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Abstract
We introduce logarithmic generalized Maxwell distribution motivated by Vodă (Math.
Rep. 11:171-179, 2009), which is an extension of the generalized Maxwell distribution.
Some interesting properties of this distribution are studied and the asymptotic
distribution of the partial maximum of an i.i.d. sequence from the logarithmic
generalized Maxwell distribution is gained. The expansion of the limit distribution
from the normalized maxima is established under the optimal norming constants,
which shows the rate of convergence of the distribution for normalized maximum to
the extreme limit.
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1 Introduction
The generalized Maxwell distribution (GMD for short), a generalization of ordinary
Maxwell (or classical Maxwell) distribution, was proposed by Vodă []. With the rapid
development of economy and science and technology, some of the existing distribution
functions cannot meet the needs of research. For example, for some skewed data, it is
appropriate to describe and fit them only by using some logarithmic models. Therefore,
the recent development of some new distribution functions and the study of logarith-
mic case of the distribution functions have become hot issues in the statistical field. For
more details, please refer to [–]. In this paper, we define the logarithmic generalized
Maxwell distribution (for brevity LGMD), which is a natural prolongation of the gener-
alized Maxwell distribution. In addition to the previously mentioned, one motivation of
thinking of LGMD is to obtain more efficient results as parameter estimators when ran-
dom models were supposed with the LGMD error terms instead of normal ones. Other
aspects, like compressive sensing, we hope the LGMD could be used to model impulsive
noise [].

The GMD has a variety of applications in statistics, physics, and chemistry. The prob-
ability density function (pdf) and the cumulative distribution function (cdf ) of the GMD
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with the parameter k >  are respectively,

gk(x) =
k

k/σ +/k�( + k/)
xk exp

(
–

xk

σ 

)

and

Gk(x) =
∫ x

–∞
gk(t) dt

for x ∈ R, where σ is a positive constant and �(·) is the gamma function.
Mills [] gave a well-known inequality and Mills’ ratio conclusion for the standard

Gauss cdf �(x) with respect to its pdf φ(x) as follows:

x–( + x–)–
φ(x) < �(–x) < x–φ(x) (.)

for x > , and

�(–x)
φ(x)

∼ 
x

, (.)

as x → ∞.
Peng et al. [] extended the Mills results to the case of the general error distribution:

λv

v
x–v

(
 +

(v – )λv

v
x–v

)–

<
Tv(–x)
tv(x)

<
λv

v
x–v (.)

for v >  and x > , and for v > 

Tv(–x)
tv(x)

∼ λv

v
x–v, (.)

as x → ∞, where λ = [ –/v�(/v)
�(/v) ]/, and Tv(x) is the general error cdf with pdf tv(x). Huang

and Chen [] investigated similar results of GMD, viz.,

σ 

k
x–k <

 – Gk(x)
gk(x)

<
σ 

k
x–k

(
 +

(
σ 

k
xk – 

)–)
(.)

for k > /, σ >  and x > , and for k > ,

 – Gk(x)
gk(x)

∼ σ 

k
x–k , (.)

as x → ∞. The above-mentioned Mill type inequalities such as (.), (.), and (.) and
Mills’ type ratios such as (.), (.), and (.) play an important role in considering some
tail behavior and extremes of economic and financial data.

The present paper is to derive the Mills’ inequality, Mills’ ratio, and the distributional
tail expression for the LGMD. As an important application, the asymptotic distribution of
the partial maximum of i.i.d. variables with common LGMD is investigated. As another
significant application, with appropriate normalized constants, the distributional expan-
sion of the normalized maxima from LGMD is obtained. Moreover, we indicate that rate
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of convergence of the distribution of normalized maxima to corresponding extreme value
limit is of the order of O(/(log n)–/(k)).

First of all, we provide the definition of LGMD.

Definition . Set X stand for a random variable which obeys the GMD. Set Y = exp(X).
Then Y is termed obeying the LGMD, denoted by Y ∼ LGMD(k) with parameter k > .

Easily check that the pdf is

fk(x) =
kx–

k/σ +/k�( + k/)
(log x)k exp

(
–

(log x)k

σ 

)

for x > , where parameter k > , and σ is a positive constant. Suppose that

Fk(x) =
∫ x


fk(t) dt

for x > . Observe that the LGMD decreases to the logarithmic Maxwell distribution when
k = .

