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1 Introduction
In 1923, Eggenberger and Pdlya [1] were the first to introduce Pélya-Eggenberger dis-
tribution. After that, in 1969, Johnson and Kotz [2] gave a short discussion of Pdlya-
Eggenberger distribution.

The Pdlya-Eggenberger distribution X [2] is defined by

’

pr(X:k):(”)“(“+5)"'(“+(”_1)S)b(b+5)'"(b+(n—u—l)s)

k (@a+b)a+b+s)---(a+b+(n-1)s)
k=0,1,2,...,n. (1.1)

The inverse Pdlya-Eggenberger distribution N is defined by

’

PrN =+ k) = ((n+k—1)>a(a+s)---(a+(n—l)s)b(b+s)---(b+(k—l)s)

k (a+b)a+b+s)---(a+b+(n+k-1)s)
k=0,1,2,...,n. (1.2)

In 1970, Stancu [3] introduced a generalization of the Baskakov operators based on in-
verse Pélya-Eggenberger distribution for a real valued bounded function on [0, c0), de-
fined by

> k R 5 W L P L e
VId(f,x) = (s Z) = —f - ), 1.3
2 (fi%) k;)v il a)f(n) kZOj ( ' ) a +x)[,ﬁk,_a]f(n) (13)
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nh) _ ala -

where « is a non-negative parameter which may depend only on # € N and al
h)(a —2h)---(a - (n—1)h),al®" =1 is known as a factorial power of @ with increment /.
For « = 0, the operator (1.3) reduces to Baskakov operators [4].

In 1989, Razi [5] studied convergence properties of Stancu-Kantorovich operators based
on Pdlya-Eggenberger distribution. Very recently, Deo et al. [6] introduced a Stancu-
Kantorovich operators based on inverse Pdlya-Eggenberger distribution and studied some
of its convergence properties. For some other relevant research in this direction we refer
the reader to [7-9].

Now, for o = %, we get a special case of Stancu-Baskakov operators (1.3) defined as
(1 Cn-1)' (n+k-1 (mx)x k
V n ; = —_— —_— y 1'4
n" i) (m-1) Zk:() k (m+ nx),,+kf n 14

where (), :=a"™ U =a(a+1)---(a+ (n-1)) is called the Pochhammer symbol.

For the Lupas operator, given by

> k-1 k k
L,(f;x) = Z <Vl +k( )(l_jwf(;(), (1.5)

k=0

let ey, m(x) = L,(¢";x), m € NU {0} be the mth order moment.

Lemmal For the function (L, (x), we have (1, 0(x) = 1 and we have the recurrence relation
%L+ 2)1hy, (%) = 1Lt (%) = MXWLu (%), m € NU{0}, (1.6)

where w,, ,(x) is the derivative of (L, (x).

Proof On differentiating pt,,,,(x) with respect to x, the proof of the recurrence relation

easily follows; hence the details are omitted. O

Remark 1 From Lemma 1, we have

+(n+1)a2 m+1D)(m+2)x° +3(m+ 1)a® + x

X
Ml (x) =X, Mn,2 (x) = » ,u/n,?)(x) = )
n n

The values of the Stancu-Baskakov operators (1.4) for the test functions e;(¢) = ¢/, i =

0,1,2, are given in the following lemma.

Lemma 2 ([10]) The Stancu-Baskakov operators (1.4) verify:

& A

@ Vi"(Lx) =1,
1

(i) Vo () = 2

n-1’

o AD 2 1

(i) Vi (£%59) = i 62 + 250 4 L1 = Ly,

. H 3 D42 32n24n-1 2n-1)(3n-1
(i) V" (85) = gz [0 + 220 4 Gl

(L 4 _ 3,2
V) V' (t4 %) = (n_l)(n_zr)t(n_s)(n_4)[(n+1)(n;32)(n+3)x4 ¥ 6(n+l)(nn12)(2n D3, 8n +ZS dn+l) (2 |
26n%-27n+7 x]
n° ’
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Proof The identities (i)-(iii) are proved in [10], hence we give the proof of the identity (iv).
The identity (v) can be proved in a similar manner.
We have

Byos oy @i=1) (v k=1)\ () (kY°
Va (t,x)_ (n-1) ;(;( k )(n+mc)n+k(n>

[ 1
B(mc, n) / (1 4 t)resn Hna (),

where B(nx, n) is the Beta function.

