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Abstract
This paper provides a normal form for a class of lower dimensional hyperbolic
invariant tori of nearly integrable symplectic mappings with generating functions. We
prove the persistence and the Gevrey-smoothness of the invariant tori under some
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1 Introduction and main results
Area-preserving mappings have some dynamical properties similar to Hamiltonian sys-
tems, and hence become an important test ground of all kinds of theories for studying
Hamiltonian systems, such as Poincaré [, ] on three body problem, Moser [] on the
differentiable form of KAM theory, Aubry and Mather [–] on Aubry-Mather theorem,
Conley and Zehnder [, ] on symplectic topology. So area-preserving mappings have at-
tracted many scholars’ interest. We refer to [–]. Among all the mappings, symplectic
mappings are special for their symplectic structures; we refer to [–] for more results
on symplectic structures.

On the other hand, many mathematicians turn to the study of the connection between
the KAM tori and the parameter. The first work is due to Pöschel [] who proved that the
persisting invariant tori are C∞-smooth in the frequency parameter. Popov [] obtained
the Gevrey-smoothness, a notion intermediate between C∞-smoothness and analyticity,
of invariant tori in the frequencies under the Kolmogorov non-degeneracy condition. Xu
and You [] obtained a similar result under the Rüssmann non-degeneracy condition by
an improved KAM method. For more results, we refer to [, ].

Motivated by [, ], we consider the persistence and the Gevrey-smoothness of lower
dimensional hyperbolic invariant tori for symplectic mappings determined by generating
functions under Rüssmann’s non-degeneracy condition. We consider the following pa-
rameterized symplectic mapping:

�(·; ξ ) : (x, u, y, v) ∈ T
n ×W ×O ×W → (x̂, û, ŷ, v̂) ∈ T

n ×R
m ×R

n ×R
m,
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where ξ ∈ � ⊂ O is a parameter and O ⊂ R
n is a bounded closed connected domain.

Suppose �(·; ξ ) is implicitly defined by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x̂ = ∂ŷH(x, u, ŷ, v̂; ξ ),

y = ∂xH(x, u, ŷ, v̂; ξ ),

û = ∂v̂H(x, u, ŷ, v̂; ξ ),

v = ∂uH(x, u, ŷ, v̂; ξ ),

(.)

where

H(x, u, ŷ, v̂; ξ ) = N + P, (.)

N(x, u, ŷ, v̂; ξ ) =
〈
x + ω(ξ ), ŷ

〉
+ 〈Au, v̂〉 +



〈Bu, u〉 +



〈Cv̂, v̂〉. (.)

Suppose A is a constant matrix and B, C are symmetric. If P = , � can be expressed ex-
plicitly as

x̂ = x + ω(y), ŷ = y,

û =
(
A – C

(
AT)–B

)
u + C

(
AT)–v, v̂ = –

(
AT)–Bu +

(
AT)–v.

(.)

We define

� =

(
A – C(AT )–B C(AT )–

–(AT )–B (AT )–

)

m×m

.

Denote the eigenvalues of � by (λ,λ, . . . ,λm). We call the lower dimensional invariant
torus elliptic if |λi| = , λi �= , ∀i = , , . . . , m and hyperbolic if |λi| �= ,∀i = , , . . . , m.

We note that, although some results on symplectic mappings can be anticipated by
Hamiltonian systems, there are still many differences for lower dimensional invariant tori.
The first one is concerned with the relations of variables. In symplectic mappings, some
variables determined by generating functions take on an implicit form and hence lead to
more difficulties than in a Hamiltonian system. The second one is the non-degeneracy
condition, which will result in a more complicated proof for estimate of measure.

Before presenting the main result, we give some assumptions and definitions.

Assumption  (Rüssmann’s non-degeneracy condition) There exists an integer n̄ >  such
that

rank
{
∂

β

ξ ω(ξ ) :  ≤ |β| ≤ n̄
}

= n, ∀ξ ∈ �, (.)

where

∂
β

ξ ω(ξ ) =
(
∂

β

ξ ω(ξ ), ∂β

ξ ω(ξ ), . . . , ∂β

ξ ωn(ξ )
)T

with

∂
β

ξ ωi(ξ ) =
∂

|β|
ξ ωi(ξ )

∂ξ
β
 ∂ξ

β
 · · · ∂ξ

βn
n

,
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and

β = (β,β, . . . ,βn).

Assumption  (Hyperbolic condition) Let A = diag(a, a, . . . , am), B = diag(b, b, . . . , bm),
C = diag(c, c, . . . , cm). Define 
i = a

i –bici+
ai

, i = , , . . . , m. Suppose 

i > , i = , , . . . , m.