The rest of the article is organized as follows. In Section , we derive some interesting
results including Mills-type ratios and tail behaviors of LGMD. In Section , we discuss
the asymptotic distribution of normalized maxima of i.i.d. random variables following
the LGMD and the suitable norming constants. We generalize the result to the case of
a finite blending of LGMDs. In Section , we establish the asymptotic expansion of the
distribution of the normalized maximum from LGMD under optimal choice of norming
constants. As a byproduct, we obtain the convergence speed of the distribution of the
normalized partial maxima to its limit.

2 Mills’ ratio and tail properties of LGMD
In this part, we obtain some significant results including Mills’ inequality, Mills’ ratio of
LGMD.

As to LGMD and GMD, observe that  – Gk(log x) =  – Fk(x) and

 – Gk(log x)
x–gk(log x)

=
 – Fk(x)

fk(x)
.

Hence, by Lemma . and Theorem . in Huang and Chen [], the two results below
follow.

Theorem . Suppose that Fk and fk respectively represent the cdf and pdf of LGMD with
parameter k > /. We have the inequality below, for all x > ,

σ 

k
x(log x)–k <

 – Fk(x)
fk(x)

<
σ 

k
x(log x)–k

(
 +

(
σ 

k
(log x)k – 

)–)
, (.)

where σ is a positive constant.

Corollary . For fixed k > , as x → ∞, we have

 – Fk(x)
fk(x)

∼ σ 

k
x(log x)–k . (.)
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Remark . Since the LGMD(k) are reduced to the logarithmic Maxwell distribution as
k = , so by Theorem . and Corollary ., we derive the Mill’s inequality and Mills’ ratio
of the logarithmic Maxwell distribution, viz.,

σ x(log x)–f(x) <  – F(x) < σ x(log x)–( +
(
σ (log x) – 

)–)f(x)

for x > , and

 – F(x)
f(x)

∼ σ x
log x

,

as x → ∞.

Remark . For k > /, Corollary . gives Fk ∈ D(�), i.e., there are norming constants
αn >  and βn ∈R which ensure Fn

k (αnx +βn) converges to exp(– exp(–x)), as n → ∞. Since

(d/dx)fk(x)
fk(x)

= –

x

(
 –

k
log x

+
k
σ  (log x)k–

)
,

by Corollary ., we obtain

 – Fk(x)
fk(x)

(d/dx)fk(x)
fk(x)

→ –,

as x → ∞. Hence, applying Proposition . in Resnick [], we obtain Fk ∈ D(�). As to
how to choose the norming constants αn and βn will be explored by Theorem ..

Finner et al. [] investigated the asymptotic property of the ratio of the Student t and
Gauss distributions as the degrees of freedom u = u(x) satisfies

lim
x→∞

x

u
= β ∈ [,∞). (.)

The main motivation of the work is to consider the false discovery rate in multiple testing
problems with large numbers of hypotheses and extremely small critical values for the
smallest ordered p value; for details, see Finner et al. []. In the following, we investigate
the asymptotic property of the ratio of pdfs and the ratio of the tails of the LGMD and the
logarithmic Maxwell distribution. Firstly, we think over the situation of k → . Secondly,
we think over the situation of x → ∞ for fixed k.

Theorem . For k > , let x = x(k) be such that

k –  =
γ

(log x) log log x
(.)

for some γ ∈ R. We obtain

lim
k→

f(x)
fk(x)

= exp

(
γ

σ 

)
(.)
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and

lim
k→

 – F(x)
 – Fk(x)

= exp

(
γ

σ 

)
. (.)

Proof Observe that (k+)/σ+/k�(+k/)
kσπ/ →  as k → , therefore

lim
k→

f(x)
fk(x)

= lim
k→

(log x)–k exp

(
(log x)k

σ  –
(log x)

σ 

)

= lim
k→

exp

(
(log x)

σ 

(
(log x)k– – 

))

= lim
k→

exp

(
(log x)

σ 

(
exp

(
(k – ) log log x

)
– 

))

= lim
k→

exp

(
(log x)

σ 

(
exp

(
γ

(log x)

)
– 

))

= exp

(
γ

σ 

)
.