Therefore using Remark 1, we get

gl m+D)m+2)2 +3(m+ 12+t
_ at.

(3
V" (7%
( ) B(nx,n)/ (1 + g)rx+n

Now, by a simple calculation, we get the required result. O
As a consequence of Lemma 2, we obtain the following.

Lemma 3 For the Stancu-Baskakov operator (1.4), the following equalities hold:
. <l> x
M Vv, ((t x);%) = 5,

2nx(x+1)+(2x-1)x
(ii) Vau ((t %)% )—W’

(iii) V, ((t x)%x) = m [12n(n% - 131 + 2)x°(x + 1) + 12n(n? + 8n —

13)x2(x +1) + (26m% + 481 = 22)x(x + 1) + (29 — 75n)x].

Let 0 < r,(x) < 1beasequence of continuous functions for each x € [0,1] and n € N. Us-
ing this sequence r,(x), for any f € C[0,1], King [11] proposed the following modification
of the Bernstein polynomial for a better approximation:

((Baf) 07 3) = Zf(%) (7)o -y

k=0

Gonska et al. [12] introduced a sequence of King-type operators D, : C[0,1] — C[0,1]
defined as

Dif = (Byf) o (Byt) t ot

where t € C[0,1] such that 7(0) = 0,7(1) =1 and 7/(x) > 0 for each x € [0,1] and studied
global smoothness preservation, the approximation of decreasing and convex functions,
the validity of a Voronovskaja-type theorem and a recursion formula generalizing a cor-
responding result for the classical Bernstein operators.

Motivated by the above work, in the present paper we introduce modified Stancu-
Baskakov operators based on a function t(x) and obtain the rate of approximation of these
operators with the help of Peetre’s K-functional and the Ditzian-Totik modulus of smooth-
ness. Also, we prove a quantitative Voronovskaja-type theorem by using the first order
Ditzian-Totik modulus of smoothness.

Throughout this paper, we assume that C denotes a constant not necessarily the same
at each occurence.
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2 Modified Stancu-Baskakov operators

Let t(x) be continuously differentiable co times on [0, 00), such that 7(0) = 0, 7'(x) > 0 and
7”(x) is bounded for all x € [0, 00). We introduce a sequence of Stancu-Baskakov operators
for f € Cg[0, 00), the space of all continuous and bounded functions on [0, c0), endowed
with the norm |[f]| = sup,(g o) [f (*)], by

1. > L k
V=i wire ) () velooo), .
k=0
where
<%,,>( - Cun-1)!/n+k-1 (7t (x))x
P W) = (n_l)!< k )W

Lemma 4 The operator defined by (2.1) satisfies the following equalities:
1o
M V" () =1,
1
(i) V" (r(0)s) = 222

n-1"

<%,T) 2

(i) V"™ (r2(0)50) = oo [12(x) + SO0 L 1 Ly,

. H 3 2,0 _1)3n—

(iv) Vi (23(0%) = Gy [ a2 s (x) + 22l 12 () o Grl3nll ()],

) Vﬁ>(r4(t);x) - _,,4_ - [(D02)0053) 1 | 6 )152)2n0) 135
(n-1)(n-2)(n-3)(n-4) n "

6(6m5 +1%—4n+1 26n%-27n+7
(61 +Zs n+ )‘L'Z(x)+ n = n+ 'C(X)]

Proof The proof of lemma is straightforward on using Lemma 2. Hence we omit the de-
tails. O

Let the mth order central moment for the operators given by (2.1) be defined as

(
Honm®) = Vi

N

'T>((t(t) -7(x))";%).

