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Abstract
The Padé approximation is a useful method for creating new inequalities and
improving certain inequalities. In this paper we use the Padé approximant to give the
refinements of some remarkable inequalities involving inverse trigonometric
functions, it is shown that the new inequalities presented in this paper are more
refined than that obtained in earlier papers.
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1 Introduction
The inequality

(
sin x

x

)

+
tan x

x
> , x ∈

(
,

π



)
, (.)

referred to as the Wilker inequality, is one of the most famous inequalities for trigonomet-
ric functions.

The inverse trigonometric version of the Wilker inequality was considered in [] and [],
as follows:

(
arcsin x

x

)

+
arctan x

x
> , x ∈ (, ). (.)

The Shafer-Fink double inequality for the arctangent function asserts that

x
 + 

√
 + x

< arctan x <
πx

 + 
√

 + x
(.)

holds for any positive real number x.
Shafer’s inequality was recently generalized by Qi et al. in [], as follows:

( + a)x
a +

√
 + x

< arctan x <
( π

 )x
a +

√
 + x

, (.)

where  ≤ a ≤ 
 and x > .
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The Shafer-Fink double inequality for the arcsine function states that

x
 +

√
 – x

≤ arcsin x ≤ πx
 +

√
 – x

(.)

holds for  ≤ x ≤ . Furthermore,  and π are the best constants in (.).
For more relevant papers on the above topic, we refer the reader to [–] and the ref-

erences therein.
It should be noted that these inequalities were proved using the variation of some func-

tions and their derivatives, meanwhile, some of the above inequalities were improved us-
ing Taylor’s expansions of inverse trigonometric functions.

The Padé approximant is of the form of one polynomial divided by another polynomial,
the technique was developed around  by Henri Padé. It is well known that a Padé
approximant is the ‘best’ approximation of a function by a rational function of given order.
The rational approximation is particularly good for series with alternating terms and poor
polynomial convergence (see [–]).

It is the aim of this paper to give the refinements of the aforesaid inverse trigonometric
inequalities using the Padé approximant method.

Suppose that we are given a power series
∑∞

k= ckxk for representing a function f (x), i.e.,

f (x) = c + cx + cx + · · · + cnxn + · · · .

For a given function f (x), the Padé approximant of order [m/n] is the rational function

R(x) =
a + ax + · · · + amxm

 + bx + · · · + bnxn ,

which agrees with f (x) at  to the highest possible order, i.e.,

R() = f (), R′() = f ′(), . . . , R(m+n)() = f (m+n)().

One can prove that the Padé approximant of a function f (x) =
∑∞

k= ckxk is unique for
given m and n, that is, the coefficients a, a, . . . , am, b, b, . . . , bn can be uniquely deter-
mined.

In fact, with the help of the Taylor series,

f (x) =
∞∑

k=

ckxk , ck =
f (k)()

k!
,

the Padé approximant of f (x) can be derived from the following relationship:

a + ax + · · · + amxm =
(
 + bx + · · · + bnxn)(c + cx + · · · + cm+nxm+n) + K(x)xm+n+,

where K(x) is a polynomial factor.
For example, we consider the Taylor series

arcsin x = x +
x


+ O

(
x), |x| < ,

and its associate polynomial x + x/.
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Table 1 Padé approximants for arcsin x and arctan x

Function Padé approximant Associate Taylor polynomials

arcsin x arcsin[1/2](x) = 6
6–x2

x + x3
6

arcsin x arcsin[5/2](x) = 61x5+1,080x3–2,520x
1,500x2–2,520

x + x3
6 + 3x5

40 + 5x7
112

arctan x arctan[1/2](x) = 3x
x2+3

x – x3
3

arctan x arctan[3/2](x) = 4x3+15x
9x2+15

x – x3
3 + x5

5

arctan x arctan[5/2](x) = –4x5+40x3+105x
75x2+105

x – x3
3 + x5

5 – x7
7

arctan x arctan[3/4](x) = 55x3+105x
9x4+90x2+105

x – x3
3 + x5

5 – x7
7

Then the Padé approximant of arcsin x for the order [/] is written as

arcsin[/](x) =
a + ax

 + bx + bx ,

which satisfies

a + ax =
(
 + bx + bx)(x +

x



)
+ K(x)x.

