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Abstract
The purpose of this paper is to introduce a modification of q-Dunkl generalization of
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1 Introduction and preliminaries
In , Bernstein [] introduced the following sequence of operators Bn : C[, ] → C[, ]
defined by

Bn(f ; x) =
n∑

k=

(
n
k

)
xk( – x)n–kf

(
k
n

)
, x ∈ [, ] (.)

for n ∈ N and f ∈ C[, ].
In , for x ≥ , Szász [] introduced the operators

Sn(f ; x) = e–nx
∞∑

k=

(nx)k

k!
f
(

k
n

)
, f ∈ C[,∞). (.)

In the field of approximation theory, the application of q-calculus emerged as a new area.
The first q-analogue of well-known Bernstein polynomials was introduced by Lupaş by
applying the idea of q-integers []. In , Phillips [] considered another q-analogue of
the classical Bernstein polynomials. Later on, many authors introduced q-generalizations
of various operators and investigated several approximation properties [–].

We now present some basic definitions and notations of the q-calculus which are used
in this paper [].

Definition . For |q| < , the q-number [λ]q is defined by

[λ]q =

{
–qλ

–q (λ ∈C),
∑n–

k= qk =  + q + q + · · · + qn– (λ = n ∈N).
(.)
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Definition . For |q| < , the q-factorial [n]q! is defined by

[n]q! =

{
 (n = ),∏n

k=[k]q (n ∈ N).
(.)

Our investigation is to construct a linear positive operator generated by a generalization
of the exponential function defined by (see [])

eμ(x) =
∞∑

n=

xn

γμ(n)
,

where

γμ(k) =
kk!�(k + μ + 

 )
�(μ + 

 )
,

and

γμ(k + ) =
k+k!�(k + μ + 

 )
�(μ + 

 )
.

The recursion formula for γμ is given by

γμ(k + ) = (k +  + μθk+)γμ(k), k = , , , . . . ,

where μ > – 
 and

θk =

{
 if k ∈ N,
 if k ∈ N + .

Sucu [] defined a Dunkl analogue of Szász operators via a generalization of the expo-
nential function [] as follows:

S∗
n(f ; x) :=


eμ(nx)

∞∑

k=

(nx)k

γμ(k)
f
(

k + μθk

n

)
, (.)

where x ≥ , f ∈ C[,∞), μ ≥ , n ∈N.
Cheikh et al. [] stated the q-Dunkl classical q-Hermite-type polynomials and gave

definitions of q-Dunkl analogues of exponential functions and recursion relations for μ >
– 

 and  < q < ,

eμ,q(x) =
∞∑

n=

xn

γμ,q(n)
, x ∈ [,∞), (.)

Eμ,q(x) =
∞∑

n=

q
n(n–)

 xn

γμ,q(n)
, x ∈ [,∞), (.)
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where

γμ,q(n) =
(qμ+, q)[ n+

 ](q, q)[ n
 ]

( – q)n , n ∈N. (.)

Some of the special cases of γμ,q(n) are defined as follows:

γμ,q() = , γμ,q() =
 – qμ+

 – q
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)(
 – qμ+

 – q

)
,

γμ,q() =
(

 – qμ+

 – q

)(
 – q

 – q

)(
 – qμ+

 – q

)(
 – q

 – q

)
.

In [], Içöz and Çekim gave the Dunkl generalization of Szász operators via q-calculus
as follows:

Dn,q(f ; x) =


eμ,q([n]qx)

∞∑

k=

([n]qx)k

γμ,q(k)
f
(

 – qμθk +k

 – qn

)
(.)

for μ > 
 , x ≥ ,  < q <  and f ∈ C[,∞).

Previous studies demonstrate that providing a better error estimation for positive linear
operators plays an important role in approximation theory, which allows us to approxi-
mate much faster to the function being approximated.

Motivated essentially by Içöz and Çekim’s [] recent investigation of Dunkl generaliza-
tion of Szász-Mirakjan operators via q-calculus, we show that our modified operators have
better error estimation than those in []. We also prove several approximation results and
successfully extend the results of []. Several other related results are also discussed.

2 Construction of operators and moments estimation
Let {r[n]q} be a sequence of real-valued continuous functions defined on [,∞) with  ≤
r[n]q (x) < ∞ such that

r[n]q (x) = x –


[n]q
, where


n

≤ x <


 – qn and n ∈N. (.)

