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Abstract

Based on the Padé approximation method, we determine the coefficients g; and b;
(1 <j < k) such that

Cx+1) Xk+aka’1+...+ak+o< 1 )
J - , X —> 09,
2mx(x/e) XK+ bkl 4.+ by 2k

where k > 1 is any given integer. Based on the obtained result, we establish new
bounds for the gamma function.
MSC: Primary 33B15; secondary 41A60; 26D15
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1 Introduction

Stirling’s formula
n!~\/27rn(z> , neN:={12,..) (L1)
e

has many applications in statistical physics, probability theory and number theory. Ac-
tually, it was first discovered in 1733 by the French mathematician Abraham de Moivre
(1667-1754) in the form

n! ~ constant - /n(n/e)"

when he was studying the Gaussian distribution and the central limit theorem. Afterwards,
the Scottish mathematician James Stirling (1692-1770) found the missing constant /27w
when he was trying to give the normal approximation of the binomial distribution.

Stirling’s series for the gamma function is given (see [1], p.257, Eq. (6.1.40)) by

x\* ad Bow,
F(x+1)~v2nx(;> CXP(Z m) (12)

m=1
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asx — 00, where B, (n € Ny := NU{0}) are the Bernoulli numbers defined by the following
generating function:

oo
z z
= §0 By lel<2m. 1.3)

The following asymptotic formula is due to Laplace:

Cx+1) N«/an(g)x(l 1 1 139 571 ) (1.4)

+—+ - - +
12x  288x% 51,840x% 2,488,320x*

as x — oo (see [1], p.257, Eq. (6.1.37)).

The expression (1.4) is sometimes incorrectly called Stirling’s series (see [2], pp.2-3).
Stirling’s formula is in fact the first approximation to the asymptotic formula (1.4). Stir-
ling’s formula has attracted much interest of many mathematicians and has motivated a
large number of research papers concerning various generalizations and improvements
(see [3-54] and the references cited therein). It is interesting to note that the aforemen-
tioned mathematicians represent many nationalities. So the topic is of interest for math-
ematicians from diverse cultural background.

Using the Maple software, we find, as x — oo,

F'x+1) X+ i ( 1 )
= Oo| = 1.5
V2rx(xler x5 T\ (15)

and

D+l %+ 5%+ 5o o<1> (1.6)

V2mx(xle) % - S+ —8,269:’0 x5
Based on the Padé approximation method, in this paper we develop the approximation

formulas (1.5) and (1.6) to produce a general result. More precisely, we determine the co-
efficients 4; and b; (1 <j < k) such that

Fx+1) xk+alxk*1+...+dk o 1
- + , X— 00,
V2rx(xle)s  xk+bixkl 4o+ by w2kl

where k > 1 is any given integer. Based on the obtained result, we establish new bounds
for the gamma function.

The numerical values given in this paper have been calculated via the computer program
MAPLE 13.

2 Lemmas
The following lemmas are required in our present investigation.

Lemma 2.1 ([9]) Let r be a given nonzero real number. The gamma function has the fol-
lowing asymptotic formula:

x 00 1/r
F(x+1)~\/2nx(f) (1+Z%> , X— 00, (2.1)
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with the coefficients b; = bj(r) (j=1,2,...) given by

ki+ko+--+kj B ki B ka B i+ k
S e YA R TR 22
k! 1-2 2-3 jG+1)

ky+2kp+---+jkj=j

where B, (n € Ny := N U {0}) are the Bernoulli numbers defined in (1.3), summed over all

nonnegative integers k; satisfying the equation ki + 2k, + - - - + jk; = j.