From the above equation, we find

a = , a = , b = , b = –



.

Therefore

arcsin[/](x) =
x

 – 
 x

=
x

 – x , |x| < .

In Table  we provide a list of Padé approximants for arcsin x and arctan x which will be
used in subsequent sections.

2 Some lemmas
In order to prove the main results in Section , we need the following lemmas.

Lemma . For every x ∈ (, ), one has

arcsin x >
x + ,x – ,x

,x – ,
. (.)

Proof We consider the function

f (x) = arcsin x –
x + ,x – ,x

,x – ,
.

Differentiating f (x) with respect to x yields

f ′(x) =
√

 – x
–

x + x – ,x + ,
( – x)

=
( – x) –

√
 – x(x + x – ,x + ,)

√

 – x( – x)
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= ( – x) – ( – x)(x + x – ,x + ,)


√

 – x( – x)[( – x) + (x + x – ,x + ,)
√

 – x]

= x(,x + ,x – ,,x + ,,)

√

 – x( – x)[( – x) + (x + x – ,x + ,)
√

 – x]
.

Evidently, f ′(x) >  for x ∈ (, ). Then f (x) is strictly increasing on (, ). As f () = , we
get f (x) >  for x ∈ (, ), this proves the validity of inequality (.). The proof of Lemma .
is complete. �

Lemma . For every x ∈ (, ), one has

arctan x >
–x + x + x

x + 
. (.)

Proof We introduce a function g : (, ) →R,

g(x) = arctan x –
–x + x + x

x + 
.

Its derivative

g ′(x) =


 + x –
(–x + x + x + )

(x + )

=
x

( + x)(x + )

is positive for every x ∈ (, ), therefore g(x) is strictly increasing on (, ). As g() = , we
have g(x) >  for (, ), which implies the desired inequality (.). Lemma . is proved. �

Lemma . For any positive real number x, one has

x + x

 + x + x < arctan x <
x + x

 + x . (.)

Proof We define a function ψ : (,∞) →R by

ψ(x) = arctan x –
x + x

 + x .

Then we have

ψ ′(x) =
–x

( + x)( + x) < 

for x ∈ (,∞), thus ψ is strictly decreasing on (,∞). It follows from ψ() =  that ψ(x) < 
for x ∈ (,∞).

Let

φ(x) = arctan x –
x + x

 + x + x , x ∈ (,∞).
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Differentiating φ(x) with respect to x gives

φ′(x) =
x

( + x)( + x + x) .

We have φ′(x) >  for (,∞), hence φ is strictly increasing on (,∞). Since φ() = , we
deduce that φ(x) >  for x ∈ (,∞).

The inequality (.) is proved. This completes the proof of Lemma .. �

3 Main results
In this section we will formulate and prove the refinements of the aforesaid inverse
trigonometric inequalities.

Theorem . For every  < |x| < , the following inequality holds:

(
arcsin x

x

)

+
arctan x

x
>

A(x)
,(x + )(x – ) > , (.)

where A(x) = ,x + ,x + ,,x – ,,x – ,,x +
,,.

Proof We remark that if the above inequality is true for x ∈ (, ), then it holds clearly for
x ∈ (–, ). Therefore, it is sufficient to prove only for x ∈ (, ).

By using Lemmas . and ., we have

(
arcsin x

x

)

+
arctan x

x
>

(
x + ,x – ,

,x – ,

)

+
–x + x + 

x + 

=
A(x)

,(x + )(x – ) .

Additionally,

A(x)
,(x + )(x – ) – 

=
x(,x + ,x – ,,x + ,,)

,(x + )(x – ) > ,

which implies the desired inequality (.). The proof of Theorem (.) is completed. �

Remark  By making use of the Taylor expansion, we have

(
arcsin x

x

)

+
arctan x

x
=  +




x –



x + O

(
x). (.)