By (.), it is easy to check that x → ∞ as k → . Again applying (.), we have

(log x)–k = exp
(
( – k) log log x

)

= exp

(
γ

(log x)

)
→ , as k → . (.)

Combining (.), Corollary ., Remark ., and (.), representation (.) can be de-
rived. �

Theorem . For fixed k, we have

f(x)
fk(exp((log x)/k))

=
(k+)/�( + k/) exp((log x)/k)

π /kσ –/kx
(.)

and

lim
x→∞

(log x)/k–( – F(x))
 – Fk(exp((log x)/k))

=
(k+)/�( + k/)

π /σ –/k . (.)

Proof It is easy to verify (.) by fundamental calculation. By Corollary ., Remark .,
and (.), we have

lim
x→∞

(log x)/k–( – F(x))
 – Fk(exp((log x)/k))

= lim
x→∞

kx
exp((log x)/k)

f(x)
fk(exp((log x)/k))

=
(k+)/�( + k/)

π /σ –/k .

Hence (.) follows. �
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3 Limiting distribution of the maxima
By applying Corollary ., we could establish the distributional tail representation for the
LGMD.

Theorem . Under the conditions of Theorem ., we have

 – Fk(x) = c(x) exp

(
–

∫ x

e

g(t)
f (t)

dt
)

for large enough x, where

c(x) =


k/σ /k�( + k/)
exp

(
–/

(
σ ))( + θ(x)

)

and

f (t) =
σ 

k
t(log t)–k , g(t) =  –

σ 

k
(log t)–k ,

where θ(x) →  as x → ∞.

Proof For large enough x, by Corollary ., we have

 – Fk(x) =
σ 

k
(log x)–kxfk(x)

(
 + θ(x)

)

=


k/σ /k�( + k/)
exp

(
log log x –

(log x)k

σ 

)(
 + θ(x)

)

=


k/σ /k�( + k/)
exp

(
–


σ 

)
exp

(
–

∫ x

e

(
k(log t)k–

σ t
–


t log t

)
dt

)

× (
 + θ(x)

)

=


k/σ /k�( + k/)
exp

(
–


σ 

)
exp

(
–

∫ x

e

 – k–σ (log t)–k

k–σ t(log t)–k dt
)

× (
 + θ(x)

)

= c(x) exp

(
–

∫ x

e

g(t)
f (t)

dt
)

,

where θ(x) →  as x → ∞. The desired result follows. �

Remark . As limt→∞ g(t) = , f (t) >  on [,∞) is absolutely continuous function and
limt→∞ f ′(t) =  in Theorem ., an application of Theorem . and Corollary . in
Resnick [] shows Fk ∈ D(�), and the norming constants an and bn can be chosen by


 – Fk(bn)

= n, an = f (bn) (.)

such that

lim
n→∞ Fn

k (anx + bn) = �(x), (.)

where D(�) denotes the domain of attraction �(x) = exp(– exp(–x)).
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Here we establish the asymptotic distribution of the normalized maximum of a sequence
of i.i.d. random variables following LGMD. Remark . and Theorem . showed that the
distribution of partial maximum converges to �(x). So, the following task is to look for
the associated suitable norming constants.

Theorem . Suppose that {Xn, n ≥ } be an i.i.d. sequence from the LGMD with k > /.
Let Mn = max{X, X, . . . , Xn}. We have

lim
n→∞ P(Mn ≤ αnx + βn) = exp

(
– exp(–x)

)
,

where

αn =
σ  exp(/(k)σ /k(log n)/(k))( + σ /k (log n)/(k)–

–/(k)k (log log n – (k – ) log  – k log�( + k/)))

k(/(k)σ /k(log n)/(k) + log( + σ /k (log n)/(k)–

–/(k)k (log log n – (k – ) log  – k log�( + k/))))k–

and

βn = exp
(
/(k)σ /k(log n)/(k))( +

σ /k(log n)/(k)–

–/(k)k

(
log log n –

(
k – 

)
log 

– k log�( + k/)
))

.