Laplace formula (1.4) can be rewritten as

F(x+1)~¢2nx(§>x(z f—;) x—> 00, 2.3)

j=0
with the coefficients ¢; given by

C():l,

1 B, \"/ Bs \ B K (2.4)
_ b (BB forj>1.
G 2 Kalko! - k!<1~2> (2-3 iG+y) =

k1+2kg +---+jkj=j

Lemma 2.2 ([55], Theorem 8) Let n > 0 be an integer. The functions

2n

By
F,(x) =InT(x) - (x— —)lnx+x— 7 In@m) - ZW
and
2n+l sz

1 1
Gn(x):—lnF(x)+ (x— 5) Inx —x + 51n(2n)+1=21W

are completely monotonic on (0,00). Here B,, (n € Ny := NU({0}) are the Bernoulli numbers.

Remark 2.1 Lemma 2.2 can be stated as follows: for every m € Ny, the function

” 1
R,,(x) =(-1) |:lnF(x)— <x—§)lnx+x—ln\/_ ZW}

is completely monotonic on (0, 00).

In 2006, Koumandos [56] presented a simpler proof of complete monotonicity of the
functions R,,(x). In 2009, Koumandos and Pedersen [57], Theorem 2.1, strengthened this
result.

From F)(x) < 0 and G),(x) < O for x > 0, we obtain

2n 2n+1

By; 1 By;
Z <lnx—-yx) - —< ]Xﬂ:ﬁ’ x>0, (2.5)

2jx 21 2%
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where v (x) = I''(x)/T"(x) is the psi (or digamma) function. Noting that
1
Yx+1) =)+ s

holds, we obtain from (2.5) that for x > 0,

1 1 1 1 1
12x2  120x*  252x% 24048 13210
1 1 1 1 1 691
<- + - + - + .
12x2  120x* 252x6 24048 132x10 32,7602

1
<Yx+1)—Inx— —
2%

(2.6)

3 Approximations to the gamma function
For our later use, we introduce Padé approximant (see [58—61]). Let f be a formal power

series
f®) =co+ct+ct> +---. (3.1)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

_ Zf:o “itj
[p/qlf(t) = T}Iﬂbﬂ‘j’ (3.2)

where p > 0 and g > 1 are two given integers, the coefficients 4; and b; are given by (see
[58-60])

ao = Co,
ap = coby + a1,
as = coby + c1b1 + ¢y :

ap=Coby + -+ Cp1by +Cp, (3.3)

0=cp1+Cpb1+ -+ cp_girby,

0 =Cpigq + Cprg1b1 + - + Cpby,
and the following holds:
(p/qls () - f() = O(¢* 7). (3.4)

Thus, the first p + g + 1 coefficients of the series expansion of [p/q]s are identical to those
of f. Moreover, we have (see [61])

g 97 g1 (8) -~ fo(®)

Cp—q+l Cp—q+2 © Cptl
c Cps — Cpy.
p/al(6) = — """, (3.5)

Cp—q+1 Cp—q+2 *** Cp+l

Cp 1 v Cpiq
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with f,(x) = co + c1x + - - - + ¢,x", the nth partial sum of the series f in (3.1) (f, is identically
zero for n < 0).

Let
Cix+1)

) = —tD (3.6)

f V2 x(x/e)*

It follows from (2.3) that, as x — oo,
o0
G 1 1 139 571

~S 9y _ _ . 3.7
J&) ;; ¥ 12x  288x2  51,8404°  2,488,320x% | 37)

with the coefficients ¢; given by (2.4). In what follows, the function f is given in (3.6).
Based on the Padé approximation method, we now give a derivation of formula (1.5). To
this end, we consider

Zl'=o a,'x‘/
1) (x) = —E—.
1+ Zj:l b,x*l
Noting that
» 1 1 139 ! 3.8)
@=L ATy 92T5g ST Thiga0" T 72488320 '
holds, we have, by (3.3),
ap =1,
a, = bl + %,
0= %98 + %bl,
that is,
1 1
=1, =—, by =——.
% M= 1=
We thus obtain that
T+ 5 X4+ o
(/1] (x) = — 2% = — 2, (3.9)
l-5m *—3

and we have, by (3.4),

Fx+1) X+ 57 0 ( 1 )
= +0l = ).
V2mx(x/e)*  x— i x3
We now give a derivation of formula (1.6). To this end, we consider

