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Abstract
We prove that every approximate linear left derivation on a semisimple Banach
algebra is continuous. Also, we consider linear derivations on Banach algebras and we
first study the conditions for a linear derivation on a Banach algebra. Then we examine
the functional inequalities related to a linear derivation and their stability. We finally
take central linear derivations with radical ranges on semiprime Banach algebras and
a continuous linear generalized left derivation on a semisimple Banach algebra.
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1 Introduction and preliminaries
Let A be an algebra. A linear mapping δ : A → A is called a left derivation (resp., deriva-
tion) if δ(xy) = xδ(y) + yδ(x) (resp., δ(xy) = xδ(y) + δ(x)y) is fulfilled for all x, y ∈A. A linear
mapping δ : A→A is said to be a left Jordan derivation if δ(x) = xδ(x) holds for all x ∈A.
A linear mapping δ : A → A is called a generalized left derivation if there exists a linear
left derivation δ : A → A such that δ(xy) = xδ(y) + yδ(x) for all x, y ∈ A. A linear map-
ping δ : A→A is said to be a generalized left Jordan derivation if there exists a linear left
Jordan derivation δ : A→A such that δ(x) = xδ(x) + xδ(x) for all x ∈A.

Singer and Wermer [] obtained a fundamental result which started the investigation
of the ranges of linear derivations on Banach algebras. The result, which is called the
Singer-Wermer theorem, states that every continuous linear derivation on a commuta-
tive Banach algebra maps into the radical. In the same paper, they made a very insightful
conjecture: that the assumption of continuity is unnecessary. Thomas [] proved this con-
jecture. Hence linear derivations on Banach algebras (if everywhere defined) genuinely
belong to the noncommutative setting.

On the other hand, the study of stability problems had been formulated by Ulam [].
Hyers [] had answered affirmatively the question of Ulam for Banach spaces. Hyers’ the-
orem was generalized by Aoki [] for additive mappings and by Rassias [] for linear map-
pings by considering an unbounded difference. In particular, the stability result concern-
ing derivations between operator algebras was first obtained by Šemrl []. Badora gave a
generalization of the Bourgin result and he also dealt with the stability and the supersta-
bility of Bourgin-type for derivations; see [–] and the references therein. Recently, the
stability problems for derivations are considered by some authors in [–].
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In this work, we first take into account the functional inequality which expands the func-
tional inequality in []. It is well known that every ring left derivation (resp., ring left Jor-
dan derivation) on a semiprime ring maps into its center; see [, ]. Considering the base
of the previous result, we show that every approximate ring left derivation on a semiprime
normed algebra maps into its center and then, by using this fact, we prove that every ap-
proximate linear left derivation on a semisimple Banach algebra is continuous. We also
establish the functional inequalities related to a linear derivation and their stability. In
particular, mappings satisfying such functional inequalities on a semiprime Banach alge-
bra are linear derivations which map into the intersection of the center and the radical.
We finally investigate a linear generalized left Jordan derivation on a semisimple Banach
algebra with application.

2 Approximate left derivations
We first demonstrate the following proposition quoted in this work.

Proposition . ([], Proposition .) Let R be a ring, X be a left R-module, and δ :
R→X be a left derivation.

(i) Suppose that aRx =  with a ∈R, x ∈X implies a =  or x = . If δ �= , then R is
commutative.

(ii) Suppose that X = R is a semiprime ring. Then δ is a derivation which maps R into
its center.

Let A be a normed algebra. An additive mapping δ : A→A is said to be an approximate
ring derivation (resp., approximate ring left derivation) if for some ε ≥ ,

∥
∥δ(xy) – xδ(y) – δ(x)y

∥
∥ ≤ ε

(

resp.,
∥
∥δ(xy) – xδ(y) – yδ(x)

∥
∥ ≤ ε

)

for all x, y ∈ A. In addition, if δ(λx) = λδ(x) for all x ∈ A and λ ∈ C, then δ is called an
approximate linear derivation (resp., approximate linear left derivation).