Proof Since Fk ∈ D(�), there must be norming constants an >  and bn ∈ R which make
sure that limn→∞ P((Mn – bn)/an ≤ x) = exp(– exp(–x)). By Proposition . in Resnick []
and Theorem ., we can make choice of the norming constants an and bn satisfying the
equations: bn = (/( – Fk))←(n) and an = f (bn). Note that Fk(x) is continuous, then  –
Fk(bn) = n–. By Corollary ., we have

nk–σ (log bn)–kbnfk(bn) → ,

as n → ∞, viz.,

n– k
 σ – 

k �–
(

 +
k


)
log bn exp

(
–

(log bn)k

σ 

)
→ ,

as n → ∞, and so

log n –
k


log  –

k

logσ – log�

(
 +

k


)
+ log log bn –

(log bn)k

σ  → , (.)

as n → ∞, from which one deduces

(log bn)k

σ  log n
→ ,

as n → ∞, thus

k log log bn – log  –  logσ – log log n → ,
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as n → ∞, hence

log log bn =


k
(log  +  logσ + log log n) + o().

Putting the equality above into (.), we have

(log bn)k = σ 
(

log n +


k
log log n –

k – 
k

log  – log�

(
 +

k


))
+ o(),

from which one induces that

log bn = 


k σ

k (log n)


k

(
 +

log log n – (k – ) log  – k log�( + k
 )

k log n
+ o

(
(log n)–)),

therefore

bn = exp
(



k σ


k (log n)


k

)(
 +

σ

k (log n)


k –

– 
k k

(
log log n –

(
k – 

)
log 

– k log�

(
 +

k


))
+ o

(
(log n)


k –))

= βn + o
(
(log n)


k – exp

(



k σ


k (log n)


k

))
,

where

βn = exp
(
/(k)σ /k(log n)/(k))( +

σ /k(log n)/(k)–

–/(k)k

(
log log n –

(
k – 

)
log 

– k log�( + k/)
))

.

Hence, we have

αn = f (βn)

=
σ  exp(/(k)σ /k(log n)/(k))( + σ /k (log n)/(k)–

–/(k)k (log log n – (k – ) log  – k log�( + k/)))

k(/(k)σ /k(log n)/(k) + log( + σ /k (log n)/(k)–

–/(k)k (log log n – (k – ) log  – k log�( + k/))))k–
.

It is easy to check that limn→∞ αn/an =  and limn→∞(bn – βn)/αn = . Hence, by Theo-
rem .. in Leadbetter et al. [], the proof is complete. �

Remark . Theorem . shows that the limit distribution of the normalized maximum
from the logarithmic Maxwell distribution is the extreme value distribution exp(– exp(–x))
with norming constants

αn =
σ  exp(/σ (log n)/)( + σ

/(log n)/ (log log n –  log(π //)))

/σ (log n)/ + log( + σ

/(log n)/ (log log n –  log(π //)))

and

βn = exp
(
/σ (log n)/)( +

σ

/(log n)/

(
log log n –  log

(
π //

)))
.
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At the end of this section, we generalize the result of Theorem . to the situation of a
finite blending of LGMDs.

Finite mixture distributions (or models) have been widely applied in various areas such
as Chemistry [] and image and video databases []. Specifically, related extreme sta-
tistical scholars have studied them. Mladenović [] have considered extreme values of
the sequences of independent random variables with common mixed distributions con-
taining normal, Cauchy and uniform distributions. Peng et al. [] have investigated the
limit distribution and its corresponding uniform rate of convergence for a finite mixed of
exponential distribution.

If the distribution function (df ) F of a random variable ξ have

F(x) = pF(x) + pF(x) + · · · + prFr(x),

we say that ξ obeys a finite mixed distribution F , where Fi,  ≤ i ≤ r stand for different
dfs of the mixture components. The weight coefficients satisfy the condition that pi > ,
i = , , . . . , r and

∑r
j= pj = .

Next, we think of the extreme value distribution from a finite blending with constituent
dfs Fki obeying LGMD(ki), where the parameter ki >  for  ≤ i ≤ r and ki 
= kj for i 
= j.
Denote the cumulative df of the finite blending by

F(x) = pFk (x) + pFk (x) + · · · + prFkr (x) (.)

for x > .