) y
Z[:O ax’



Li and Chen Journal of Inequalities and Applications (2017) 2017:53 Page 6 of 13

Noting that (3.8) holds, we have, by (3.3),

ap = 1,
a, = bl + LZ
612—b2+ b1+288’
_ 139
0=—55a + 288b1 t1 b2’
_ 571 139
0= 72,488,320 ~ 51,840 bl * 288 b2’
that is,
1 293 1 293
ll0=1y ar = —, a)=———-, ]912——, b2= .
24 8,640 24 8,640
We thus obtain that
L+ 55+ goa0? %+ 4%+ seao
(2/2]p(x) = 1_1 293 - 5 1 293 7 (3.10)
T 2ux T gea02 X T 24a% T 8640

and we have, by (3.4),

C(x+1) x +—x+% <1>
= ).

= + JR—
2 x(x/e)* T - —x 2920

From the Padé approximation method and the expansion (3.7), we now present a general
result given by Theorem 3.1.

Theorem 3.1 The Padé approximation of order (p,q) of the Laplace asymptotic formula

of the function f (x) = % (at the point x = 00) is the following rational function:
P -1
1+ i1 GX xp+alxp +ootay,
Iqlr(x) = — = = x1F 3.11
[p/qly(x) = 1+ Z]qlbx‘/ (xq+b1x‘1‘1+---+bq (31D

where p > 1 and q > 1 are any given integers, the coefficients a; and b; are given by

ay = bl + (1,

a) = bg + Clbl + Cy,

ap=by+---+cp1by +Cp, (3.12)

0=cp1+Cpbr+ -+ cpguby,

0 =Cpig + Cprg1b1 + - - + Cpby,

and c; is given in (2.4), and the following holds:

1= i) =0 iz ), 3 . (5.13)
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Moreover, we have

-4 g1 (@) - fo)

Cp—g+1 Cp—q+2 © Cptl
p/qly(x) = —————", (3.14)
=

Cp—q+1 Cp—q+2 ** Cp+l
< Cp+l v Cpiq
with f,(x) = Z] o M | the nth partial sum of the asymptotic series (3.7).

Remark 3.1 Using (3.14), we can also derive (3.9) and (3.10). Indeed, we have

1 1
5 i .
1 1
11 x+ L
c1 c 12 288
(11]f(x) = — = =—2
;1 1 X— 5z
x X 24
e 11
12 288
and
1 1 1 1
. . 2 ) Lt g+ 2882
—fox) i) fa(x) 1 1 139
X c ¢ ¢ 12 288 T 51,840
1 23 1139 571 x2+—x+ﬁ
o c3 cq 288 T 51,840 2,488,320 24 8,640
[2/2]f(x) = 11, N 1 2 293
2 x 22 x x——x+8640
€2 63 ¢ca 1139 571
288 "~ 51,840 ~ 2,488,320
Setting (p,q) = (k, k) in (3.13), we obtain the following corollary.
Corollary 3.1 Asx — oo,
Cx+1) K raxd T+ tay 1
=k k-1 + 2k+1 (3.15)
S2rx(xle)r x5+ bkl 4+ by XK+

where k > 1 is any given integer, the coefficients a; and b; (1 < j < k) are given by

a; :bl + (1,

ay) = b2 + Clbl + Cy,

ax=bi+ -+ b + ¢y (3.16)

0=cr+cibr+--- + by,

0= Cok + CZk—lbl + e+ Ckbk,

and c; is given in (2.4).