From now on, we suppose that Tε := {eiθ :  ≤ θ ≤ ε}. The commutator xy – yx will be
denoted by [x, y]. We start our investigations for approximate ring left derivations with
some results.

Theorem . Let A be a semiprime normed algebra. Assume that l ≥  is a fixed integer
and s, s, . . . , sl are fixed positive real numbers, where sj >  (j = , ) and s = . Suppose
that δ : A→A is a mapping such that

∥
∥
∥
∥
∥

l
∑

j=

sjδ(xj)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
δ

( l
∑

j=

sjxj

)∥
∥
∥
∥
∥

(.)

for all x, x, . . . , xl ∈A and for some ε ≥ ,

∥
∥δ(xy) – xδ(y) – yδ(x)

∥
∥ ≤ ε (.)

for all x, y ∈ A. Then δ is an approximate ring derivation which maps A into its center
Z(A).
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Proof By letting x = x = · · · = xl =  in (.), we get δ() = . And we put x = x = · · · =
xl =  in (.) and then set x = x, x = y, x = z, s = s, s = t to obtain

∥
∥sδ(x) + tδ(y) + δ(z)

∥
∥ ≤ ∥

∥δ(sx + ty + z)
∥
∥ for all x, y, z ∈A. (.)

It follows by the result of [] that δ is additive. In particular, in view of (.), we find that
δ is an approximate ring left derivation.

By virtue of (.), we see that

∥
∥δ(yx) – yδ(x) – xδ(y)

∥
∥ ≤ ε (.)

for all x, y ∈A. Combining (.) and (.), we get

∥
∥δ(xy) – δ(yx)

∥
∥ ≤ ∥

∥δ(xy) – xδ(y) – yδ(x)
∥
∥ +

∥
∥δ(yx) – yδ(x) – xδ(y)

∥
∥ ≤ ε (.)

for all x, y ∈A. It follows from (.) and (.) that

∥
∥[x, y]δ(x)

∥
∥ ≤ ∥

∥δ(x · yx) – xδ(yx) – yxδ(x)
∥
∥

+
∥
∥δ(xy · x) – xyδ(x) – xδ(xy)

∥
∥ + ‖x‖∥∥δ(xy) – δ(yx)

∥
∥

≤ ε
(‖x‖ + 

)

(.)

for all x, y ∈A. Replacing x by nx in (.) and then dividing on both sides by n, we have

∥
∥[x, y]δ(x)

∥
∥ ≤ 

(‖x‖
n

+


n

)

ε

for all x, y ∈ A and all positive integer n. Taking the limit as n → ∞ in the above relation,
we see that

[x, y]δ(x) =  for all x, y ∈A. (.)

Just proceeding as in the proof of Proposition ., we get [δ(w), x] =  for all x, w ∈A. That
is, δ(w) belong to its center Z(A). So δ is an approximate ring derivation. Therefore we
arrive at the desired conclusion. �

Theorem . Let A be a noncommutative prime normed algebra. Assume that l ≥  is
a fixed integer and s, s, . . . , sl are fixed positive real numbers, where sj >  (j = , ) and
s = . Suppose that δ : A→A is a mapping subject to the conditions (.) and (.). Then
δ is identically zero.

Proof Employing the same argument as the proof Theorem ., we feel that δ satisfies
equation (.). Since A is noncommutative, choose a z that does not belong to the center
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of A. Using the same method in the proof of Proposition ., we see that δ = , which
completes the proof. �

Theorem . Let A be a semisimple Banach algebra. Assume that l ≥  is a fixed inte-
ger and s, s, . . . , sl are fixed positive real numbers, where s = λs (s > ), s >  and s = .
Suppose that δ : A→A is a mapping subject to

∥
∥
∥
∥
∥

l
∑

j=

sjδ(xj)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
δ

( l
∑

j=

sjxj

)∥
∥
∥
∥
∥

(.)

for all x, x, . . . , xl ∈A and all λ ∈ Tε , where x = λz (z ∈A) and the inequality (.). Then
δ is a continuous.

