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Abstract

The vector criterion and set criterion are two defining approaches of solutions for the
set-valued optimization problems. In this paper, the optimality conditions of both
criteria of solutions are established for the set-valued optimization problems. By using
Studniarski derivatives, the necessary and sufficient optimality conditions are derived
in the sense of vector and set optimization.
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1 Introduction
Let F be a set-valued mapping from a set S to a real normed linear space Y andlet D C Y
be a convex cone. The set-valued optimization problem is formalized as follows:

minimize F(x)
(P)

subjectto x€S.

It is generally known that there are two types of criteria of solutions for problem (P): the
vector criteria and set criteria. The vector criterion is the most commonly used in prob-
lem (P), which is looking for efficient elements of the set F(S) = |, s F(%). The problem
(P) with vector criterion is often defined as set-valued vector optimization. Over the past
decades, the set-valued vector optimization theory and its applications have been inves-
tigated extensively by many authors. Fruitful results are produced in this field, and we
recommend the excellent books [1-4] and the references therein to the reader.

Another criterion, the set criterion, also called set optimization, was proposed by
Kuroiwa [5, 6] in 1999 for the first time. Set optimization consists of looking for image
sets F(x), with x € S, which satisfy some set-relations between the rest of the image sets
F(x) with x € S. In [3], p. 378, Jahn states that the set relation approach opens a new and
exciting field of research. Although the set criterion seems to be more natural and inter-
esting than the traditional one, the study of set optimization is very limited, such as papers
on existence conditions, see [7—12]; on duality theory, see [13-16]; on optimality condi-
tions, see [17-19]; on scalarization [20—23]; on well-posedness properties, see [24, 25]; on
Ekeland variational principles, see [26, 27].
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The investigation of optimality conditions, especially as regards the vector criterion,
has received tremendous attention in the research of optimization problems and has been
studied extensively. As everyone knows most of the problems under consideration are
nonsmooth, which leads to introducing many kinds of generalized derivatives by the au-
thors. A meaningful concept is the Studniarski derivative [28], which has some properties
similar to the contingent derivative [1] and the Hadamard derivative [29]. Recently, much
attention has been paid to optimality conditions and related topics for vector optimization
by using Studniarski derivatives; see [30, 31].

Inspired by the above observations, in this paper, the optimality conditions are estab-
lished for problem (P) in both the vector criterion and set criterion by using Studniarski
derivatives. The rest of the paper is organized as follows: In Section 2, some well-known
definitions and results used in sequel are recalled. In Section 3 and Section 4, the neces-
sary and sufficient optimality conditions are given in the sense of the vector criterion and

set criterion, respectively.

2 Preliminaries

Throughout the rest of paper, it is assumed that X and Y are two real normed linear spaces,
and C C Y is a convex closed pointed cones with nonempty interior, i.e., int C # ¢J. The

partial order of Y is deduced by cone C. The ordering given by C on Y is denoted by <,

which is defined as follows:
1<y, ify,—yeC.

Let S C X beanonemptysetand x € S. The contingent cone to S at x is defined by (see [1]):
T(S,x) = {x e X:3(t,) — 0%, (x,) > xwithx + £,x, € Sforalln € N},

For a set-valued mapping F : X — 2%, the set

dom(F) := {x € X : F(x) # 0},

is called the domain of F, the set
graph(F) := {(x,y) eEXxY:y eF(x)}

is called the graph of the map F, and the set
epi(F) := {(x,y) e X x Y: ye F(x) + C}

is termed the epigraph of F. Let (x,y) € graph(F), based upon the definition of contingent

cone, we can derive T'(epi(F), (¥,7)), which is formulated by

T(epi(F), (9?,5/)) = {(x,y) €eX x Y:3(t,) = 0%, (%, ¥0) = (x,9)

with y + ¢,y, € F(x + t,x,) foralln € N}. (2.1)
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Definition 2.1 (see [1]) Let F: X — 2¥ be a set-valued map. F is called C-pseudoconvex
at (x,y) € graph(F) if

epi(F) - (%,) C T (epi(F), (%,7)).

