi are locally convex Hausdorff spaces, Xi

and Yi are nonempty and convex subsets of Ei and Fi, respectively. Let X =
∏

i∈I Xi and
Y =

∏
i∈I Yi. The set-valued mappings Si : X → Xi and Ti : Y → Yi are compact closed

mappings with nonempty and convex values. Assume that the following conditions hold:
(i) Ci : X → Zi is a closed set-valued mapping. For arbitrary x ∈ X , Ci(x) is a convex

closed cone with apex at the origin. Assume that Pi =
⋂

x∈X Ci(x),
(ii) P∗

i has a weak∗ compact convex base B∗
i and Zi is ordered by Pi,

(iii) fi : X × Y × Xi → Zi is a demicontinuous function such that for arbitrary
(x, y) ∈ X × Y ,
(a)  ≤Pi fi(x, y, xi),
(b) the map ui → fi(x, y, ui) is naturally quasi-convex,

(iv) gi : X × Y × Yi → Zi is a demicontinuous function such that for arbitrary
(x, y) ∈ X × Y ,
(a)  ≤Pi gi(x, y, yi),
(b) the map vi → gi(x, y, vi) is naturally quasi-convex.

Then (SSGVQEP) has a solution (x̄, ȳ) ∈ X × Y .

Proof We denote the set-valued mapping Ti : X → Z∗
i by

Ti =
{

x∗ ∈ Z∗ : ∀x ∈ – int Pi, x∗(x) <  and ∀x ∈ Pi, x∗(x) ≥ 
}

.

By (iii), (iv) and Lemma . of [], for every x∗
i ∈ Ti, the composite functions x∗

i ◦ fi and
x∗

i ◦ gi are continuous. For each i ∈ I , ∀(x, y) ∈ X × Y , define:

Fi(x, y) = min
{(

x∗
i ◦ fi

)
(x, y, ui) : ui ∈ Si(x)

}
, ()

Gi(x, y) = min
{(

x∗
i ◦ gi

)
(x, y, vi) : vi ∈ Ti(x)

}
, ()

Ai(x, y) =
{

ui ∈ Si(x) :
(
x∗

i ◦ fi
)
(x, y, ui) = Fi(x, y)

}
, ()

Bi(x, y) =
{

vi ∈ Ti(x) :
(
x∗

i ◦ gi
)
(x, y, ui) = Gi(x, y)

}
. ()
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Firstly, we show that for arbitrary (x, y) ∈ X × Y , Ai(x, y) and Bi(x, y) are nonempty. In
fact, x∗

i ◦ fi and x∗
i ◦gi are respectively continuous on compact sets Si(x) and Ti(x). Secondly,

we show that Ai is a closed mapping (similar to Bi). In fact, let (xn, yn, un) ∈ Graph(Ai) and
(xn, yn, un) → (x, y, u) ∈ X × Y × Xi. Then

(
x∗

i ◦ fi
)
(x, y, u) ≤ lim

n

(
x∗

i ◦ fi
)
(xn, yn, un) = lim

n
Fi(xn, yn) ≤ lim

n
Fi(xn, yn) ≤ Fi(x, y),

which means (x∗
i ◦ fi)(x, y, u) = Fi(x, y). Since Graph(Si) is closed in X × Xi, un ∈ Si(xn), we

obtain that u ∈ Si(x). Hence, (x, y, u) ∈ Graph(Ai). By Lemma , Ai is u.s.c. Thirdly, we show
that the set Ai(x, y) is convex. For this, let ui,, ui, ∈ Ai(x, y). According to the definition of
Ai(x, y), we have ui,, ui, ∈ Si(x, y), and

Fi(x, y) = x∗
i ◦ fi(x, y, ui,) = x∗

i ◦ fi(x, y, ui,). ()

Let λ ∈ (, ), since Si : X × Y → Xi has convex values, we have ( – λ)ui, + λui, ∈ Si(x, y).
Since the map fi(x, y, ·) is naturally quasi-convex, there exists t ∈ (, ) such that

Fi(x, y) ≤ x∗
i ◦ fi

(
x, y, ( – λ)ui, + λui,

)

≤ ( – t)x∗
i ◦ fi(x, y, ui,) + tx∗

i ◦ fi(x, y, ui,)

= ( – t)Fi(x, y) + tFi(x, y) = Fi(x, y).