We note that

A(x)
,(x + )(x – ) –

(
 +




x –



x

)

=
x(,x – ,,x + ,,)

,( – x)(x + )
> 
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for  < |x| < . Hence the Padé approximation provides a better inequality than the in-
equality below

(
arcsin x

x

)

+
arctan x

x
>  +




x –



x. (.)

The Taylor’s approximation prompts to consider another method for proving the in-
equality asserted in Theorem ., that is, we may add more terms to the Taylor polynomial
(.) in order to prove the inequality (.). However, in this way, we will face complicated
calculations on the high-order derivatives of ((arcsin x)/x) + (arctan x)/x and some cum-
bersome inequalities resulting from it.

Theorem . Let  ≤ a ≤ 
 . Then for  < x <  we have the following inequality:

( + a)x
a +

√
 + x

<
x + x

 + x + x < arctan x <
x + x

 + x <
( π

 )x
a +

√
 + x

. (.)

Proof The first inequality can be rewritten as

 + ( + a)x + ( + a)x <
√

 + x
(
 + x).

Since  ≤ a ≤ 
 , it is easy to find that

 + ( + a)x + ( + a)x ≤  + x + x


.

Thus we need to prove the following inequality:

 + x + x


<

√
 + x

(
 + x)

or, equivalently,

(
 + x + x) < 

(
 + x)( + x),

which can be deduced from a simple calculation:

(
 + x + x) – 

(
 + x)( + x)

= x(x – x – 
)

= x[–
(
x + 

)
( – x)( + x) – 

]
< .

Therefore, we obtain

( + a)x
a +

√
 + x

<
x + x

 + x + x . (.)
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The last inequality can be rewritten as

(
 + x)√ + x <

(
π


– a

)
+

(
π


– a

)
x.

Since  ≤ a ≤ 
 , it is easy to observe that

(
π


– a

)
+

(
π


– a

)
x ≥ π – 


+

π – 


x.

Hence we need to prove the following inequality:

π – 


+
π – 


x >

(
 + x)√ + x

or, equivalently,

(
π –  + (π – )x) > 

(
 + x)( + x).

Now, from

(
π –  + (π – )x) – 

(
 + x)( + x)

=
(
 – x)[x +

(
π – π + 

)(
 + x)]

+
(
π – π – ,

)
x +

(
π – π – 

)
,

together with

π – π +  > , π – π – , > , π – π – , > ,

we conclude that

(
π –  + (π – )x) – 

(
 + x)( + x) > ,

which leads to the inequality

x + x

 + x <
( π

 )x
a +

√
 + x

. (.)

In conclusion, the inequality (.) follows immediately from inequalities (.), (.), and
the inequality (.) given by Lemma .. This completes the proof of Theorem .. �

Finally, we deal with the improved version of the Shafer-Fink inequality (.).
Using the well-known trigonometric identity

 arctan x = arcsin
x

 + x , x ∈ (, ),

and the double inequality from the Lemma ., we obtain

x + x

 + x + x < arcsin
x

 + x <
x + x

 + x .
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Substituting the expression x
+x by y ( < y < ), we get

( –
√

–y

y ) + ( –
√

–y

y )

 + ( –
√

–y

y ) + ( –
√

–y

y )

< arcsin y <
( –

√
–y

y ) + ( –
√

–y

y )

 + ( –
√

–y

y )
.

After some elementary calculations, the above inequality can be transformed to the fol-
lowing refinement of Shafer’s inequality for the arcsine function.

Theorem . For every x ∈ (, ), one has

x( + 
√

 – x)
 – x + 

√
 – x

< arcsin x <
x( + 

√
 – x)

( +
√

 – x)( +
√

 – x)
. (.)

Proof For the sake of completeness, besides the solution above, we will provide another
elementary solution in regard to the inequalities (.).

Putting arcsin x = t, t ∈ (, π
 ) in (.) gives

(sin t)( +  cos t)
 –  sin t +  cos t

< t <
(sin t)( +  cos t)

( + cos t)( + cos t)
. (.)

The left-hand side inequality of (.) can be rewritten as

t + t cos t + t cos t –  sin t –  sin t > .

Let us consider the function u : (, π
 ) →R,

u(t) = t + t cos t + t cos t –  sin t –  sin t.

