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Abstract
The aim of this study is to prove Lyapunov-type inequalities for a quasilinear elliptic
equation in R

2. Also the lower bound for the first positive eigenvalue of the boundary
value problem is obtained.
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1 Introduction
In [], Lyapunov proved that, if p(x) is a nonnegative and continuous function and u(x) ∈
C(I,R), a necessary condition for the following boundary value problem:

{
u′′(x) + p(x)u(x) = , u(x) �= ,∀x ∈ I,
u(a) =  = u(b),

(.)

to have nontrivial solutions is

/(b – a) ≤
∫ b

a

p(x) dx, (.)

where I = [a, b].
Since Lyapunov’s study, because the inequality of (.) plays a key role for the qualitative

properties, such as oscillatory and disconjugacy etc., of differential equations’ solutions,
several authors focused on the inequality of (.). Those authors improved and generalized
the inequality of (.) in R. In this work the literature of the one-dimensional case is not
studied in detail but it is listed in the references for the interested reader. See [–] and
the references cited therein.

In addition to studies in R, several authors [–] have extended the inequality of (.)
in R

n recently. To the best of our knowledge, it was extended by Cañada, Montero, and
Villegas [] for the first time. In [] Cañada et al. considered the linear elliptic problem
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as follows:

{
–�u = a(x)u, x ∈ �,
∂u/∂n = , x ∈ ∂�,

(.)

where � ⊂ R
N is a smooth bounded domain with N ≥  and the function a : � → R

belongs to the set

� =
{

a ∈ LN/(�) \ {} :
∫

�

a(x) dx ≥  and (.) has a nontrivial solution
}

(.)

if N ≥ ,

� =
{

a : � →R s.t. ∃q ∈ (,∞] with a ∈ Lq(�) \ {} :
∫

�

a(x) dx ≥ 

and (.) has a nontrivial solution
}

(.)

if N = , we define

βq := inf
a∈∧∩Lq(�)

‖a‖Lq(�),  ≤ q ≤ ∞. (.)

Their main result is as follows.

Theorem A The following statements hold.
() If N =  then βq >  ⇔  < q ≤ ∞. If N ≥  then βq >  ⇔ N

 ≤ q ≤ ∞.
() If N

 < q ≤ ∞ then βq is attained. In this case, any function a ∈ ∧ ∩ Lq(�) from which
βq is attained has one of the following forms:
(i) a(x) = λ, if p = ∞, where λ is the first strictly positive eigenvalue of (.).

(ii) a(x) = |u(x)| 
p– , if N

 < q < ∞, where u is a solution of the problem as follows:

{
–�u = |u(x)|/(p–)u, x ∈ �,
∂u/∂n = , x ∈ ∂�.

(.)

() The map ( N
 ,∞) →R, p �→ βp, is continuous and the map [ N

 ,∞) →R,
p �→ |�| –

p βp, is strictly increasing.
() The limits limp→∞ βp and limp→( N

 )+ βp always exist and take the values
(i) limp→∞ βp = β∞, if N ≥ ,

(ii) limp→( N
 )+ βp ≥ β N


> , if N ≥ , limp→+ βp = , if N = .

Here, we also note that in the study Cañada et al. they proved that the relation between
the p and N

 plays a crucial role. They also considered the equation in (.) with zero
Dirichlet boundary condition. They presented similar inequalities at their study. Then
others established Lyapunov-type inequalities for different equations with boundary con-
ditions. For more information about the studies in R

n, the interested reader can refer to
[–] and the references cited therein.
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The aim of this paper is to prove a Lyapunov-type inequality for the two-dimensional
quasilinear elliptic problem as follows:

⎧⎪⎨
⎪⎩

–(�p(uxy))y = r(x, y)�p(u), (x, y) ∈ �,
u(a, y) =  = u(b, y), a ≤ y ≤ b,
ux(x, a) =  = ux(x, b), a ≤ x ≤ b,

(.)

where � = [a, b] × [a, b] and r(x, y) is a measurable function on �, and �p(u(x, y)) =
|u(x, y)|p–u(x, y) for p > . In addition to this, we note that by a solution of the problem
(.), we mean that u(x, y) ∈ W ,p(�) in that

W ,p(�) =
{

u : u, ux, uxy and uxyy ∈ Lp(�)
}

. (.)

As usual, Lp(�) is a space of Lebesgue measurable functions.

2 Main results
Now, we give a key lemma as a proof of our main conclusions.

Lemma  Assume that u(x, y) ∈ W ,p(�), it satisfies the boundary conditions in (.) and
u(x, y) �=  for ∀(x, y) ∈ �. Then

(

∣∣u(x, y)

∣∣)p/(b – a)p–(b – a)p– ≤
∫ b

a

∫ b

a

|uxy|p dy dx, (.)

(
p/(b – a)p–)∫ b

a

|ux|p dx ≤
∫ b

a

∫ b

a

|uxy|p dy dx, (.)

hold, respectively, where � is the set of all interior points of �.

Proof Let (x, y) ∈ �. Since u(x, y) satisfies the boundary conditions in (.), it is easy to see

u(x, y) =
∫ x

a

∫ y

a

uts ds dt,

taking the absolute value, we obtain

∣∣u(x, y)
∣∣ ≤

∫ x

a

∫ y

a

|uts|ds dt. (.)

Similarly, we get

∣∣u(x, y)
∣∣ ≤

∫ x

a

∫ b

y
|uts|ds dt, (.)