Then, for any 
n ≤ x < 

–qn ,  < q < , μ > 
n and n ∈N, we define

D∗
n,q(f ; x) =


eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ,q(k)
f
(

 – qμθk +k

 – qn

)
, (.)

where eμ,q(x), γμ,q are defined in (.), (.) by [] and f ∈ Cζ [,∞) with ζ ≥  and

Cζ [,∞) =
{

f ∈ C[,∞) :
∣∣f (t)

∣∣ ≤ M( + t)ζ for some M > , ζ > 
}

. (.)
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Lemma . Let D∗
n,q(·; ·) be the operators given by (.). Then, for each 

n ≤ x < 
–qn , n ∈N,

we have the following identities/estimates:
() D∗

n,q(; x) = ,
() D∗

n,q(t; x) = x – 
[n]q

,

() x + (qμ[ – μ]q
eμ,q(q[n]qr[n]q (x))
eμ,q([n]qr[n]q (x)) – ) x

[n]q
– 

[n]
q

(qμ[ – μ]q
eμ,q(q[n]qr[n]q (x))
eμ,q([n]qr[n]q (x)) – ) ≤

D∗
n,q(t; x) ≤ x + ([ + μ]q – ) x

[n]q
– 

[n]
q

([ + μ]q – ).

Proof As D∗
n,q(; x) = 

eμ,q([n]qr[n]q (x))
∑∞

k=
([n]qr[n]q (x))k

γμ(k) = , and

D∗
n,q(t; x) =


eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ(k)

(
 – qμθk +k

 – qn

)

=


[n]qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ(k – )

= x –


[n]q
,

then () and () hold. Similarly,

D∗
n,q

(
t; x

)
=


eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ(k)

(
 – qμθk +k

 – qn

)

=


[n]
qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ(k – )

(
 – qμθk +k

 – q

)

=


[n]
qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k+

γμ(k)

(
 – qμθk++k+

 – q

)
.

From [] we know that

[μθk+ + k + ]q = [μθk + k]q + qμθk +k[μ(–)k + 
]

q. (.)

Now, by separating to the even and odd terms and using (.), we get

D∗
n,q

(
t; x

)
=


[n]

qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k+

γμ(k)

(
 – qμθk++k+

 – q

)

+
[ + μ]q

[n]
qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k+

γμ(k)
qμθk +k

+
[ – μ]q

[n]
qeμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k+

γμ(k)
qμθk++k+.

Since

[ – μ]q ≤ [ + μ]q, (.)
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we have

D∗
n,q

(
t; x

) ≥ (
r[n]q (x)

) +
r[n]q (x)[ – μ]q

[n]qeμ,q([n]qr[n]q (x))

∞∑

k=

(q[n]qr[n]q (x))k

γμ(k)

+
qμr[n]q (x)[ – μ]q

[n]qeμ,q([n]qr[n]q (x))

∞∑

k=

(q[n]qr[n]q (x))k+

γμ(k + )

≥ (
r[n]q (x)

) + qμ[ – μ]q
eμ,q(q[n]qr[n]q (x))
eμ,q([n]qr[n]q (x))

r[n]q (x)
[n]q

.

On the other hand, we have

D∗
n,q

(
t; x

) ≤ (
r[n]q (x)

) + [ + μ]q
r[n]q (x)

[n]q
.

This completes the proof. �

Lemma . Let the operators D∗
n,q(·; ·) be given by (.). Then, for each x ≥ 

n , n ∈ N, we
have

() D∗
n,q(t – x; x) = – 

[n]q
,

() D∗
n,q((t – x); x) ≤ [ + μ]q

x
[n]q

– 
[n]

q
([ + μ]q – ).

Proof For the proof of this lemma, we use Lemma .. In view of

D∗
n(t – x; x) = D∗

n(t; x) – D∗
n(; x),

() follows immediately.
Also

D∗
n
(
(t – x); x

)
= D∗

n
(
t; x

)
– xD∗

n(t; x) + xD∗
n(; x)

≤ x +
(
[ + μ]q – 

) x
[n]q

–


[n]
q

(
[ + μ]q – 

)

– x
(

x –


[n]q

)
+ x

≤ [ + μ]q
x

[n]q
–


[n]

q

(
[ + μ]q – 

)
.