Lemma 5 For the central moment operator i}, (x), the following equalities hold:

(i) pug, () = 29,
_ 2n¢%(x)+(2r(x)—1)r(x)

(ii) M:,,z(x) =T ey
(iii) pf4(x) = muzn(;ﬂ — 131+ 2)t(x)p2(x) + 12n(n* + 8n —

13)7(x)p2 (%) + (2612 + 481 — 22)¢%(x) + (29 — 75n)T (x)],
where qﬁf(x) () = T(x)(z(x) + 1).

Proof Using the definition (2.1) of the modified Stancu-Baskakov operators and Lemma 4,
the proof of the lemma easily follows. Hence, the details are omitted. O

Let
W” = {g € Cyl0,00):¢,¢" € Cyl0,00)}.
For f € Cp[0,00) and § > 0, the Peetre K-functional [13] is defined by

K(f;8) = inf {IIf gl +8lgllw2},
gew
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where

lglwe = llgll + ||| + lg"]-

From [14], Proposition 3.4.1, there exists a constant C > 0 independent of f and § such
that

K(f;8) < C(wa(f; v/8) + min{1, 8} If1]), (2.2)
where w; is the second order modulus of smoothness of f € Cg[0, 00) and is defined as

wy(f;8) = sup sup V(x+2h)—2f(x+h) +f(x)|.
)

0<|h| <8 x,x+2he[0,00

In the following, we assume that infye[o,00) T’ (%) > a,a € R* := (0, 00).

Next, we recall the definitions of the Ditzian-Totik first order modulus of smoothness
and the K-functional [15]. Let ¢, (x) := +/7(x)(1 + t(x)) and f € Cg[0,c0). The first order
modulus of smoothness is given by

wp (fi1) = sup H/<x+ h¢r(x)> —f<x— h¢,(x)>
0<h<t 2 2

Further, the appropriate K-functional is defined by

,x+

he- (x) c [0 oo)}
> ,00) }.

Kylfst) = inf (W -gl+elog]} >0)

where Wy, [0,00) = {g: g € ACio[0,00), [|¢.g’|| < 0o} and g € ACi,c[0,00) means that g is
absolutely continuous on every interval [a,b] C [0,00). It is well known [15], p.11, that
there exists a constant C > 0 such that

Ky, (f31) < Coy, (f52). (2.3)
Theorem 1 Iff € Cg[0,0), then

1
Ve r | < I

Proof By the definition of the modified Stancu-Baskakov operators (2.1) and using

Lemma 4 we have

(1o (o n(k AL
Vi )| < P @) (Fo ) (—)‘ < fo e VAT 1) = 1f1,
k=0 "
for every x € [0, 00). Hence the required result is immediate. O

Theorem 2 Let f € Cg[0,00). Then, for n > 3, there exists a constant C > 0 such that

1 2
o o) 8] - (25)

on each compact subset of [0, 00).
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Proof Let U be a compact subset of [0,00). For each x € U, first we define an auxiliary
operator as

V2 ) = VI ) —for'l(Z’f’;)) ) (2.4)

Now, using Lemma 4, we have
*(5,T) #(,T) * l,t
Vi o Lix)=1 and V, o ( (t);x) =1(x) hence Vn(” )(r(t) - r(x);x) =0.

Let g € W2, x € U and t € [0,00). Then by Taylor’s expansion, and using results in [16],
p.32, we get

gB)=(got™)(z(®)

7(t)
=(got ™) (tW) + (go t’l)/(r(x)) (tt)-t(®) + / (t@)-u)(go r’l)/’(u) du

7(x)
(1) e —1
=g) + (go ™) (tW)(r(0) - 1) + /m (v(®) - u) % a
(t) /(-1 1"(-1
g M w)r"(t7 ()
_/T(x) (t(t) - u) )P du. (2.5)

(L z
Now, applying the operator V,, G >(~ ;x) to both sides of the above equality, we get
*( ,T)

1

(g;x) — g(x)
= (got™) (@) Vi " ((x(t) - T(x));)

oy ([T ¢ () )
e (/m (7O = ) feri p 5%

1 7(t) /(= 1(r—
_V:<n,f>( [0 P )

)P
1
</ t(t) /((rl((u))ﬁ du; x)
(t ()
( )[r/(r—l(u»] i
2 )
( (@) d”’x)
nt(x)
o)\ g W) (e )
+/T(x) (n 1 u) ET=PIE du. (2.6)

Again, for each x € U, we have
*(%,T} .
[V ™ (gx) — g()|

7 . ,
! vy ((z(6) - t(@))*5) + % ”iz" (”T(x) et ))

g
a?