Proof As we did in the proof of Theorem ., we get δ() = . We take x = x = · · · = xl = 
in (.) and then put x = x, x = y, s = t to have

∥
∥λsδ(x) + tδ(y) + δ(λz)

∥
∥ ≤ ∥

∥δ(λsx + ty + λz)
∥
∥ (.)

for all x, y, z ∈ A and all λ ∈ Tε . Now we consider λ =  in (.) and so δ satisfies the in-
equality (.). Hence we find that δ is additive [].

Next, setting x = x
s , y =  and z = –x in (.), we obtain sδ( x

s ) = δ(x). Letting x = x
s , y = ,

and z = –x in (.), we get δ(λx) = λδ(x) for all x ∈A and all λ ∈ Tε and so we see that δ is
linear [].

Since semisimple algebras are semiprime [], Theorem . guarantees that δ is an ap-
proximate linear derivation. Therefore δ is continuous []. The proof is complete. �

3 Inequalities related to a linear derivation
In this section, we write a unit element of algebra A by e.

Theorem . Let A be a semiprime unital Banach algebra. Suppose that δ : A → A is a
mapping subject to the inequality (.) and for some ε ≥ ,

∥
∥δ

(

x) – xδ(x)
∥
∥ ≤ ε (.)

for all x ∈A. Then δ is a linear derivation which maps A into the intersection of its center
Z(A) and its radical rad(A).

Proof Employing the same way in the proof Theorem ., we find that δ is linear. By lin-
earization of (.) and additivity of δ, we get

∥
∥δ

(

x) + δ(xy) + δ(yx) + δ
(

y) – xδ(x) – xδ(y) – yδ(x) – yδ(y)
∥
∥ ≤ ε (.)

for all x, y ∈A. Substituting –x for x in (.), we have

∥
∥δ

(

x) – δ(xy) – δ(yx) + δ
(

y) – xδ(x) + xδ(y) + yδ(x) – yδ(y)
∥
∥ ≤ ε (.)
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for all x, y ∈A. Equations (.) and (.) yield

∥
∥δ(xy) + δ(yx) – xδ(y) – yδ(x)

∥
∥

≤ ∥
∥δ

(

x) + δ(xy) + δ(yx) + δ
(

y) – xδ(x) – xδ(y) – yδ(x) – yδ(y)
∥
∥

+
∥
∥δ

(

x) – δ(xy) – δ(yx) + δ
(

y) – xδ(x) + xδ(y) + yδ(x) – yδ(y)
∥
∥ ≤ ε

for all x, y ∈A. We have therefore

∥
∥δ(xy + yx) – xδ(y) – yδ(x)

∥
∥ ≤ ε for all x, y ∈A. (.)

Putting xy + yx for y in (.), we obtain

∥
∥δ

(

x(xy + yx) + (xy + yx)x
)

– xδ(xy + yx) – (xy + yx)δ(x)
∥
∥ ≤ ε (.)

for all x, y ∈A. On the other hand, we have from (.) and the equation

x(xy + yx) + (xy + yx)x = xy + yx + xyx

the result

∥
∥δ

(

x(xy + yx) + (xy + yx)x
)

– xδ(y) – yδ
(

x) – δ(xyx)
∥
∥

=
∥
∥δ

(

xy + yx) – xδ(y) – yδ
(

x)∥∥ ≤ ε (.)

for all x, y ∈A. By comparing (.) and (.), we arrive at

∥
∥xδ(xy + yx) + (xy + yx)δ(x) – xδ(y) – yδ

(

x) – δ(xyx)
∥
∥

≤ ∥
∥δ

(

x(xy + yx) + (xy + yx)x
)

– xδ(y) – yδ
(

x) – δ(xyx)
∥
∥

+
∥
∥δ

(

x(xy + yx) + (xy + yx)x
)

– xδ(xy + yx) – (xy + yx)δ(x)
∥
∥ ≤ ε (.)

for all x, y ∈A. Applying equation (.) with (.) and (.), we have

∥
∥xδ(y) + xyδ(x) – yxδ(x) – δ(xyx)