This proves (). �

3 Main results
We obtain the Korovkin-type approximation properties for our operators (see [–]).

Let CB(R+) be the set of all bounded and continuous functions on R
+ = [,∞), which is

a linear normed space with

‖f ‖CB = sup
x≥

∣∣f (x)
∣∣.
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Let

H :=
{

f : x ∈ [,∞),
f (x)

 + x is convergent as x → ∞
}

.

Theorem . Let D∗
n,q(·; ·) be the operators defined by (.). Then, for any function f ∈

Cζ [,∞) ∩ H , ζ ≥ ,

lim
n→∞ D∗

n,q(f ; x) = f (x)

is uniform on each compact subset of [,∞), where x ∈ [ 
 , b), b > 

 .

Proof The proof is based on Lemma . and the well-known Korovkin theorem regarding
the convergence of a sequence of linear positive operators, so it is enough to prove the
conditions

lim
n→∞ D∗

n,q
(
tj; x

)
= xj, j = , ,  (as n → ∞)

uniformly on [, ].
Clearly, 

[n]q
→  (n → ∞) we have

lim
n→∞ D∗

n,q(t; x) = x, lim
n→∞ D∗

n,q
(
t; x

)
= x.

This completes the proof. �

We recall the weighted spaces of the functions on R
+, which are defined as follows:

Pρ

(
R

+)
=

{
f :

∣∣f (x)
∣∣ ≤ Mf ρ(x)

}
,

Qρ

(
R

+)
=

{
f : f ∈ Pρ

(
R

+) ∩ C[,∞)
}

,

Qk
ρ

(
R

+)
=

{
f : f ∈ Qρ

(
R

+)
and lim

x→∞
f (x)
ρ(x)

= k (k is a constant)
}

,

where ρ(x) =  + x is a weight function and Mf is a constant depending only on f . Note
that Qρ(R+) is a normed space with the norm ‖f ‖ρ = supx≥

|f (x)|
ρ(x) .

Lemma . ([]) The linear positive operators Ln, n ≥  act from Qρ(R+) → Pρ(R+) if
and only if

∥∥Ln(ϕ; x)
∥∥ ≤ Kϕ(x),

where ϕ(x) =  + x, x ∈ R
+ and K is a positive constant.

Theorem . ([]) Let {Ln}n≥ be a sequence of positive linear operators acting from
Qρ(R+) → Pρ(R+) and satisfying the condition

lim
n→∞

∥∥Ln
(
ρτ

)
– ρτ

∥∥
ϕ

= , τ = , , .
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Then, for any function f ∈ Qk
ρ(R+), we have

lim
n→∞

∥∥Ln(f ; x) – f
∥∥

ϕ
= .

Theorem . Let D∗
n,q(·; ·) be the operators defined by (.). Then, for each function f ∈

Qk
ρ(R+), we have

lim
n→∞

∥∥D∗
n,q(f ; x) – f

∥∥
ρ

= .

Proof From Lemma . and Theorem ., for τ = , the first condition is fulfilled. There-
fore,

lim
n→∞

∥∥D∗
n,q(; x) – 

∥∥
ρ

= .

Similarly, from Lemma . and Theorem ., for τ = ,  we have that

sup
x∈[,∞)

|D∗
n,q(t; x) – x|

 + x ≤ 
[n]q

sup
x∈[,∞)


 + x

=


[n]q
,

which implies that

lim
n→∞

∥∥D∗
n,q(t; x) – x

∥∥
ρ

= ,

sup
x∈[,∞)

|D∗
n,q(t; x) – x|

 + x ≤ |[ + μ]q – |
[n]q

sup
x∈[,∞)

x
 + x

+


[n]
q

∣∣[ + μ]q – 
∣∣ sup

x∈[,∞)


 + x .

Hence

lim
n→∞

∥∥D∗
n,q

(
t; x

)
– x∥∥

ρ
= .

This completes the proof. �

4 Rate of convergence
Let f ∈ CB[,∞], the space of all bounded and continuous functions on [,∞) and x ≥


n , n ∈ N. Then, for δ > , the modulus of continuity of f denoted by ω(f , δ) gives the
maximum oscillation of f in any interval of length not exceeding δ > , and it is given by

ω(f , δ) = sup
|t–x|≤δ

∣∣f (t) – f (x)
∣∣, t ∈ [,∞). (.)