That is, x∗
i ◦ fi(x, y, ( – λ)ui, + λui,) = Fi(x, y), which means ( – λ)ui, + λui, ∈ Ai(x, y).

Assume that Li = Ti(X), i ∈ I . Since Ti : X → Yi is nonempty convex-valued, Li are
nonempty convex subsets of Fi and L =

∏
i∈I Li is a nonempty convex subset of F =

∏
i∈I Fi.

Since Ei is a locally convex topological vector space, Xi is a nonempty convex subset of Ei.
It is similar to knowing that X =

∏
i∈I Xi is a nonempty convex subset of E =

∏
i∈I Ei.

Define set-valued mappings Hi : X × L → Xi×Li , i ∈ I as

Hi(x, y) =
(
Ai(x, y), Bi(x, y)

)
, ∀(x, y) ∈ X × L.

According to the proof above, we obtain that X and L are nonempty convex. Define
H : X × L → X×L as H(x, y) =

∏
i∈I Hi(x, y). Obviously, H is a u.s.c. set-valued map-

ping with convex and compact values. By Lemma , there exists (x̄, ȳ) ∈ X × L such that
(x̄, ȳ) ∈ H(x̄, ȳ). Thus, x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) with x̄i ∈ Ai(x̄, ȳ) and ȳi ∈ Bi(x̄, ȳ). According to
() and (), it means that for each i ∈ I , x̄i ∈ Si(x̄), ȳi ∈ Ti(x̄) such that

(
x∗

i ◦ fi
)
(x̄, ȳ, xi) ≥ (

x∗
i ◦ fi

)
(x̄, ȳ, x̄i), ∀xi ∈ Si(x̄),

(
x∗

i ◦ gi
)
(x̄, ȳ, yi) ≥ (

x∗
i ◦ gi

)
(x̄, ȳ, ȳi), ∀yi ∈ Ti(x̄).

By conditions (iii)(a), (iv)(a), we have

(
x∗

i ◦ fi
)
(x̄, ȳ, xi) ≥ , ∀xi ∈ Si(x̄),

(
x∗

i ◦ gi
)
(x̄, ȳ, yi) ≥ , ∀yi ∈ Ti(x̄).
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By Lemma , we obtain that

fi(x̄, ȳ, xi) ∈ Pi ⊂ Ci(x̄), ∀xi ∈ Si(x̄),

gi(x̄, ȳ, yi) ∈ Pi ⊂ Ci(x̄), ∀yi ∈ Ti(x̄).

Then the (SSGVQEP) has a solution. �

Remark  The following example is given to show that Theorem  improves [], Theo-
rem ..

Example  For each i ∈ I , Ei = Fi = R and Zi = R , Xi = Yi = [, ]. Let X =
∏

i∈I Xi and
Y =

∏
i∈I Yi. For each i ∈ I , the set-valued mappings Si : X → Xi and Ti : Y → Yi are

defined as Si(x) = Ti(x) = [, ]. For all (x, y, ui) ∈ X × Y × Xi, let

fi(x, y, ui) =
(
u

i ,  – u
i
)

and for all (x, y, vi) ∈ X × Y × Yi,

gi(x, y, vi) = (, ).

Then the assumptions of Theorem  hold. But the vector-valued mapping fi is not a prop-
erly quasi-convex mapping, and thus this example does not satisfy all the conditions of
Theorem . in [].

3.2 Hadamard well-posedness of (SSGVQEP)
In this subsection, we will introduce Hadamard-type well-posedness for (SSGVQEP) and
establish sufficient conditions of Hadamard-type well-posedness for (SSGVQEP). Broadly
speaking, we say that a problem is Hadamard well-posed if it is possible to obtain ‘small’
changes in the solutions in correspondence to ‘small’ changes in the data. More precisely,
let us recall the notions of Hadamard well-posedness and generalized Hadamard well-
posedness.

Assume that Z is a metric space, the excess of the set A ⊂ Z to the set B ⊂ Z is defined
by

e(A, B) = sup
{

d(a, B) : a ∈ A
}

, ()

and the Hausdorff distance between A and B is defined as

h(A, B) = max
{

e(A, B), e(B, A)
}

. ()

For convenience, in what follows, assume that P is a set of problems of (SSGVQEP)
and pn (n = , , . . .) means a sequence of problems of (SSGVQEP) which belong to P. We
show that the formula of pn is as follows: find (xn, yn) ∈ X × Y such that ∀i ∈ I , xn

i ∈ Sn
i (xn),
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yn
i ∈ Tn

i (xn),

f n
i
(
xn, yn, un

i
) ∈ Cn

i
(
xn), ∀un

i ∈ Sn
i
(
xn),

gn
i
(
xn, yn, vn

i
) ∈ Cn

i
(
xn), ∀vn

i ∈ Tn
i
(
xn).