Li and Chen Journal of Inequalities and Applications (2017) 2017:53 Page 8 of 13

Setting k = 3 and k = 4 in (3.15), respectively, yields

3 1.2, 166,903 4,406,147

Flx+1) X"+ 55% + 550688% + 325,295,360 col L (3.17)

(v /oy 3 _ L2 . 166908 _ 4,406,147 7 :

2rx(x/e) X7 = 52 + 530%688% ~ 425,295,360 x

and
4, 1.3 685893,605 2 14787105577 2,749,505,046,083

Clx+1) X+ 53% + 545080204 * 156,829,320,060 T 153,494,651,842,560 o 1

/5 e(v/o  wk _ L .3 . 685893605 3 _ 14,787,105577 2,749,505,046,083 9

2rx(x/ey X% = 5% + 54598022 456,829,320,960 T 153,494,651,842,560 u
(3.18)

In view of (1.5), (1.6), (3.17) and (3.18), we pose the following conjecture.
Conjecture 3.1 The coefficients a; and b; (1 < j < k) in (3.15) satisfy the following relation:
aj=(-1Yb, j=12,...,k (3.19)

4 Inequalities for the gamma function
Formulas (3.17) and (3.18) motivate us to establish the following theorem.

Theorem 4.1 The following inequalities hold:

Cix+1)
U) < — 2 y(w), (4.1)
N 2 x(x/e)*
where
x4 L3 4 6858936052 | 14787105577 2,749,505,046,083
Ux) = 24 845,980,224 356,829,320,960~ + 153494,651,842,560 (4.2)
T4 1.3, 685893605 5 14787105577 2,749,505,046,083 :
24 845,980,224 156,829,320,960 % T 153494,651,842,560
and
3., 1.2, 166903 4,406,147
Vix) = X+ 52% * 550,688* 1 125,295,360 (4.3)
T3 L2, 166903 4406147 - .
24 590,688" ~ 425,295,360

The left-hand side inequality holds for x > 3, while the right-hand side inequality is valid
forx>2.

Proof 1t suffices to show that

F(x)>0 forx>3 and G(x)<0 forx>2,
where

Fix)=InT(x+1) - (x+ %) Inx +x—In~/27 — InU(x)
and

Gx)=InT'(x+1)— <x+ %>1nx+x—1n\/ﬂ—ln\/(x).
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Differentiating F(x) and applying the second inequality in (2.6) yield

1 u
Fx)=y(x+1)—Inx— o L[((;:))
1 1 1 1 1 691 u'(%)
< - + - + - + -
12x2  120x* 252x6  240x8 132x10  32,760x12  U(x)
__ Py (x - 3)
720,720x12Pg(x)’

where

Pip(x) =1,698,313,885,002,591,369,403,376,359,237,155,137
+7,041,090,100,510,955,203,400,650,726,407,309,444x
+12,215,302,599,727,743,342,615,877,184,100,329,802x>
+12,025,928,200,234,176,519,514,968,711,811,967,96 4x°
+7,551,739,592,924,831,815,437,063,682,435,942,293x
+3,187,338,342,726,357,084,428,868,676,747,628,952x°
+920,408,575,975,851,494,996,412,447,435,781,084x°
+180,133,255,608,389,118,267,365,601,710,648,784x’
+22,910,271,532,985,226,283,927,122,357,066,246x°
+1,711,635,468,441,001,446,976,320,994,717,320x°

+57,054,515,614,700,04.8,232,544,033,157,24.4x°

and

Ps(x) = (153,494,651,842,560x* + 6,395,610,493,440x°
+124,448,535,691,200x” + 4,968,467,473,872x
+2,749,505,046,083) (153,494,651,842,560x*

- 6,395,610,493,440x° + 124,448,535,691,200x

—-4,968,467,473,872x + 2,74-9,5()5,046,083).
Hence, F'(x) < 0 for x > 3, and we have
F(x)> lim F(t) =0 forx>3.
t—00

Differentiating G(x) and applying the first inequality in (2.6) yield

1 Vix)
G =vx+1)-Inx—— - ——
(x) =¥ (x+1) V@
1 1 1 1 1 V' (x)
>— + - + - -
1242 120x* 252x°  240x8 132x10  V(x)

Qg -2)
" 55,440x1°Q¢(x)’