It is known that limδ→+ ω(f , δ) =  for f ∈ CB[,∞), and for any δ >  we have

∣∣f (t) – f (x)
∣∣ ≤

( |t – x|
δ

+ 
)

ω(f , δ). (.)
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Now we calculate the rate of convergence of operators (.) by means of modulus of con-
tinuity and Lipschitz-type maximal functions.

Theorem . Let D∗
n,q(·; ·) be the operators defined by (.). Then, for f ∈ CB[,∞), x ≥ 

n
and n ∈N, we have

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ ω(f ; δn,x),

where

δn,x =
√

[ + μ]q
x

[n]q
–


[n]

q

(
[ + μ]q – 

)
. (.)

Proof We prove it by using (.), (.) and the Cauchy-Schwarz inequality. We can easily
get

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤
{

 +

δ

(
D∗

n,q(t – x); x
) 



}
ω(f ; δ)

if we choose δ = δn,x, and by applying the result () of Lemma ., we get the result. �

Remark . For the operators Dn,q(·; ·) defined by (.) we may write that, for every f ∈
CB[,∞), x ≥  and n ∈N,

∣∣Dn,q(f ; x) – f (x)
∣∣ ≤ ω(f ;λn,x), (.)

where by [] we have

λn,x =
√

Dn,q
(
(t – x); x

) ≤
√

[ + μ]q
x

[n]q
. (.)

Now we claim that the error estimation in Theorem . is better than that of (.) pro-
vided f ∈ CB[,∞) and x ≥ 

n , n ∈N. Indeed, for x ≥ 
n , μ ≥ 

n and n ∈N, it is guaranteed
that

D∗
n,q

(
(t – x); x

) ≤ Dn,q
(
(t – x); x

)
, (.)

[ + μ]q
x

[n]q
–


[n]

q

(
[ + μ]q – 

) ≤ [ + μ]q
x

[n]q
, (.)

which implies that

√
[ + μ]q

x
[n]q

–


[n]
q

(
[ + μ]q – 

) ≤
√

[ + μ]q
x

[n]q
. (.)

Now we give the rate of convergence of the operators D∗
n,q(f ; x) defined in (.) in terms

of the elements of the usual Lipschitz class LipM(ν).
Let f ∈ CB[,∞), M >  and  < ν ≤ . The class LipM(ν) is defined as

LipM(ν) =
{

f :
∣∣f (ζ) – f (ζ)

∣∣ ≤ M|ζ – ζ|ν
(
ζ, ζ ∈ [,∞)

)}
. (.)
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Theorem . Let D∗
n,q(·; ·) be the operators defined in (.).Then, for each f ∈ LipM(ν) (M >

,  < ν ≤ ) satisfying (.), we have

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ M(δn,x)
ν
 ,

where δn,x is given in Theorem ..

Proof We prove it by using (.) and Hölder’s inequality. We have

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ ∣∣D∗
n,q

(
f (t) – f (x); x

)∣∣

≤ D∗
n,q

(∣∣f (t) – f (x)
∣∣; x

)

≤ MD∗
n,q

(|t – x|ν ; x
)
.

Therefore,

∣∣D∗
n,q(f ; x) – f (x)

∣∣

≤ M
[n]q

eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ,q(k)

∣∣∣∣
 – qμθk +k

 – qn – x
∣∣∣∣
ν

≤ M
[n]q

eμ,q([n]qr[n]q (x))

∞∑

k=

( ([n]qr[n]q (x))k

γμ,q(k)

) –ν


×
( ([n]qr[n]q (x))k

γμ,q(k)

) ν

∣∣∣∣
 – qμθk +k

 – qn – x
∣∣∣∣
ν

≤ M

(
n

eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ,q(k)

) –ν


×
(

[n]q

eμ,q([n]qr[n]q (x))

∞∑

k=

([n]qr[n]q (x))k

γμ,q(k)

∣∣∣∣
 – qμθk +k

 – qn – x
∣∣∣∣

) ν



= M
(
D∗

n,q(t – x); x
) ν

 .