For a set-valued mapping F : X — 27, the upper and lower Studniarski derivatives of the

map F is defined as follows:

Definition 2.2 (see [28]) Let (k,y) € graph(F).
(i) The upper Studniarski derivatives of F at (x,%) is defined by

— Fx+tx)—%
DF(x,5)(x):= limsup M .
(t4)— (0% ) ¢

(i) The lower Studniarski derivative of F at (,y) is defined by

FG+i)—7
DFGH)(@) = liminf LE+P)=Y

(£x')— (0% x) t

Remark 2.3 Regarding the upper and lower Studniarski derivatives of the map F, one
has:
(a) Itis easily to see from Definition 2.2 that

DF(x,5)(x) = {y € Y :3(t,) = 0%, 3(x, y1) = (x,)
st.Vmy+t,y, € F(x+ t,,x,,)},
DF(%,5)(x) = {y € Y :V(t,) = 0", V(x,) = %,3(y,) = y
st.Vmy+t,y, € Flx+ ty,x,,)}.
(b) The upper Studniarski derivative is an exactly contingent derivative [1] or an upper

Hadamard derivative [29], and the lower Studniarski derivative is the lower

Hadamard derivative introduced by Penot [29].

Lemma 2.4 is an useful property associated with C-pseudoconvexity of a set-valued

mapping, which will be used in the next two sections.

Lemma 2.4 Let S C X be a convex set and F : S — 2Y be C-pseudoconvex at (x,y) €
graph(F). One has

F(x) -y C DF(x,7)(x—x) + C, forallx€S. (2.2)
Proof Since F at (x,y) is C-pseudoconvex, it yields

(x-xy-y) € T(epi(F), (56,5/)), forallx € S,y € F(x).
Therefore, we see from (2.1) that there exist (¢,) — 0%, (x4, y,) = (x — %,y — ) such that

(% + £u%, ¥ + tyyy) € epi(F).
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Thus
Y+ tyyn € F(x + tyx,) + C.
Then one has
Fx +tyx,) —y

ynET-FC.

By taking the limits when n — +00, we derive
y-yeDF(X,y)(x—x)+C, forallxeS,yeF(x).
So, we get (2.2), as desired. O
Example 2.5 Let X =Y =R, C=R, and F: X — 2! be defined by
Fx):={yeY:y>x*}, forallxeX.
Taking (0,0) = (x,) € graph(F), we can derive that
DF(0;0)(x) = DF(0;0)(x) =R,, forallxeX.
On the other hand, it is obviously that F is C-pseudoconvex at (x,y) = (0, 0) and satisfies
F(x) -y C DF(%,7)(x —x) + C, forallx e X.
3 Optimality conditions with vector criterion
Let S C X be a nonempty set, F: S — 2 be a set-valued mapping and (%,7) € graph(F).
From now on, for convention we always assume that the upper and lower Studniarski
derivatives of the map F at (x,) exist and dom DF (X, y) = dom DF(x,y) = S.
Consider the set-valued optimization problem (P) formulated in Section 1. We shall es-

tablish the optimality conditions for vector criteria of solutions for problem (P). In order

to distinguish from the case of set criteria, we rewrite the problem (P) as follows:

min<  F(x)
(VP) -
s.t. xeScCX.

Definition 3.1 The pair (,y) € graph(F) is said to be a weak minimizer of (VP), denoted
by y € WMin[F(S), C], if

(F(S)-y) N (~intC) = .

Theorems 3.2 and 3.3 are necessary optimality conditions for the weak minimizer of
problem (VP).
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Theorem 3.2 Let (x,y) € graph(F) be a weak minimizer of (VP). Then
(DF(%,5)(x)) N (-intC) =@, Vx€S. (3.1)

Proof Let y € DF(x,y)(x) with x € S. Then there exist (¢,) — 0%, (x,) — X and y, € F(x +
t,x,) such that

— . (3.2)
Because (x,y) is a weak minimizer of (VP), one has
(F(x + tyxy) —=7) N (=int C) = . (3.3)

Now, let us show that y ¢ —int C. In fact, assuming that y € —intC, since —intC is open,
we obtain from (3.2)

yu—y€—intC, forlarge n.
Hence, it follows from y,, € F(x + t,x,) that
Vn—7 € (F(x+t,x,) —y) N—intC, for large n,
which contradicts (3.3). a
Theorem 3.3 Let (x,y) € graph(F). If (x,y) is a weak minimizer of (VP), then
(QF(J_C,}_/)(JC)) N(-intC) =0, forallxe T(S, X). (3.4)
Proof According to Theorem 3.2, one shows that forallx € S
(DF(%,7)(x)) N (-intC) = 4. 3.5)

We proceed by contradiction. If the conclusion in Theorem 3.3 does not hold, then there
exists x € T(S,x) such that

DF(x,y)(x) N (=intC) # @. (3.6)
Noticing that x € T'(S, %), there exist (t,) — 0* and (x,,) — x such that  + ¢,x,, € S for all n.
In addition, we see from (3.6) that there exists ¥ € DF(¥,¥)(*) N (—int C). Hence, with the
above (¢,) and (x,) there is (,) — 7 such that

Y+ tyyn € F(X + tyxy).