Theorem . Suppose that {Zn, n ≥ } be a sequence of i.i.d. random variables following
the common df F given by (.). Set Mn = max{Zk ,  ≤ k ≤ n}. Now

lim
n→∞ P

(
Mn – βn

αn
≤ x

)
= exp

(
– exp(–x)

)

holds with the norming constants

αn =
σ /k exp(/(k)σ /k(log n)/(k))

–/(k)k(log n)–/(k)

and

βn = exp
(
/(k)σ /k(log n)/(k))( +

σ /k(log n)/(k)–

–/(k)k

(
log log n + k log p

–
(
k – 

)
log  – k log�( + k/)

))
,

where σ = max{σ, . . . ,σr}, and p = pi + · · · + pij , is ∈ {i,σi = σ and k = ki},  ≤ s ≤ j ≤ r, and
k = min{k, . . . , kr}.

Proof By (.), we have

 – F(x) =
r∑

i=

pi
(
 – Fki (x)

)
.
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By Theorem ., we have

r∑
i=

piσ

i

ki
(log x)–ki xfki (x)

<  – F(x) <
r∑

i=

piσ

i

ki
(log x)–ki x

(
 +

(
σ 

i
ki

(log x)ki – 
)–)

fki (x)

for all x > , according to the definition of fk , which implies

p log x

 k
 σ


k �( + k

 )
exp

(
–

(log x)k

σ 

)(
 + Ak(x)

)

<  – F(x)

<
p log x

 k
 σ


k �( + k

 )

(
 +

(
σ 

k
(log x)k – 

)–)
exp

(
–

(log x)k

σ 

)(
 + Bk(x)

)
, (.)

where

Ak(x) =
∑
ki 
=k

 k
 piσ


k �( + k

 )


ki
 pσ


ki �( + ki

 )
exp

(
(log x)k

σ  –
(log x)ki

σ 
i

)
→  (.)

and

Bk(x) =
∑
ki 
=k

 k
 piσ


k �( + k

 )


ki
 pσ


ki �( + ki

 )

 + ( σ
i

ki
(log x)ki – )–

 + ( σ
k (log x)k – )–

exp

(
(log x)k

σ  –
(log x)ki

σ 
i

)

→  (.)

as x → ∞ since k = min{k, k, . . . , kr}. Combining (.)-(.) with (.), for large enough
x, we obtain

 – F(x) ∼ p
(
 – Fk(x)

)
(.)

as x → ∞, where Fk represents the cdf of the LGMD(k), and σ and p are defined by The-
orem .. By Proposition . in Resnick [], we can derive F ∈ D(�). The norming con-
stants can be obtained by Theorem . and (.). The desired result follows. �

4 Asymptotic expansion of maximum
In this section, we establish an high-order expansion of the distribution of the extreme
from the LGMD sample.

Theorem . For the norming constants an and bn given by (.), we have

lim
n→∞(log bn)λ

(
(log bn)k–(Fn

k (anx + bn) – �(x)
)

– I(x)�(x)
)

= l(x)�(x),
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where

l(x) =

⎧⎪⎪⎨
⎪⎪⎩

Jk(x) + 
 I(x), if 

 < k < ,

Jk(x) + w(x), if k = ,

Jk(x), if k > ,

I(x) =



k–σ xe–x, w(x) =



σ xe–x,

and

Jk(x) =

⎧⎪⎪⎨
⎪⎪⎩

k–σ x( 
 – 

 x)e–x, if 
 < k < ,

σ x( + 
 x + 

σ x – 
σ x)e–x, if k = ,

k–σ x( 
 (k – )x + )e–x, if k > .

Corollary . Under the condition of Theorem ., we have

Fn
k (anx + bn) – �(x) ∼ I(x)�(x)

(σ  log n)–/(k)

for large n, where I(x) is given by Theorem ..

Proof The result directly follows from Theorem .. The detailed proof is omitted. �

In order to prove Theorem ., we need several lemmas. The following lemma shows a
decomposition of the distributional tail representation of the LGMD.

Lemma . Let Fk(x) denote the cdf of the LMGD. For large x, we have

 – Fk(x) =


k/σ /k�( + k/)
exp

(
–/

(
σ ))[ + k–σ (log x)–k

+ k–( – k)σ (log x)–k + O
(
(log x)–k)] exp

(
–

∫ x

e

g(t)
f (t)

dt
)

with f (t) and g(t) given by Theorem ..