∥
∥

≤ ‖x‖∥∥δ(xy + yx) – xδ(y) – yδ(x)
∥
∥ + ‖y‖∥∥δ

(

x) – xδ(x)
∥
∥

+
∥
∥xδ(xy + yx) + (xy + yx)δ(x) – xδ(y) – yδ

(

x) – δ(xyz)
∥
∥

≤ 
(‖x‖ + ‖y‖ + 

)

ε (.)

for all x, y ∈ A. Letting x = nx, y = ny in (.) and then dividing the resulting inequality
by n, we get

∥
∥xδ(y) + xyδ(x) – yxδ(x) – δ(xyx)

∥
∥ ≤ 

(‖x‖
n +

‖y‖
n +


n

)

ε (.)
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for all x, y ∈A and all positive integers n. Taking the limit n → ∞ of (.), it is reduced to
the equation

δ(xyx) = xδ(y) + xyδ(x) – yxδ(x) for all x, y ∈A. (.)

Putting x = y = z = e in (.), we get δ(e) = . Again, considering y = e in (.), we easily
prove that

δ
(

x) = xδ(x) for all x ∈A.

This means that δ is a linear left Jordan derivation.
On the other hand, from Vukman’s result [], we see that δ is a linear derivation with

δ(A) ⊆ Z(A). Since Z(A) is a commutative Banach algebra, the Singer-Wermer theorem
tells us that δ|Z(A) maps Z(A) into rad(Z(A)) = Z(A) ∩ rad(A) and thus δ(A) ⊆ rad(A).
Using the semiprimeness of rad(A) as well as the identity

δ(x)yδ(x) = δ(xyx) – xδ(yx) – δ(xy)x + xδ(y)x (x, y ∈A),

we have δ(A) ⊆ rad(A). Therefore δ(A) ⊆ Z(A) ∩ rad(A), which concludes the proof. �

As consequences of Theorem ., we get the following.

Corollary . Let A be a unital semisimple Banach algebra. Assume that a mapping δ :
A→A satisfies the assumptions of Theorem .. Then δ is identically zero.

Now we consider the result which is needed in the following theorems.

Lemma . LetA be a Banach algebra. Suppose thatL : A×A→A is a bilinear mapping
and that ξ and η are mappings satisfying L(x, y) = xξ (y) + yη(x) for all x, y ∈ A. If A is
semiprime or unital, then ξ and η are linear mappings.

Proof Note that, for all x, y ∈A and all λ ∈C,

xξ (λy) + λyη(x) = L(x,λy) = λL(x, y) = λ
(

xξ (y) + yη(x)
)

.

Hence we see that, for all x, y ∈A,

x
(

ξ (λy) – λξ (y)
)

= . (.)

If A is unital, then we see that ξ (λy) = λη(y) by letting x = e in (.).
If A is nonunital, then ξ (λy) – λξ (y) lies in the right annihilator ran(A) of A. If A is

semiprime, then ran(A) = , so that ξ (λy) = λξ (y) for all y ∈A and all λ ∈C.
Observe that, for all x, y, z ∈A,

xξ (y + z) + (y + z)η(x) = L(x, y + z) = L(x, y) + L(x, z)

= xξ (y) + yη(x) + xξ (z) + zη(x).
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Hence x(ξ (y + z) – ξ (y) – ξ (z)) =  for all y, z ∈A. As above, we get ξ (x + z) = ξ (x) + ξ (z) for
all x, z ∈A, so that ξ is linear.

Similarly, one can prove that η is linear. �

Theorem . Let A be a semiprime Banach algebra. Assume that l ≥  is a fixed inte-
ger and s, s, . . . , sl are fixed positive real numbers, where s = λs (s > ), s >  and s = .
Suppose that δ : A→A is a mapping with δ() =  such that, for some ε ≥ ,

∥
∥
∥
∥
∥

l
∑

j=

sjδ(xj)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
δ

( l
∑

j=

sjxj

)∥
∥
∥
∥
∥

+ ε (.)

for all x, x, . . . , xl ∈A and all λ ∈ Tε , where x = λz (z ∈A) and

∥
∥δ(xy + yx) – xδ(y) – yδ(x)

∥
∥ ≤ θ (.)

for some θ ≥  and all x, y ∈A. Then δ is a linear derivation which maps A into the inter-
section of its center Z(A) and its radical rad(A).