So, we see that there exist (¢,) — 0%, (x,) — «, and (y,) — ¥ such that

Y+ tyyn € F(X + ).
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Thus,
j € (DF(x,5)(®) N (~int C),
which is a contradiction to (3.5). O

Now, we present a sufficient optimality condition for problem (VP) under the assump-

tion of pesudoconvexity of F.

Theorem 3.4 Let S be a convex set and F be C-pseudoconvex at (x,y) € graph(F). If
(DF(x,5)(x - X)) N (~intC) =¥, Vx€S, 3.7)
then (x,y) is a weak minimizer of (VP).

Proof We proceed by contradiction. Suppose that (¥, y) is not a weak minimizer of (VP),
then there exists x € S such that

(F(x) —5/) N (=intC) # @. (3.8)
Since F is C-pseudoconvex at (¥, %), one shows from Lemma 2.4 that
F(x) -y C DF(%,5)(x —X) + C.
Therefore, one shows from (3.8) that
(DF(x,7)(x — x) + D) N (—int C) # ¥,
and as a consequence
(DF(%,y)(x — %)) N (—intC) # 0.
This is a contradiction to (3.7). 0

4 Optimality conditions with set criterion
This section works with the optimality conditions for problem (P) in the sense of the set
criterion. Firstly, let us recall the concepts of set relations.

Definition 4.1 (see [5]) Let A and B be two nonempty sets of Y. We write A <! B, if for
all b € B there exists a € A such that a < b. Here, ‘<! is called a lower relation.

Remark 4.2 The above defined lower relation is equivalent to B C A + C and it is the
generalization of the order induced by a pointed convex cone C in Y, in the following
sense:a <bifbea+C.

Definition 4.3 (see [14]) Let A and B be two nonempty sets of Y. We write A < B, if
BC A +intC. Here, ‘<™’ is named a lower weak relation.
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Definition 4.4 (see [14]) Let A be a family of subsets of Y.
(1) A € Aisnamed a lower minimal of A, if for each B € A such that B <! A4, it satisfies
A<'B;
(2) A € Ais called a lower weak minimal of A4, if for each B € A such that B <V 4, it
satisfies A <V B.
The relation ‘<" determines in A the equivalence relation:

A~B & A<'B and B<'4

whose classes it is denoted by [A]'. Analogously the relation ‘<™’ determines in .A an equiv-
alence relation whose classes are written [A]™.

In the sense of a set criterion, the problem (P) can be rewritten in the next form:

min {F(x)}
s.t. xeSCX.

(SP)

In this case, a lower weak minimizer of the problem (SP) is a pair (x, F(x)) such thatx € S
and F(x) is a lower weak minimal of the family of images of F, i.e. the family

F={F@x):xeS}.
We say that F(x) is a lower weak minimal of (SP) instead of F.

Example 4.5 Let S=[0,1] CR, Y =R? and C = R?. Let Fy : [0,1] — 2% be a set-valued
map and defined by

{()/1,)/2)€R22@1—1)2+()/2—1)2=1}, x=0,
Fo(x) = { [(x,—x + 1), (1, —x + 1)], 0<x<l,
[(0’1)7(1)0)]! X = 1;

where [y,y'] with 5,5 € R? denotes the line segment, i.e. [y,y'] = {Ay + 1 -=A)y : 0 <A <1}.
Considering the following problem (SP)y:

(SP), min_1  {Fp (%)}
s.t. x € [0,1].

By computing, we can derive that (1, F(1)) is the lower minimizer of (SP)o and (x, F(x))
with 0 < x <1 is the lower weak minimizer of (SP),.

Definition 4.6 (see [19]) Let F(x) be a lower weak minimal of (SP). F(k) is named strict
lower weak minimal of (SP), if there exists a neighborhood U/(X) of X such that F(x) £
F(x), for all x € U(x) N S. Then x is called a strict lower weak minimum of (SP).