Proof By integration by parts, we have

 – Fk(x) =
k

 
 �( + k

 )

∫ ∞

log x/σ

k

sk exp

(
–




sk
)

ds

=
log x

 k
 σ


k �( + k

 )
exp

(
–

(log x)k

σ 

)[
 + k–σ (log x)–k

+ k–( – k)σ (log x)–k + k–( – k)( – k)σ (log x)–k]

+
( – k)( – k)( – k)

 k
 k�( + k

 )

∫ ∞

log x/σ

k

s–k exp

(
–




sk
)

ds. (.)
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Using L’Hospital’s rules yields

lim
n→∞

∫ ∞
log x/σ


k

s–k exp(– 
 sk) ds

(log x)–k exp(– (log x)k

σ )
= . (.)

One easily checks that

log x
k/σ /k�( + k/)

exp

(
–

(log x)k

σ 

)

=


k/σ /k�( + k/)
exp

(
–


σ 

)
exp

(
–

∫ x

e

g(t)
f (t)

dt
)

(.)

with f (t) and g(t) determined by Theorem .. Combining with (.)-(.), we complete
the proof. �

Lemma . Set

Bn(x) =  + k–σ (log bn)–k + k–( – k)σ (log bn)–k + O((log bn)–k)
 + k–σ (log(anx + bn))–k + k–( – k)σ (log(anx + bn))–k + O((log(anx + bn))–k)

with the norming constants an and bn given by (.), then

Bn(x) –  = k–σ (log bn)–kx + O
(
(log bn)–k).

Proof By (.), we have n( – Fk(anx + bn)) → e–x as n → ∞, with the norming constants
an and bn given by (.). It is not difficult to verify that limn→∞ Bn(x) =  and

Bn(x) –  =
[
k–σ ((log bn)–k –

(
log(anx + bn)

)–k)
+ k–( – k)σ ((log bn)–k –

(
log(anx + bn)

)–k)
+ O

(
(log bn)–k)]( + o()

)
. (.)

For large n we have

(log bn)–k –
(
log(anx + bn)

)–k = σ (log bn)–kx – k–σ (log bn)–kx

+ O
(
(log bn)–k) + O

(
(log bn)–k) (.)

and

(log bn)–k –
(
log(anx + bn)

)–k = σ (log bn)–kx – k–σ (log bn)–kx

+ O
(
(log bn)–k) + O

(
(log bn)–k). (.)

By (.)-(.), the desired result follows. �

Lemma . Set λ =  ∧ (k – ) to denote the minimum of {, k – } and vn(x) =
n log Fk(anx + bn) + e–x with norming constants an and bn given by (.). Then

lim
n→∞(log bn)λ

(
(log bn)k–vn(x) – I(x)

)
= Jk(x), (.)

with I(x), Jk(x) given by Theorem ..
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Proof For any positive integers m and i > , by Corollary . and the fact that /(–Fk(anx+
bn)) = n, we have

lim
n→∞

( – Fk(anx + bn))i

n–(log bn)–mk = . (.)

For any x ∈R and an = k–σ bn(log bn)–k , we have

(log bn)k–
(

kan

σ (anx + bn)(log(anx + bn))–k – 
)

→ –k–σ x (.)

and

an(log bn)k–

(anx + bn) log(anx + bn)
→ , (.)

as n → ∞. Here set

Cn(x) =
kan

σ (anx + bn)(log(anx + bn))–k –
an

(anx + bn) log(anx + bn)
– .

By Lemmas ., ., (.), and (.), we have

 – Fk(bn)
 – Fk(anx + bn)

e–x

= Bn(x) exp

(∫ x



(
kan

σ (ans + bn)(log(ans + bn))–k –
an

(ans + bn) log(ans + bn)
– 

)
ds

)

= Bn(x) exp

(∫ x


Cn(s) ds

)

= Bn(x)
(

 +
∫ x


Cn(s) ds +




(∫ x


Cn(s) ds

)(
 + o()

))
. (.)