∣∣u(x, y)
∣∣ ≤

∫ b

x

∫ y

a

|uts|ds dt, (.)

and

∣∣u(x, y)
∣∣ ≤

∫ b

x

∫ b

y
|uts|ds dt. (.)



Dinlemez Kantar and Özden Journal of Inequalities and Applications  (2017) 2017:45 Page 4 of 7

Adding (.)-(.), we have


∣∣u(x, y)

∣∣ ≤
∫ b

a

∫ b

a

|uxy|dy dx. (.)

Then, applying Hölder’s inequality

∫ b

a

∣∣f (t)g(t)
∣∣dt ≤

(∫ b

a

∣∣f (t)
∣∣q dt

)/q(∫ b

a

∣∣g(t)
∣∣p dt

)/p

(.)

to the right-hand side of (.), we get

(

∣∣u(x, y)

∣∣)p ≤ (b – a)p–
∫ b

a

[∫ b

a

|uxy|dy
]p

dx. (.)

Applying Hölder’s inequality to the right hand side of (.) again, we obtain

(|u(x, y)|)p

(b – a)p–(b – a)p– ≤
∫ b

a

∫ b

a

|uxy|p dy dx.

Thereby, the proof of (.) is completed.
Similarly we have

∣∣ux(x, y)
∣∣ ≤

∫ y

a

|uxs|ds (.)

and

∣∣ux(x, y)
∣∣ ≤

∫ b

y
|uxs|ds. (.)

Adding (.) and (.), we get


∣∣ux(x, y)

∣∣ ≤
∫ b

a

|uxs|ds. (.)

Applying Hölder’s inequality to the right hand side of (.) and integrating from a to b,
we have

p

(b – a)p–

∫ b

a

|ux|p dx ≤
∫ b

a

∫ b

a

|uxy|p dy dx.

Consequently, the proof of (.) is completed. �

Theorem  If u(x, y) ∈ W ,p(�) is a nontrivial solution of the problem (.), then the fol-
lowing inequality:

p+/(b – a)p–(b – a)p ≤
∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q dy dx (.)

holds, where q is the Hölder conjugate of p.
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Proof Let u(x, y) ∈ W ,p(�) is a nontrivial solution of the problem (.). Multiplying the
equation in (.) by ux and integrating on �,we obtain

∫ b

a

∫ b

a

–
(|uxy|p–uxy

)
yux dy dx =

∫ b

a

∫ b

a

r(x, y)|u|p–uux dy dx. (.)

Then, applying partial integration in
∫ b

a
– (|uxy|p–uxy)yux dy and using the boundary

conditions in (.), we have

∫ b

a

∫ b

a

|uxy|p dy dx =
∫ b

a

∫ b

a

r(x, y)|u|p–uux dy dx. (.)

By taking the absolute value on right hand side of (.), we get

∫ b

a

∫ b

a

|uxy|p dy dx ≤
∫ b

a

∫ b

a

∣∣r(x, y)
∣∣|u|p–|ux|dy dx. (.)

Hence, applying Hölder’s inequality to the right hand side of (.), we find

∫ b

a

∫ b

a

|uxy|p dy dx

≤
(∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q|u|(p–)q dy dx

)/q(∫ b

a

∫ b

a

|ux|p dy dx
)/p

. (.)

Now, considering only the second term of right hand side in (.) from Fubini’s theo-
rem, we can rewrite the inequality (.) as follows:

∫ b

a

∫ b

a

|uxy|p dy dx

≤
(∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q|u|(p–)q dy dx

)/q(∫ b

a

[∫ b

a

|ux|p dx
]

dy
)/p

. (.)

Hence, using the inequality (.) in (.), we obtain

(∫ b

a

∫ b

a

|uxy|p dy dx
)(p–)/p

≤ (
(b – a)/

)(∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q|u|(p–)q dy dx

)/q

. (.)

Then, replacing the point of (x, y), which is used in Lemma , with the maximum point
of |u(x, y)|, from (.), we get

(
 max

∣∣u(x, y)
∣∣)(p–)/(b – a)(p–)/q(b – a)(p–)/q

≤
(∫ b

a

∫ b

a

|uxy|p dy dx
)(p–)/p

. (.)
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Then, using the inequality (.) in the inequality (.), we have

(
 max

∣∣u(x, y)
∣∣)(p–)/(b – a)(p–)/q(b – a)(p–)/q

≤ (
(b – a)/

)(∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q|u|(p–)q dy dx

)/q

≤ (
(b – a)/

)(∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q dy dx

)/q(
max

∣∣u(x, y)
∣∣)(p–). (.)

Since u(x, y) is a nontrivial solution, we have max |u(x, y)| �= . Therefore, we obtain

p+/(b – a)p–(b – a)p ≤
∫ b

a

∫ b

a

∣∣r(x, y)
∣∣q dy dx. (.)

Thus, the proof is completed. �

Corollary  Let λ be the first eigenvalue of the equation that is defined on � as follows:

–
(
�p(uxy)

)
y = λr(x, y)�p(u),

where � is a domain, which is defined in the beginning of the paper, and with the boundary
conditions in (.). Then we have

p+/(b – a)p–(b – a)p∥∥r(x, y)
∥∥q

Lq(�) ≤ λ. (.)

Remark  If we take the Dirichlet boundary conditions, which are u(a, y) =  = u(b, y)
and u(x, a) =  = u(x, b), instead of the Robin boundary conditions in the problem (.),
then we obtain the identical conclusions given above.

Remark  The result, which is obtained in this study, is also the necessary condition for
the problem of (.) to have a nontrivial solution.
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