=

N =
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//”

1
L1 lg'lHr="1l ||||f

" 2
5 (o) - T @)’ %)+ 3 LI (L(’“)—r@

B \n-1
LAlg" g1 1. (x) \?
- 5( iz LA a—gf )[Vén >((T(t)—r(x))2;x) + (;_xl) ] (2.7)

Now, using the definition of the auxiliary operators, Theorem 1 and inequality (2.7), for

each x € U we have

|V;§%’T)(f;x)—f(x)|
<[V — g + Vi ) - g )]
+|g(x)—f(x)|+P (’”(")) for(r()

gl g =" IN [ 2o 2 t(x) )
<4|f-g Tt Vi ((r(®) - t(x) 5%) + "
a)( orl;(;(_x)l>). (2-8)

Let C = max(4, ;iz, ;% Iz”1), we get

Vi fi) f(x)|<C<|lf ol + Il 220 )) w(for-l;("x))) 2.9)

n-1

Taking the infimum on the right side of the above inequality over all g € W? and for all

x € U, we have

1. 2
|V,§”’ '(f;%) —fl&)| < CI((f; ¢T(x)> + a)( ot} ( T )) (2.10)
n-2 n-1
using equation (2.2), we get the required result. O

Theorem 3 Let f € Cg[0,00). Then for every x € [0,00), and n > 3 we have

|V;§%’T)(f;x) —f(x)| < de)t (f, @)
a/(n-2)

Proof For any g € W,_[0, 00), by Taylor’s expansion, we have

7(t)

gt)=(gor™)(z(0) = (got)(r) + / (got™) (wdu

T(x)

Lo
Applying the operator V,i"' >(~;x) on both sides of the above equality, we get

(L7 () ,
/A (/ (got™) () du) .
7(x)

IVﬁ’”(g;x) -glx)| = (2.11)
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From [16], we have

E2F4C) .
x ¢:0) T'()

7(t)
/ (got™) (W) du| =

(%)

)r/wy‘

. T0)
t‘f/()/)
d
L #.0) y‘

T (ndy

(2.12)

a

and

7o), '<
. 6:0)

(ﬁ%+ ﬂj_w)f/(y)dy‘

Ty dy| +

f’(y)dy‘

1
r(y 1+1(y)
- ZWW_F(;C )| + |¢1+r(t>—¢1+r(x)l}

2le(t) - <)|< ! ! )
< T X F+m
L 20 s
- «/r(x)(1+t(x * r(x)
e - ()]
] L LA A B

()1 + (%))
_ 2e()le() - 7(x)

6. (2.13)

Now, from equations (2.12)-(2.13) and using the Cauchy-Schwarz inequality, we obtain

||¢Tg ” T)(
¢r( )

_ 2)lgeg |
ag (x)

_ 20)geg | [2n¢$<x) + (e - 1)r(x)r
ag: (%) (n-1)(n-2) '

|V (@) - )| <

%)

Vﬁ’ﬂ((r(t) - t(x))z;x)

ST

(2.14)

Thus, for f € Cg[0,00) and any g € W, [0,00), we have

Vi i) @] < Vi - )] + @) - g + [V (@) - )]

2(%) o | [2n¢$(x) +(21(x) - 1)r<x>]%
a$. (%) n-1)(n-2)

_ 2c@)llg:g [ 2(n +1)
- a n-1)(n-2)

<2ff -gll +

T +2[If -l

V6c(x) ,
52{|lf—gll+ﬂm||¢rg ||}. (2.15)
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Taking the infimum on the right side of the above inequality over all g € Wj_[0,00), we

get
Lo V6c(x)
V" (fi0) — £ ()] < 2K, (f: )
a/(n-2)
Finally, using equation (2.3), the theorem is immediate. d