By (.)-(.), Lemma ., and the dominated convergence theorem, we have

lim
n→∞(log bn)k–vn(x)

= lim
n→∞

log Fk(anx + bn) + n–e–x

n–(log bn)–k

= lim
n→∞

–( – Fk(anx + bn)) – 
 ( – Fk(anx + bn))( + o()) + ( – Fk(bn))e–x

n–(log bn)–k

= lim
n→∞

 – Fk(anx + bn)
n–

–Fk (bn)
–Fk (anx+bn) e–x – 

(log bn)–k

= e–x lim
n→∞(log bn)k–

(
Bn(x) + Bn(x)

∫ x


Cn(s) ds

(
 + o()

)
– 

)

= e–x lim
n→∞(log bn)k–

∫ x


Cn(s) ds

= –



k–σ xe–x

=: I(x). (.)
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For all x ∈R,

kan

σ (ans + bn)(log(ans + bn))–k –  + k–σ s(log bn)–k

=
(
 + k–σ (log bn)–ks

)–
(

(k – )
(

k–σ (log bn)–ks –



k–σ (log bn)–ks
)

+ k–σ (log bn)–ks + O
(
(log bn)–k))

for large n, which implies

(log bn)k–+λ

(
kan

σ (ans + bn)(log(ans + bn))–k –  + k–σ s(log bn)–k
)

→

⎧⎪⎪⎨
⎪⎪⎩

k–σ s, if 
 < k < ,

σ s( + σ s), if k = ,

(k – )k–σ s, if k > ,

(.)

and

an(log bn)k–+λ

(ans + bn) log(ans + bn)
→

⎧⎪⎪⎨
⎪⎪⎩

, if 
 < k < ,

σ , if k = ,

k–σ , if k > ,

(.)

as n → ∞.
By (.), (.), and Lemma ., we have

lim
n→∞(log bn)λ

(
(log bn)k–vn(x) – I(x)

)

= lim
n→∞

–( – Fk(anx + bn)) + ( – Fk(bn))e–x( – I(x)ex(log bn)–k)
n–(log bn)–k–λ

= lim
n→∞

 – Fk(anx + bn)
n–

–Fk (bn)
–Fk (anx+bn) e–x( – I(x)ex(log bn)–k) – 

(log bn)–k–λ

= e–x lim
n→∞

[
(log bn)k+λ–(Bn(x) – 

)
+ Bn(x)(log bn)k+λ–

×
∫ x



(
Cn(s) + k–σ s(log bn)–k)ds – Bn(x)I(x)ex(log bn)λ

∫ x


Cn(s) ds

+



Bn(x)(log bn)k+λ–( – I(x)ex(log bn)–k)(∫ x


Cn(s) ds

)(
 + o()

)]

=

⎧⎪⎪⎨
⎪⎪⎩

k–σ x( 
 – 

 x)e–x, if 
 < k < ,

σ x( + 
 x + 

σ x – 
σ x)e–x, if k = ,

k–σ x( 
 (k – )x + )e–x, if k > 

=: Jk(x),

with λ =  ∧ (k – ). The proof is completed. �
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Proof of Theorem . By Lemma ., we have

(log bn)k–+λv
n(x) →

⎧⎨
⎩

I(x), if 
 < k ≤ ,

, if k > ,
(.)

as n → ∞. Once again by Lemma ., we have

(log bn)λ
(
(log bn)k–(Fn

k (anx + bn) – �(x)
)

– I(x)�(x)
)

= (log bn)λ
(
(log bn)k–(exp

(
un(x)

)
– 

)
– I(x)

)
�(x)

=
(

(log bn)λ
(
(log bn)k–vn(x) – I(x)

)
+ (log bn)k+λ–v

n(x)
(




+ O
(
vn(x)

)))
�(x)

→ l(x)�(x),

where l(x) is provided by Theorem .. The proof is completed. �

5 Conclusion
Motivated by Vodă [], we put forward the logarithmic generalized Maxwell distribution.
We discuss tail properties and the limit distribution of the distribution. We extend the re-
sults to the case of a finite mixture distribution. With the optimal norming constants, we
establish the high-order expansion of the distribution of maxima from logarithmic gener-
alized Maxwell distribution, by which we derive the convergence rate of the distribution
of maximum to the associate extreme limit.
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