Remark . By direct calculation, we have the eigenvalues of �,

λi =

i ±

√
(
i) – 


, i = , , . . . , m.

If 

i > , we have |λi| �= , i = , , . . . , m, so the lower dimensional invariant torus is hy-

perbolic. If otherwise 

i < , we have |λi| = , and hence the lower dimensional invariant

torus is elliptic.

Definition . LetO ⊂R
n be a bounded closed connected domain. A function F : O →R

is said to belong to Gevrey-class Gμ(O) of index μ (μ ≥ ) if F is C∞(O)-smooth and there
exists a constant J such that for all p ∈O,

∣
∣∂β

p F(p)
∣
∣ ≤ cJ |β|+β !μ,

where |β| = β + β + · · · + βn and β !μ = β!β! · · ·βn! for β = (β,β, . . . ,βn) ∈ Z
n
+.

Remark . By definition, it is easy to see that the Gevrey-smooth function class G co-
incides with the analytic function class. Moreover, we have

G ⊂ Gμ ⊂ Gμ ⊂ C∞

for  < μ < μ < ∞.

Set

Ts =
{

x ∈ C
n/πZn : | Im x|∞ ≤ s

}
,

Br =
{

y ∈C
n : |y| ≤ r},

and

Wr =
{

w ∈C
m : |w| ≤ r

}
.

Denote by D(s, r) = Ts × Wr × Br × Wr . Here, |x|∞ = max≤j≤n |xj|, |y| =
∑

≤j≤n |yj| and
|w| = (

∑
≤j≤m |wj|) 

 .
Denote

� =
{
ξ ∈O | dist(ξ , ∂O) ≥ h

}
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and

�h =
{
ξ ∈C

n | dist(ξ ,�) ≤ h
}

.

Definition . f ∈ G,μ(D(s, r) × �) means that f ∈ C∞(D(s, r) × �) and f (x, y, u, v; ξ ) is
analytic with respect to (x, y, u, v) on D(s, r) and Gμ-smooth in ξ on �.

Below we define some norms. If P(x, u, ŷ, v̂; ξ ) is analytic in (x, u, ŷ, v̂) on D(s, r) and n̄-
times continuously differentiable in ξ on �, we have

P(x, u, ŷ, v̂; ξ ) =
∑

k∈Zn

Pk(u, ŷ, v̂; ξ )ei〈k,x〉,

where

Pk(u, ŷ, v̂; ξ ) =
∑

l,i,j

Pklij(ξ )ŷluiv̂j.

Define

‖P‖D(s,r)×� =
∑

k∈Zn

|Pk|res|k|,

where

|Pk|r = sup
(u,ŷ,v̂)∈Wr×Br×Wr

∑

i,j,l

‖Pklij‖sŷluiv̂j.

This norm is apparently stronger than the super-norm. Moreover, the Cauchy estimate of
analytic functions is also valid under this norm.

Let XP = (–∂ŷP, –∂v̂P, ∂xP, ∂uP) and denote a weighted norm by

‖XP‖r;D(s,r)×� = ‖∂ŷP‖D(s,r)×� +

r
‖∂v̂P‖D(s,r)×�

+

r ‖∂xP‖D(s,r)×� +


r
‖∂uP‖D(s,r)×�,

where

‖∂x̂P‖D(s,r)×� =
∑

j

‖∂x̂j P‖D(s,r)×�,

‖∂ŷP‖D(s,r)×� = max
j

‖∂ŷj P‖D(s,r)×�

and

‖∂uP‖D(s,r)×� =
(∑

j

(‖∂uj P‖s,r
)

) 


,

‖∂v̂P‖D(s,r)×� is defined similarly.
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Now we introduce the main result. Let τ ≥ nn̄ – . For δ ∈ (, ), let μ = τ + δ +  and
σ = ( 

 )
δ

τ++δ .

Theorem . Consider the symplectic mapping �(·; ξ ), which is implicitly defined by a
generating function H(·; ξ ) in (.). Let maxξ∈�h | ∂ω

∂ξ
| ≤ T . Suppose that Assumptions , 

hold. Then there exists γ >  such that for any  < α < , if ‖XP‖r;D(s,r)×�d = ε ≤ γ αν̄ρν

with ν̄ = n̄ + ,ν = τ (n̄ + ) + n + n̄, the following results hold true:
(i) There exist a non-empty Cantor-like subset �∗ ⊂ � and, for ξ ∈ �∗, a symplectic

mapping �∗(·; ξ ), where �∗ ∈ G,μ with

∥
∥∂

β

ξ (�∗ – id)
∥
∥

r;D( s
 , r

 )×�∗ ≤ cρνJ |β|β !μγ


(n+) (.)