Theorem 4 For any f € C*[0,00) and x € [0, 00), the following inequality hold:

(%

V™ (Fi) - f(x

e e, W,
) ) - 2[<r/(x))2 R '<x>)3]“ n2®)

1 12|,
E(MZ,Z(x))Z[H(forl) g (5, )t + ”‘“’”¢ o) (5 ))“2]

Proof Let f € C*[0,00) and x, ¢ € [0, 00). Then by Taylor’s expansion, we have

f@&=(for)(x(®)
=(for™) () + (fo r‘l)'(r(x))(r(t) - 1(x)) + /Tm(t(t) u)(for™ ) (u)d

7(x)

Hence,

FO-f@) = (for™) (z()(z(t) - t(x)) - %(f ot ™) (v() (e (t) - r(x))2
7(t) (1)

= /r (t@®) - u)(f o r’l)//(u) du - (t@®) -u)(fo r’l)”(r(x)) du

(%) 7(x)

) /r(t) (@ -w)[(for™) @) - (for™) (z(x))]du

7(x)

Applying V " to both sides of the above relation, we get

1) : _l[f”(x) NG ] .
“fsx) - f () - T 1 (%) Ao f(x)(t/(x))3 M2 (%)

1 (2
v ([0 -l o) @ (o) (o) i)

)
1
< V»i”’”(

For g € Wy, [0,00), we have

x) (2.16)

7(t)
/( ) |T(®) —ul|(f o t‘l)”(u) —(fo r‘l)”(t(x))’du

/,;y @[ (F o =Y ) (Fo ) (200 dis

=

/T |t(@) —ul|(for 1) )= (got™")(w)|du

+

f( ) |t@) —ul|(got™) (@) - (go ") (t(x))|du
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T(t)
[ 0=l r)(x60) - (o) ()] s

+

= / I(for‘l)”(r(w)—g(y>||r(t)—r(y>|r/(y>dy]

+ / lg0) - g@ ||z - |7’ ®) dy‘

| [le= (7o ) ()] 10120101y
<2 (o) -

!f(t)—f(y)lf/(Y)dy’

(v)|dv ‘r

GERIOIEACY dy‘

<|(For™) ~gl(x®) - 1)’ +|

Y dv

() - t(y)|T' (y) dy|.
Ao | L
Using the inequality

vl _ ly=xl
vad+v) ~axl+x)

xX<V<Yy,

we can write

[tO) -zl _ () —tlx
T(v)(1 + r(v)) - t(x)(l + T(x))

Therefore,

/( |[T(8) - u||(forl) (u)—(for’l)//(r(x))|du

<|(For™) ~g|(x®) - 1)’

t /y o) -t@"” W)
L U@ 0) )7

<[(for™) -4l (r(t) @)’
H¢£ﬂ

|| (o) - rmyrwy\

—r(x|| —r(y’t(ydy'

< ” (fO T—l)” _g” (‘l:(t) _ r(x)) ||¢rg I

(T(t)—r(x))zt’(y)dy’
<[(ror) ~gl(v) - 2w)"+ ”@g”lu|m @), 1)

Now combining equations (2.16)-(2.17), applying Lemma 3 and the Cauchy-Schwarz in-
equality, we get

Ao, £, 0 L, T ],
Va" (i) =) =T () = [(r(x))2 SOt ))3] nale)

<|(for™) g yir ((z(®) - () *%) + 2%—g”¢;1(x)Vﬁ'r> (le@) - t@)|’x)
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<o) —g|Vir™ (v - t() )

N 2||¢Zg/” ¢I_1(x)[vr([%,r)((r(t) _ r(x))2;x)]1/2[v;§%,r) ((‘L’(t) _ r(x))4;x)]1/2

2|\p. g
L 2ie-gl
a

= (For™) ~g|ui,) &7 ) (155 ()" (1 ()

[T

4 1 2 ‘E, —
-z 1607 - 50+ 22 00107 |

This completes the proof of the theorem. d
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