Meanwhile, for any problem p ∈ P, the formula of p is showed as follows: find (x, y) ∈
X × Y such that ∀i ∈ I , xi ∈ Si(x), yi ∈ Ti(y),

fi(x, y, ui) ∈ Ci(x), ∀ui ∈ Si(x),

gi(x, y, vi) ∈ Ci(x), ∀vi ∈ Ti(x).

Given a set P of (SSGVQEP), let us define the distance function dP as follows:

dP (p, p) = sup
(x,y,ui)∈X×Y×Xi

n∑

i=

∥
∥f 

i (x, y, ui) – f 
i (x, y, ui)

∥
∥

+ sup
(x,y,vi)∈X×Y×Xi

n∑

i=

∥
∥g

i (x, y, vi) – g
i (x, y, vi)

∥
∥

+ sup
x∈X

n∑

i=

h
(
S

i (x), S
i (x)

)
+ sup

y∈Y

n∑

i=

h
(
T 

i (x), T
i (x)

)
,

where p = (f 
 , f 

 , . . . , f 
N , g

 , g
, . . . , g

N , S
, S

, . . . , S
N , T 

 , T 
, . . . , T 

N ), p = (f 
 , f 

 , . . . , f 
N , g

 , g
 ,

. . . , g
N , S

 , S
, . . . , S

N , T
 , T

 , . . . , T
N ) ∈ P. Let

sup
(x,y,ui)∈X×Y×Xi

n∑

i=

∥
∥fi(x, y, ui)

∥
∥ < +∞.

Clearly, (P, dP ) is a metric space.
We say that pn → p if dP (pn, p) → . Moveover, let �(p) be the set of solutions of p ∈ P.

� is a set-valued mapping from P to X×Y , and it is called the solution mapping of p.

Definition  Let (P, dP ) be the metric space of data of (SSGVQEP) problems mentioned
above, let (X × Y , dX×Y ) be the metric space for the solutions of a problem p in (P, dP )
and � be the solution mapping from the space (P, dP ) of problems to the space X×Y of
all non-empty solution subsets in (X × Y , dX×Y ).

() Let pn → p. A problem p ∈ P is called Hadamard well-posed (in short, H-wp) with
respect to (P, dP ) and (X × Y , dX×Y ) if the set �(p) of solutions of p is a singleton
and any sequence xn ∈ �(pn) converges to the unique solution of p.

() Let pn → p. A problem p ∈ P is called generalized Hadamard well-posed (in short,
gH-wp) with respect to (P, dP ) and (X × Y , dX×Y ) if the set �(p) of solutions of p is
nonempty, and any sequence xn ∈ �(pn) has a subsequence converging to some
solution in �(p).

Example  Let I = {, } for each i ∈ I , Ei = Fi = R and Zi = R, Xi = Yi = [, ]. Assume that
the problem p is defined by Si(x) = (–, ), Ti(x) = {}, Ci(x) = R+, fi(x, y, ui) = xi – ui and
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gi(x, y, vi) =  for every i ∈ I . Define a sequence of problems {pn} by Sn
i (x) = [– + 

n ,  – 
n ],

Tn
i (x) = {}, Cn

i (x) = R+, f n
i (x, y, ui) = xi – ui + 

n and gn
i (x, y, vi) =  for every i ∈ I . It is clear

that d(p, pn) → , the solution set �(pn) of pn is [– 
n , – 

n ]× [– 
n , – 

n ]×{}×{}, but
the problem p has not any solution. Therefore, the problem p is not Hadamard well-posed.

Lemma  Let I = {, , . . . , n} be a finite set. For each i ∈ I , Ei, Fi and Zi are metric spaces.
Let Xi ⊆ Ei and Yi ⊆ Fi be compact convex subsets and X =

∏
i∈I Xi and Y =

∏
i∈I Yi. Assume

that the set �(p) of solutions of p ∈ P is nonempty and the following conditions are satisfied:
for each i ∈ I ,

(i) the set-valued mappings Si : X → Xi and Ti : X → Yi are compact closed
continuous mappings with nonempty convex values,

(ii) the vector-valued mappings fi : X × Y × Xi → Zi and gi : X × Y × Yi → Zi are
continuous.