Lemma 4.7 (see [19]) Let x € S. Then F(x) is a lower weak minimal of (SP) if and only if
for each x € S one of the conditions below is fulfilled:
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(1) F(x) € [F@)]™.
(2) There exists y € F(x) such that (F(x) —y) N (-intC) = @.

Definition 4.8 (see [19]) (Domination property). It is called that a subset A C Y has the
D-weak minimal property, if for all y € A there exists a weakly minimal a of A such that
a-y e (—intC) U {0}.

Lemma 4.9 Let x,x € S and y € F(x). If F(x) £V F(x), WMin[F (%), C] = {y} and F(x) has
the C-weak minimal property, one has

(F(x)=y) N (~intC) = . (4.1)
Proof Assuming that (4.1) does not hold, that is,

(F(x)-=y) N (~intC) # 4.
Then there exist y € F(x) and d € intC such that y — y = —d. So, it yields y =y + 4 and
y € F(x) + int C. On the other hand, it follows from WMin[F(x), C] = {y} and the C-weak
minimal property of F(x) that, for all ¥ € F(x), there is d’ € int C U {0} such that

¥ =y+d € F(x) +intC.
Therefore, we derive that

F(x) C F(x) +intC,
which means F(x) <™ F(x). This contradicts the hypothesis. O

Theorem 4.10 Let X be a strict lower weak minimum of (SP). If WMin[F(x), C] = {y} and
F(x) has the C-weak minimal property, then

(DF(%,y)(x)) N (~=intC) =@, forallxeS. (4.2)
Proof Because X is a strict lower weak minimum of (SP), we see from Definition 4.6 that
there exists a neighborhood U (%) of X such that F(x') ' F(%) forallx’ € U(¥)NS. Letx € S.

Assuming that y € DF(, )(x) then there exist (t,,) — 0%, (x,) — ¥and y, € F(X +t,x,) such
that

Therefore for large enough 7, we can get X + £,x, € U(%) NS which verifies F(X + t,x,) £
F(x). Thus, it follows from Lemma 4.9 that

(F(x + tyxy) =) N (~intC) =@,  for large n. (4.3)
Let us prove that y ¢ —int D. Otherwise, one has

yn—y€—intC, forlarge n.
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Noticing that y, € F(x + t,x,), we derive
Vn—7 € (F(x+tux,) —y) N (=intC), for large n.
This is a contradiction to (4.3). So, we derive (4.2), as desired. a

Theorem 4.11 Let X be a strict lower weak minimum of (SP). If WMin[F(k), C] = {y} and
F(x) has the C-weak minimal property then

DF(x,y)(x)N(—intC) =¥, forallx e T(S,%). (4.4)

Proof Based upon Theorem 4.10, we see that equation (4.2) holds. The rest of the proof
can be followed by similar arguments to that of Theorem 3.3. O

Theorem 4.12 Let S be convex set and F be C-pseudoconvex at (x,y) € graph(F). If for
every x € S we have

(DF(x,5)(x - X)) N (-intC) =9, Vx€S,
then x is a lower weak minimum of (SP).

Proof Suppose that x is not a lower weak minimum of (SP), it follows from Lemma 4.7
that there exists x” € S such that for each y' € F(x) there is y' € F(x') with

y -y € -intC. (4.5)
Since F is C-pseudoconvex at (¥, ), we derive from Lemma 2.4 that

F(x') -y C DF(x,y)(x —x) + C.
Therefore, we obtain

y -y € DF(%,y)(x - %) + C. (4.6)
Combining (4.5) with (4.6), we get

(DE(x,5)(x' = %) + D) N (=int C) # ¥,
furthermore,

DF(%7)(x %) N (~intD) #4,
which is a contradiction. O

Remark 4.13 By comparing the results derived in Section 3, it can be found that the op-
timality for the set criterion and vector criterion, with the suitable conditions, possesses
the same forms in terms of Studniarshi derivatives.
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5 Conclusions

We have studied the optimality conditions for both the vector criterion and set criterion
for a set-valued optimization problem in this note. We have presented two sufficient opti-
mality conditions and a necessary condition for a weak minimizer in terms of Studniarski
derivatives. In the set optimization criterion, utilizing the known results, we have proved
two necessary optimality conditions for a strict lower weak minimum and a lower weak
minimum. A sufficient optimality condition has been proved under the assumption of

pseudoconvexity.
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