Proof We let x = x = · · · = xl =  in (.) and then put x = x, x = y, s = t to have

∥
∥λsδ(x) + tδ(y) + δ(λz)

∥
∥ ≤ ∥

∥δ(λsx + ty + λz)
∥
∥ + ε (.)

for all x, y, z ∈A and all λ ∈ Tε . Now we consider λ =  in (.). It follows from the result
in [] that there exists a unique additive mapping D : A→A defined by

D(x) := lim
n→∞

δ(snx)
sn for all x ∈A. (.)

Moreover, sD( x
s ) = D(x) holds for all x ∈A.

Letting x = x
s , y = , and z = –x in (.), we find that

∥
∥
∥
∥
λsδ

(
x
s

)

– δ(λx)
∥
∥
∥
∥

≤ ε

for all x ∈A and all λ ∈ Tε . This implies that

lim
n→∞


sn

∥
∥
∥
∥
λsδ

(
snx
s

)

– δ
(

λsnx
)
∥
∥
∥
∥

≤ lim
n→∞

ε

sn = .

Thus λsD( x
s ) = D(λx), so that D(λx) = λD(x) for all x ∈A and all λ ∈ Tε . Thus we see that

D is linear [].
By (.), we see that

lim
n→∞

∥
∥
∥
∥

δ(sn(xy + yx))
sn – xδ(y) – y

δ(snx)
sn

∥
∥
∥
∥

≤ lim
n→∞

θ

sn = .

Hence we arrive at

D(xy + yx) = xδ(y) + yD(x) for all x, y ∈A.
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It follows from Lemma . that δ is linear. Then we have by (.) that D = δ. Therefore

δ
(

x) = xδ(x) for all x ∈A.

That is, δ is a linear left Jordan derivation.
The remainder of the proof can be carried out similarly to the corresponding part of

Theorem .. �

Theorem . Let A be a unital Banach algebra. Assume that l ≥  is a fixed integer and
s, s, . . . , sl are fixed positive real numbers, where s = λs (s > ), s >  and s = . Suppose
that δ : A→A is a mapping with δ() =  such that, for some ε ≥ ,

∥
∥
∥
∥
∥

l
∑

j=

sjδ(xj)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
δ

( l
∑

j=

sjxj

)∥
∥
∥
∥
∥

+ ε (.)

for all x, x, . . . , x ∈ A and all λ ∈ S := {, i}, where x = λz (z ∈ A) and (.). If δ(pe) = 
for all irrational numbers p, then δ is a linear left Jordan derivation. In this case A is a
semiprime unital Banach algebra, δ is a linear derivation which maps A into the intersec-
tion of its center Z(A) and its radical rad(A).

Proof We first consider λ =  in (.). We see by the result in [] that there is a unique
additive mapping D : A→A defined by (.). In addition, sD( x

s ) = D(x) for all x ∈A.
Also we set λ = i in (.). And we take x = x = · · · = xl =  in (.) and then let x =

x, x = y, s = t to have

∥
∥isδ(x) + tδ(y) + δ(iz)

∥
∥ ≤ ∥

∥δ(isx + ty + iz)
∥
∥ + ε (.)

for all x, y, z ∈A. Putting x = x
s , y =  and z = –x in (.), we obtain

∥
∥
∥
∥

isδ
(

x
s

)

– δ(ix)
∥
∥
∥
∥

≤ ε

for all x ∈A, which shows that

lim
n→∞


sn

∥
∥
∥
∥

isδ
(

snx
s

)

– δ
(

isnx
)
∥
∥
∥
∥

≤ lim
n→∞

ε

sn = .

Hence isD( x
s ) = D(ix). So we have D(ix) = iD(x) for all x ∈A.

We have by (.)

lim
n→∞

∥
∥
∥
∥

δ(sn(xy + yx))
sn – x

δ(sny)
sn – y

δ(snx)
sn

∥
∥
∥
∥

≤ lim
n→∞

θ

sn = .