Page 9 of 13
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where

Qs(x) = 2,456,573,428,493,290,077,832 + 14,719,278,306,954,453,533,828x
+32,394,299,960,322,640,776,801x"
+37,478,643,384,199,534,772,000x> + 25,805,343,259,499,481,612,340x"
+11,004,898,939,796,249,295,384x° + 2,862,385,365,338,807,176,962x°

+416,852,240,076,239,943,360x” + 26,053,265,004,764,996,460x°
and

Qs (x) = (425,295,3604° + 17,720,640 +120,170,160x + 4,406,147)

x (425,295,360x° - 17,720,640x” +120,170,160x — 4,406,147).
Hence, G'(x) > 0 for x > 2, and we have
G(x) < tl_l)Iglo G(t)=0 forx=>2.
The proof is complete. 0

Remark 4.1 Following the same method as the one used in the proof of Theorem 4.1, we
can prove the double inequality

2, 1 203 1
X"+ 2%+ 5640 I'x+1) X+ 54

<
1 293 1
A= 5gXt g0 V2mx(xley x-g

(4.4)

for x > 2. We here omit it. Some computer experiments indicate that inequalities (4.1) and
(4.4) are valid for x > 1.

In view of (4.1) and (4.4), we pose the following conjecture.
Conjecture 4.1 Ifk is odd, then for x > 1,

F(‘x+1) xk+ﬂ1xk_1+...+ak
< ’
2rx(xle) x5+ bkl + -+ by

(4.5)

where the coefficients a; and b; (1 < j < k) are determined in (3.16). If k is even, then in-
equality (4.5) is reversed.

5 Comparison
In 2011, Mortici [47] showed by numerical computations that his formula

" 1
n! ~ \/27111(2) exp(iz> = [y (5.1)
e 12n + =

is much stronger than other known formulas such as:

n+1/2
n~ 21 (” +y 2) -8, (Burnside [8]), (5.2)

e
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Table 1 Comparison among approximation formulas (5.6)-(5.8)

n An-n! Un-n! n'-Vp
n! n! n!
10 1.7686 x 1077 36355 x 107" 35843 x 10713
100 17855 % 10714 37108 x 10718 37317 x 1072
1,000 17857 x 1071 37115%x 102> 37332 x 107!
1 1

10000 17857 x 10724 37115 x 10732 37333 x 1070

/2]Te—nnn+l
~

n! NSV =46, (Batir [4]), (5.3)
1\ /n\”
n'~ 2w (n + —) (—) =y, (Gosper [19]), (5.4)
6 e
n n 1 1/6
n! ~ ﬁ(;) (8713 +4n’ +n+ %> = p, (Ramanujan [62], p.339). (5.5)

In 2012, Mahmoud et al. [31] showed numerically that their formula

n!~v2nn<g> exp(L + %((2,n+1/2)) = Ay (5.6)

20n

has a superiority over Mortici’s formula (5.1). Here ¢ (s, a) denotes the Hurwitz (or gener-

alized) zeta function defined by
. - 1 . -
{(S,ﬂ) =§m (SR(S)>1;(/Z¢ZO);

Z; being the set of nonpositive integers.
From (3.17) and (3.18), we obtain

AN 4 L2 4 166903 4,406,147
s 21 590,688 " T 225,295,360
1~ _ B B B —
n: 2”"(6> B L2, 166903 4,406,147 Uy (5.7)
2 590,688 7 ~ 425,295,360
and
oyt L3, 685893605 9 | 14787105577 2,749,505,046,083
i~ Vol 2% 845,980,224 356,829,320,960 " 1 153,494,651,842,560
: ¢ ) 74— L, 685893605 5 _ 14787105577 2,749,505,046,083
21 845,980,224 156,829,320,960 "7 T 153,494,651,842,560
-V, (5.8)

We here offer some numerical computations (see Table 1) to show the superiority of our

sequences (U,),>1 and (V,),>1 over the sequence (A,);>1.
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