Its derivatives are

u′(t) =  –  cos t – t sin t – t sin t –  cos t,

u′′(t) = – sin t +  sin t – t cos t – t cos t,

and

u()(t) = (– cos t + cos t) + t sin t + t sin t cos t

= 
(

sin
t


)(
– sin

t


+ t cos
t


+ t cos t cos
t


)

= 
(

sin
t


)
v(t).

Using the formula

sin α =  sinα –  sin α,
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the function v(t) can be further rearranged as

v(t) =  sin
t


–  sin
t


cos t


+ t cos t


.

Then

v′(t) =  cos
t


–  cos t


+  cos
t


sin t


– t cos t


sin
t


= 
(

sin
t


cos
t


)(
 sin

t


– t cos
t


)

= 
(

sin
t


cos
t


)
w(t).

Note that

w′(t) =
t


sin
t


> , t ∈
(

,
π



)
.

Therefore w(t) is strictly increasing on (, π
 ). As w() = , it follows that w(t) >  for

t ∈ (, π
 ). Hence v′(t) >  for t ∈ (, π

 ).
Using similar arguments, we have

v(t) > , u()(t) > , u′′(t) > , u′(t) > , u(t) > 

for t ∈ (, π
 ). The left-hand side inequality of (.) is proved.

In order to prove the right-hand side inequality of (.), we observe that

sin t
 + cos t

=
 – cos t

sin t
.

It is easy to find that the right-hand side inequality of (.) is equivalent to the following
inequality:

t sin t + t sin t +  cos t +  cos t –  < .

Define a function s : (, π
 ) →R by

s(t) = t sin t + t sin t +  cos t +  cos t – .

Differentiating s(t) with respect to t gives

s′(t) =  sin t + t cos t –  sin t + t cos t,

s′′(t) = (cos t – cos t) – t(sin t)( + cos t)

= 
(

sin
t


)(
 sin

t


– t cos t


)

= 
(

sin
t


)(
 sin

t


–  sin t – t cos t


)

= 
(

sin
t


)
r(t).
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The function r(t) has the derivative

r′(t) = 
(

sin
t


cos
t


)(



t cos
t


– sin
t


)

= 
(

sin
t


cos
t


)
p(t).

Also, we have

p′(t) = –
t


sin
t


< , t ∈
(

,
π



)
.

Since p() = , it follows that p(t) <  for t ∈ (, π
 ). Therefore r′(t) <  for t ∈ (, π

 ).
Using the same arguments, we have

r(t) < , s′′(t) < , s′(t) < , s(t) < 

for t ∈ (, π
 ), the right-hand side inequality of (.) is proved. The proof of Theorem .

is completed. �

Remark  It is easy to observe that

x
 +

√
 – x

–
x( + 

√
 – x)

 – x + 
√

 – x

=
x(

√
 – x + x – )

( +
√

 – x)( – x + 
√

 – x)

=
–x

( +
√

 – x)( – x + 
√

 – x)(
√

 – x +  – x)

< .

Thus, the left-hand side inequality of (.) is stronger than the left-hand side inequality
of (.).

Also, we have

x( + 
√

 – x)
( +

√
 – x)( +

√
 – x)

–
πx

 +
√

 – x

=
x(πx – x +  – π –

√
 – x(π – ))

( +
√

 – x)( +
√

 – x)( +
√

 – x)

and

(
πx – x +  – π

) –
(
 – x)(π – )

=
(
π – π + 

)
x +

(
π – π + 

)
x +  – π

= (x – C)(x + C)
(
x + C

)
,
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where

C =

√
π – π –  + (π – )

√
π – π + 

(π – ) ≈ .,

C =
π – π –  – (π – )

√
π – π + 

(π – ) ≈ ..

Hence we conclude that

x( + 
√

 – x)
( +

√
 – x)( +

√
 – x)

≤ πx
 +

√
 – x

holds for  < x < ., which implies that the right-hand side inequality of (.) is
stronger than the right-hand side inequality of (.) when  < x < ..