This implies that

D(xy + yx) = xD(y) + yD(x) for all x, y ∈A. (.)
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Again, by virtue of (.), we see that

lim
n→∞

∥
∥
∥
∥

δ(sn(xy + yx))
sn – xδ(y) – y

δ(snx)
sn

∥
∥
∥
∥

≤ lim
n→∞

θ

sn = .

This implies that

D(xy + yx) = xδ(y) + yD(x) for all x, y ∈A. (.)

Comparing (.) and (.), we arrive at xδ(y) = xD(y) for all x, y ∈ A. Since A contains
the unit element, we find that D = δ. Equation (.) can be written

δ(xy + yx) = xδ(y) + yδ(x) for all x, y ∈A. (.)

Letting x = y = e in (.), we have δ(e) = . Now we obtain by additivity of δ δ(qx) = qδ(x)
for all q ∈ Q and all x ∈A. So δ(qe) = qδ(e) =  for all q ∈ Q. This fact and the assumption
of δ imply that δ(te) =  for all t ∈R. Considering y = te in (.), we have δ(tx) = tδ(x) for
all t ∈R and all x ∈A. Thus δ is R-linear. Hence we see that

δ(μx) = δ
(

(t + ti)x
)

= δ(tx) + tδ(ix) = tδ(x) + tiδ(x) = (t + ti)δ(x) = μδ(x)

for all μ ∈C and all x ∈A. So we see that δ is C-linear. In view of (.), we get

δ
(

x) = xδ(x) for all x ∈A.

Thereby δ is a linear left Jordan derivation.
On the other hand, if A is semiprime unital Banach algebra, then the rest of the proof is

similar to the corresponding part of Theorem .. �

Theorem . Let A be a semisimple Banach algebra. Assume that l ≥  is a fixed inte-
ger and s, s, . . . , sl are fixed positive real numbers, where s = λs (s > ), s >  and s = .
Suppose that, for each k = , , δk : A → A is a mapping with δk() =  such that, for some
ε ≥ ,

∥
∥
∥
∥
∥

l
∑

j=

sjδk(xj)

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥
δk

( l
∑

j=

sjxj

)∥
∥
∥
∥
∥

+ ε (.)

for all x, x, . . . , xl ∈A and all λ ∈ Tε , where x = λz (z ∈A) and

∥
∥δ(xy + yx) – xδ(y) – yδ(x)

∥
∥ ≤ θ, (.)

∥
∥δ(xy + yx) – xδ(y) – yδ(x) – xδ(y) – yδ(x)

∥
∥ ≤ θ, (.)

for some θ, θ ≥  and all x, y ∈ A. Then δ is a linear generalized left Jordan derivation
associated with a linear left Jordan derivation δ. In this case, δ is continuous.
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Proof It is well known that semisimple algebras are semiprime []. As we saw in the proof
of Theorem ., δ is a linear left Jordan derivation. In addition, we see that there exists a
unique linear mapping D : A→A defined by

D(x) := lim
n→∞

δ(snx)
sn for all x ∈A. (.)

According to (.) and (.), we see that

lim
n→∞

∥
∥
∥
∥

δ(sn(xy + yx))
sn – xδ(y) – y

δ(snx)
sn – xδ(y) – yδ(x)

∥
∥
∥
∥

≤ lim
n→∞

θ

sn = ,

which implies that

D(xy + yx) = xδ(y) + yD(x) + xδ(y) + yδ(x) for all x, y ∈A. (.)

So we obtain from (.)

D(xy + yx) – xδ(y) – yδ(x) = xδ(y) + yD(x) for all x, y ∈A. (.)

In particular, the left-side of equation (.) is a bilinear mapping. Lemma . guarantees
that δ is linear. By (.), we have D = δ. Equation (.) gives

δ
(

x) = xδ(x) + xδ(x) for all x ∈A.

Thus δ is a linear generalized left Jordan derivation.
Therefore, since A is semisimple, we conclude that δ is continuous; see []. This com-

pletes the proof. �
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