for ∀β ∈ Z+
n and J = T+

α
[ (μ–)(n+)

 ]μ–. Moreover, �∗ = �–∗ ◦ � ◦ �∗ is generated by
H∗ = N∗ + P∗ as in (.) satisfying

N∗(x, u, ŷ, v̂; ξ ) = 〈x + ω∗, ŷ〉 + 〈A∗u, v̂〉 +


〈B∗u, u〉 +



〈C∗v̂, v̂〉,

P∗(x, u, ŷ, v̂; ξ ) =
∑

|i|+|j|+|l|≥

Plij(x; ξ )ŷluiv̂j.

(ii) Hence, for ξ ∈ �∗, the symplectic mapping �(·; ξ ) admits a lower dimensional
invariant torus

Tξ = �∗
(
Tn, , , ; ξ

)
,

whose frequencies ω∗ satisfy

∣
∣∂

β

ξ

(
ω∗(ξ ) – ω(ξ )

)∣
∣ ≤ cρνJ |β|β !μγ


(n+) (.)

and

∣
∣
〈
ω∗(ξ ), k

〉
+ π l

∣
∣ ≥ α

( + |k|)τ (.)

for all ξ ∈ �∗,  �= k ∈ Zn. Moreover, we have

meas(� \ �∗) ≤ cα

m .

2 The proof of main results
We will use the idea for Hamiltonian systems in [] to prove our results. In Section .,
one KAM step iteration is presented. The key lies in solving a homological equation. Then
we will show the KAM step can iterate infinitely in Section .. Convergence of the itera-
tion and the estimate of measure will be presented in Sections . and ..

2.1 KAM-step
Iteration Lemma Consider a symplectic mapping �(·; ξ ) defined in Theorem .. Let  <
E < ,  < ρ = ( – σ )s/ < s

 and  < η < 
 . Let K >  satisfy ηe–Kρ = E. Let

max
ξ∈�h

∣
∣
∣
∣
∂ω

∂ξ

∣
∣
∣
∣ ≤ T , h =

α

( + K)τ+T
.
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Moreover, ω(ξ ) satisfies that: for k ∈ Z
n \ {}, l ∈ Z,

∣
∣〈k,ω〉 + π l

∣
∣ ≥ α

( + |k|)τ . (.)

Suppose Assumptions ,  hold. Suppose that P satisfies

‖XP‖r;D(s,r)×�d ≤ ε = ηαν̄ρνE,

with  < α < , ν̄ = n̄ + ,ν = τ (n̄ + ) + n + n̄. Then we have the following results:
() ∀ξ ∈ �h, there exists a symplectic diffeomorphism �(·; ξ ) with

‖� – id‖r;D(s–ρ, r
 )×�h ≤ cε

αν̄ρν
,

‖D� – id‖r;D(s–ρ, r
 )×�h ≤ cε

αν̄ρν+ ,

such that the conjugate mapping �+(·; ξ ) = �– ◦ � ◦ � is generated by
H+(·; ξ ) = N+ + P+, where

N+ =
〈
x + ω+(ξ ), ŷ

〉
+ 〈A+u, v̂〉 +



〈B+u, u〉 +



〈C+v̂, v̂〉

and P+ satisfies

‖XP‖r+;D(s+,r+)×�d ≤ η
+αν̄

+ ρν
+E+ = ε+,

with

s+ = s – ρ, ρ+ = σρ, η+ = E+,

r+ = ηr, E+ = E

 ,

α


≤ α+ ≤ α.

Furthermore, we have

∣
∣ω+(ξ ) – ω(ξ )

∣
∣ ≤ ε, ∀ξ ∈ �h. (.)

() Let α+ = α – (K + )τ+ε,

�̄ =
{

ξ ∈ � :
∣
∣
〈
k,ω+(ξ )

〉∣
∣ <

α+

( + |k|)τ , k ∈ Zn, K < |k| ≤ K+

}

, (.)

and �+ = � \ �̄. Then, for ∀ξ ∈ �+,∀k ∈ Zn and  < |k| ≤ K+, we have

∣
∣
〈
k,ω+(ξ )

〉∣
∣ ≥ α+

( + |k|)τ , (.)

where K+ >  such that e–K+ρ+

η
+

= E+.
() Let T+ = T + ε

h and h+ = α+
(K++)τ+T+

. If h+ ≤ 
 h, we have maxξ∈�h+ | ∂ω+

∂ξ
| ≤ T+,

where �h+ is the complex h+-neighborhood of �+.
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A. The equivalent form of (.).
Let

P(p, q̂) = P(x) +
〈
P(x), ŷ

〉
+

〈
P(x), u

〉
+

〈
P(x), v̂

〉

+
〈
P(x)u, v̂

〉
+



〈
P(x)u, u

〉
+



〈
P(x)v̂, v̂

〉

+
∑

|i|+|j|+|l|≥

Plijŷluiv̂j (.)

with

Plij =
∂ l+i+jP

∂ ŷl∂ui∂ v̂j

∣
∣
∣
∣
u=,ŷ=,v̂=

.