This completes the proof. �

Let

C
B
(
R

+)
=

{
g ∈ CB

(
R

+)
: g ′, g ′′ ∈ CB

(
R

+)}
, (.)

with the norm

‖g‖C
B(R+) = ‖g‖CB(R+) +

∥∥g ′∥∥
CB(R+) +

∥∥g ′′∥∥
CB(R+), (.)

also

‖g‖CB(R+) = sup
x∈R+

∣∣g(x)
∣∣. (.)
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Theorem . Let D∗
n,q(·; ·) be the operators defined in (.). Then for any g ∈ C

B(R+) we
have

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤
{(

–


[n]q

)
+

δn,x



}
‖g‖C

B(R+),

where δn,x is given in Theorem ..

Proof Let g ∈ C
B(R+). Then, by using the generalized mean value theorem in the Taylor

series expansion, we have

g(t) = g(x) + g ′(x)(t – x) + g ′′(ψ)
(t – x)


, ψ ∈ (x, t).

By applying the linearity property on D∗
n,q, we have

D∗
n,q(g, x) – g(x) = g ′(x)D∗

n,q
(
(t – x); x

)
+

g ′′(ψ)


D∗
n,q

(
(t – x); x

)
,

which implies that

∣∣D∗
n,q(g; x) – g(x)

∣∣

≤
(

–


[n]q

)∥∥g ′∥∥
CB(R+) +

(
[ + μ]q

x
[n]q

–


[n]
q

(
[ + μ]q – 

))‖g ′′‖CB(R+)


.

From (.) we have ‖g ′‖CB[,∞) ≤ ‖g‖C
B[,∞),

∣∣D∗
n,q(g; x) – g(x)

∣∣

≤
(

–


[n]q

)
‖g‖C

B(R+) +
(

[ + μ]q
x

[n]q
–


[n]

q

(
[ + μ]q – 

))‖g‖C
B(R+)


.

The proof follows from () of Lemma .. �

The Peetre’s K-functional is defined by

K(f , δ) = inf
C

B(R+)

{(‖f – g‖CB(R+) + δ
∥∥g ′′∥∥

C
B(R+)

)
: g ∈W}, (.)

where

W =
{

g ∈ CB
(
R

+)
: g ′, g ′′ ∈ CB

(
R

+)}
. (.)

There exists a positive constant C >  such that K(f , δ) ≤ Cω(f , δ 
 ), δ > , where the

second-order modulus of continuity is given by

ω
(
f , δ



)

= sup
<h<δ




sup
x∈R+

∣∣f (x + h) – f (x + h) + f (x)
∣∣. (.)
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Theorem . For x ≥ 
n , n ∈N and f ∈ CB(R+), we have

∣∣D∗
n,q(f ; x) – f (x)

∣∣

≤ M
{
ω

(
f ;

√
(– 

[n]q
) + δn,x



)
+ min

(
,

(– 
[n]q

) + δn,x



)
‖f ‖CB(R+)

}
,

where M is a positive constant, δn,x is given in Theorem . and ω(f ; δ) is the second-order
modulus of continuity of the function f defined in (.).

Proof We prove this by using Theorem .

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ ∣∣D∗
n,q(f – g; x)

∣∣ +
∣∣D∗

n,q(g; x) – g(x)
∣∣ +

∣∣f (x) – g(x)
∣∣

≤ ‖f – g‖CB(R+) +
δn,x


‖g‖C

B(R+) +
(

–


[n]q

)
‖g‖CB(R+).

From (.), clearly, we have ‖g‖CB[,∞) ≤ ‖g‖C
B[,∞).

Therefore,

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ 
(

‖f – g‖CB(R+) +
(– 

[n]q
) + δn,x


‖g‖C

B(R+)

)
,

where δn,x is given in Theorem ..
By taking infimum over all g ∈ C

B(R+) and by using (.), we get

∣∣D∗
n,q(f ; x) – f (x)

∣∣ ≤ K

(
f ;

(– 
[n]q

) + δn,x



)
.

Now, for an absolute constant Q >  in [], we use the relation

K(f ; δ) ≤ Q
{
ω(f ;

√
δ) + min(, δ)‖f ‖}.

This completes the proof. �

5 Conclusion
The purpose of this paper is to provide a better error estimation of convergence by mod-
ification of the q-Dunkl analogue of Szász operators. Here we have defined a Dunkl gen-
eralization of these modified operators. This type of modification enables better error es-
timation on the interval [/,∞) if compared to the classical Dunkl-Szász operators [].
We obtained some approximation results via the well-known Korovkin-type theorem. We
have also calculated the rate of convergence of operators by means of modulus of conti-
nuity and Lipschitz-type maximal functions.
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