Then �(p) : P → X×Y is u.s.c.

Proof Since X × Y is compact, by Lemma , we need only to show that � is a closed
mapping, i.e., to show that for any pn ∈ P, m = , , , . . . with pn → p, and for any (xn, yn) ∈
�(pn) with (xn, yn) → (x, y), we have (x, y) ∈ �(p). Since (xn, yn) ∈ �(pn), we obtain xn

i ∈
Sn

i (xn) and yn
i ∈ Tn

i (yn). For any i ∈ I , by the continuity of Si, Ti and pn → p, we have xi ∈
Si(x) and yi ∈ Ti(y). Therefore, to prove (x, y) ∈ �(p), we only need to prove

fi(x, y, ui) ∈ C(xi), ∀ui ∈ Si(x),

gi(x, y, vi) ∈ C(xi), ∀vi ∈ Ti(x).
()

Suppose that () is not true, we have

∃ui ∈ Si(x), s.t. fi(x, y, ui) /∈ C(xi),

or ∃vi ∈ Ti(x), s.t. gi(x, y, vi) /∈ C(xi).

Without loss of generality, we assume that ∃ui ∈ Si(x), s.t. fi(x, y, ui) /∈ C(xi). Thus, there
exists some open neighborhood V of the zero element of Zi such that

(
fi(x, y, ui) + V

) ∩ Ci(x) = ∅.

Since pn → p, there exists n ∈ Z+ (Z+ is a set of positive integers) such that when n ≥ n,
we have

f n
i
(
xn, yn, un

i
)

– fi
(
xn, yn, un

i
) ∈ 


V . ()

Since ui ∈ Si(x), (xn, yn) → (x, y) and Si is a compact continuous mapping, we have that
there exists un

i ∈ Sn
i (x̄n) such that un

i → ui. Since fi is continuous at (x, y, ui), there exists
n ∈ Z+ such that for any n ≥ n, we have

fi
(
xn, yn, un

i
) ∈ fi(x, y, ui) +




V . ()
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Let N = max{n, n}. By () and (), we obtain that for any n ≥ N ,

f n
i
(
xn, yn, un

i
)

=
(
f n
i
(
xn, yn, un

i
)

– fi
(
xn, yn, un

i
))

+ fi
(
xn, yn, un

i
)

∈ 


V +
(

fi(x, y, ui) +



V
)

⊂ (
fi(x, y, ui) + V

)
.

Since (fi(x, y, ui) + V ) ∩ Ci(x) = ∅, we have f n
i (xn, yn, un

i ) /∈ Ci(x), which contradicts (xn, yn) ∈
�(pn). Therefore, � is a closed mapping. �

Now we establish the sufficient condition of Hadamard-type well-posedness for (SS-
GVQEP).

Theorem  Let I = {, , . . . , n} be a finite set, for each i ∈ I , let Ei, Fi and Zi be metric
spaces, and Xi ⊆ Ei and Yi ⊆ Fi be compact convex subsets. Let X =

∏
i∈I Xi and Y =

∏
i∈I Yi.

Assume that the set �(p) of solutions of p ∈ P is nonempty and the following conditions are
satisfied: for each i ∈ I ,

(i) the set-valued mappings Si : X → Xi and Ti : X → Yi are compact closed
continuous mappings with nonempty convex values,

(ii) the vector-valued mappings fi : X × Y × Xi → Zi and gi : X × Y × Yi → Zi are
continuous.

Then the problem (SSGVQEP) is generalized Hadamard well-posed.

Proof By Lemma  and Theorem . of [], the conclusion naturally holds. �

Remark  It is easy to verify that if (SSGVQEP) has a unique solution, then the fact that
(SSGVQEP) is generalized Hadamard well-posed implies that (SSGVQEP) is Hadamard
well-posed.

4 Conclusions
Under some weaker conditions, we have established an existence result for the solution
set of a system of simultaneous generalized vector quasi-equilibrium problems, and it im-
proved the relevant Theorem . in the work of Ansari et al. []. We have defined a new
concept of Hadamard-type well-posedness for (SSGVQEP) and established sufficient con-
ditions for Hadamard well-posedness of (SSGVQEP).
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