Let

Q(x, u, v̂) =
〈
Q(x)u, v̂

〉
+



〈
Q(x)u, u

〉
+



〈
Q(x)v̂, v̂

〉

with Q(x) = P(x), Q(x) = P(x), Q(x) = P(x).
Then we rewrite H as

H = N + Q + (P – Q),

where N + Q is the new main term and P – Q is the new small term.
Now we will study the following function which is equivalent to (.):

H(x, u, ŷ, v̂; ξ ) = N(x, u, ŷ, v̂; ξ ) + P(x, u, ŷ, v̂; ξ ), (.)

where

N =
〈
x + ω(ξ ), ŷ

〉
+ 〈Au, v̂〉 +



〈Bu, u〉 +



〈Cv̂, v̂〉 + Q(x, u, v̂)

and

P = P(x) +
〈
P(x), ŷ

〉
+

〈
P(x), u

〉
+

〈
P(x), v̂

〉
+

∑

|l|+|i|+|j|≥

Plijŷluiv̂j.

B. Generating functions of conjugate mappings.
For convenience, let p = (x, u) and q = (y, v). p̂ and q̂ have a similar meaning. The sym-

plectic structure becomes dp ∧ dq on R
n+m × R

n+m. Consider a symplectic mapping
� : (p, q) → (p̂, q̂) generated by

p̂ = ∂q̂H(p, q̂), q = ∂pH(p, q̂), (.)

where H(p, q̂) = N(p, q̂) + P(p, q̂), where N is the main term and P is a small perturbation.
We need a symplectic transformation � : (p+, q+) → (p, q) generated by

q = q+ + F(p, q+), p+ = p + F(p, q+), (.)
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with

F(p, q+) =
∂F(p, q+)

∂p
,

F(p, q+) =
∂F(p, q+)

∂q+
.

The generating function is 〈p, q+〉 + F(p, q+) with F being a small function.
By (.) and (.), we have a conjugate mapping � = �– ◦ � ◦ � : (p+, q+) → (p̂+, q̂+)

implicitly by

p̂+ = H(p, q̂) + F(p̂, q̂+), q+ = H(p, q̂) – F(p, q+) (.)

with

H(p, q̂) =
∂H(p, q̂)

∂p
,

H(p, q̂) =
∂H(p, q̂)

∂ q̂
.

So we have the following lemma.

Lemma . ([]) The conjugate symplectic mapping �+ can be implicitly determined by
a generating function H+(p+, q̂+) through

p̂+ = ∂q̂+ H+(p+, q̂+), q+ = ∂p+ H+(p+, q̂+), (.)

where

H+(p+, q̂+) = H(p, q̂) + H(p, q̂)F(p, q+) – H(p, q̂)F(p̂, q̂+)

+ F(p̂, q̂+) – F(p, q+) – F(p, q+)F(p, q+),
(.)

where p, p̂, q̂, q+ depend on (p+, q̂+) as explained above.
Set z = (p+, q̂+). We have

H+(z) = H(z) + F
(
N(z), q̂+

)
– F

(
p+, N(z)

)
+ ϒ(z) (.)

with

N(z) =
∂N(p+, q̂+)

∂p+
, N(z) =

∂N(p+, q̂+)
∂ q̂+

and ϒ(z) satisfying

|||Xϒ |||r;D(s–ρ,r/) ≤ cε

αν̄ρν
, (.)

where ν̄ = n̄ +  and ν = τ (n̄ + ) + n̄ + n.
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C. Truncation.
Let

P = R + (P – R), (.)

where

R(p, q̂) =
∑

|k|≤K

(
Pk

(x) +
〈
Pk

(x), ŷ
〉
+

〈
Pk

(x), u
〉
+

〈
Pk

(x), v̂
〉)

(.)

= R(x) +
〈
R(x), ŷ

〉
+

〈
R(x), u

〉
+

〈
R(x), v̂

〉
, (.)

and

P – R =
∑

|l|+|i|+|j|=

Plijŷluiv̂j +
∑

|l|+|i|+|j|≥

Plijŷluiv̂j.