4 Conclusions
The Padé approximation is a useful method for creating new inequalities and improv-
ing certain inequalities. Firstly, we introduce the main technique of Padé approximation
and establish some Padé approximants for arcsin x and arctan x. And then we use the Padé
approximation to improve some remarkable inequalities involving inverse trigonometric
functions, we show that the new inequalities presented in this paper are more refined than
that obtained in earlier papers. It is worth to mention that the Padé approximation method
has also been applied to dealing with the refinements of certain inequalities for trigono-
metric functions and hyperbolic functions in our recent papers [] and []. We expect
that the method will be useful in solving some others problems concerning inequalities.
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Acknowledgements
The work of the first author is supported by the Natural Science Foundation of Fujian Province of China under Grant
2016J01023.

Received: 1 December 2016 Accepted: 25 January 2017

References
1. Chen, CP, Cheung, WS: Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Integral

Transforms Spec. Funct. 23(5), 325-336 (2012)
2. Chen, CP: Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions.

Integral Transforms Spec. Funct. 23(12), 865-873 (2012)
3. Qi, F, Zhang, SQ, Guo, BN: Sharpening and generalizations of Shafer’s inequality for the arctangent function. J. Inequal.

Appl. 2009, Article ID 930294 (2009)
4. Chen, CP, Cheung, WS, Wang, W: On Shafer and Carlson inequalities. J. Inequal. Appl. 2011, Article ID 840206 (2011)
5. Chen, CP, Cheung, WS: Sharpness of Wilker and Huygens type inequalities. J. Inequal. Appl. 2012, Article ID 72 (2012)
6. Mortici, C, Srivastava, HM: Estimates for the arctangent function related to Shafer’s inequality. Colloq. Math. 136(2),

263-270 (2014)
7. Pan, W, Zhu, L: Generalizations of Shafer-Fink-type inequalities for the arcsine function. J. Inequal. Appl. 2009, Article

ID 705317 (2009)
8. Shafer, RE: Problem E1867. Am. Math. Mon. 73(3), 309-310 (1966)
9. Sándor, J: On certain inequalities for hyperbolic and trigonometric functions. J. Math. Inequal. 7(3), 421-425 (2013)



Wu and Bercu Journal of Inequalities and Applications  (2017) 2017:31 Page 12 of 12

10. Zhu, L: On Shafer-Fink inequalities. Math. Inequal. Appl. 8(4), 571-574 (2005)
11. Zhu, L: On Shafer-Fink inequality. J. Inequal. Appl. 2007, Article ID 67430 (2007)
12. Zhu, L: On Wilker type inequalities. Math. Inequal. Appl. 10(4), 727-731 (2007)
13. Jiang, WD, Luo, QM, Qi, F: Refinements of some Huygens and Wilker type inequalities. Turk. J. Anal. Number Theory

2(4), 134-139 (2014)
14. Klén, R, Visuri, M, Vuorinen, M: On Jordan type inequalities for hyperbolic functions. J. Inequal. Appl. 2010, Article ID

362548 (2010)
15. Mortici, C: The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 14(3), 535-541 (2011)
16. Neuman, E, Sándor, J: On some inequalities involving trigonometric and hyperbolic functions with emphasis of the

Cusa-Huygens, Wilker and Huygens inequalities. Math. Inequal. Appl. 13(4), 715-723 (2010)
17. Baker, GA, Gammel, JL: The Padé Approximant in Theoretical Physics. Academic Press, New York (1970)
18. Baker, GA, Graves-Morris, P: Padé Approximants, 2nd edn. Cambridge University Press, Cambridge (1996)
19. Guo, B, Wang, R, Xu, M: Padé approximation of sine functions and its application in numerical analysis. J. Inf. Comput.

Sci. 12(15), 5545-5550 (2015)
20. Bercu, G: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl.

2016, Article ID 99 (2016)
21. Bercu, G, Wu, S: Refinements of certain hyperbolic inequalities via the Padé approximation method. J. Nonlinear Sci.

Appl. 9(7), 5011-5020 (2016)


	Pade approximants for inverse trigonometric functions and their applications
	Abstract
	MSC
	Keywords

	Introduction
	Some lemmas
	Main results
	Conclusions
	Competing interests
	Authors' contributions
	Author details
	Acknowledgements
	References