Let F(p, q̂) possess the same form as (.).
D. Extending the small divisor estimate.
∀ξ ∈ �h, there exists ξ ∈ � such that |ξ – ξ| < h. So we have, for  < |k| ≤ K ,

∣
∣
〈
k,ω(ξ )

〉
+ π l

∣
∣ ≥ ∣

∣
〈
k,ω(ξ)

〉
+ π l

∣
∣ –

∣
∣
〈
k,ω(ξ ) – ω(ξ)

〉∣
∣ ≥ α

( + |k|)τ .

E. Homological equation.
By (.), it follows that

N(p+, q̂+) + P(p+, q̂+) – F
(
p+, Np(p+, q̂+)

)
+ F

(
Nq(p+, q̂+), q̂+

)
+ ϒ(z)

= N̄(p+, q̂+) + P̄(p+, q̂+). (.)

For simplicity, below we drop the subscripts ‘+’ in p+ and q̂+.
Similar to the discussion in [], we get the homological equations.

–F
(
Nq(p, q̂), q̂

)
+ F

(
p, Np(p, q̂)

)
= R – [R]. (.)

To solve (.), we need some preparations.
Let x + ω = x̃. Since

p̂ = Nq̂(p, p̂) =
(
x̃, (A + Q)u + (C + Q)v

)

and

q = Np(p, q̂) =
(
ŷ + Qx, (A + Q)v̂ + (B + Q)u

)
,

we have

F
(
p, Np(p, q̂)

)
= F(x) +

〈
F(x), ŷ + Qx

〉
+

〈
F(x), u

〉

+
〈
F(x), (A + Q)T v̂ + (B + Q)u

〉
(.)
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and

F
(
Nq̂(p, q̂), q̂

)
= F(x̃) +

〈
F(x̃), ŷ

〉
+

〈
F(x̃), v̂

〉

+
〈
F(x̃), (A + Q)T u + (C + Q)v̂

〉
. (.)

So we get

F
(
Nq̂(p, q̂), q̂

)
– F

(
p, Np(p, q̂)

)
= L + L + L –

〈
F(x), Qx

〉
,

where

L =
(
F(x̃) – F(x)

)
+

〈
F(x̃) – F(x), ŷ

〉
,

L =
〈
AT F(x̃) – F(x) – BF(x), u

〉
+

〈
QT

 F(x̃) – QT
 F(x), u

〉

and

L =
〈
CT F(x̃) + F(x) – AF(x), u

〉
+

〈
QT

 F(x̃) – QF(x), u
〉
.

After these preparations, we can solve (.) which is equivalent to solving the following:

⎧
⎨

⎩

F(x̃) – F(x) = R(x) – [R],

F(x̃) – F(x) = R(x) – [R],
(.)

and
⎧
⎨

⎩

AT F(x̃) – F(x) – BF(x) + QT
 F(x̃) – QT

 F(x) = R(x),

CT F(x̃) + F(x) – AF(x) + QT
 F(x̃) – QF(x) = R(x).

(.)

Firstly, we solve (.) for F and F. Expand F(x) and R(x):

F(x) =
∑

k∈Zn

Fkei〈k,x〉,

R(x) =
∑

k∈Zn

Rkei〈k,x〉.

Then we get

Fkj =


ek – 
Rkj (.)

with ek = ei〈k,ω〉, k �= . By Assumption , we have the following estimate:

‖Fk‖s–ρ ≤ c‖Rk‖s

αρτ+n .

So we have

‖XF‖r;D(s–ρ)×� ≤ c‖R‖s

αν̄ρν
.
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Similarly we have

‖XF‖r;D(s–ρ)×� ≤ c‖R‖s

αν̄ρν
.

Next we will get F and F from (.). Let F = (F
, . . . , Fm

) and F = (F
, . . . ,

Fm
). Expand Fl

i′j′ (x) and Rl
i′j′ (x):

Fl
i′j′ (x) =

∑

k∈Zn

Fl
ki′j′e

i〈k,x〉,

Rl
i′j′ (x) =

∑

k∈Zn

Rl
ki′j′e

i〈k,x〉

with l = , , . . . , m and (i′, j′) = (, ), (, ).
Let

X =

(
Fl



Fl


)

, Y =

(
Rl



Rl


)

,

Mk =

(
aek –  –b

bek ek – a

)

.

To get the estimate of Fl
i′j′ (x), we rewrite (.) as the following form:

∑

k∈Zn

MkXkei〈k,x〉 =
∑

k∈Zn

Ykei〈k,x〉 +
∑

k∈Zn

NkXkei〈k,x〉, (.)

where Nk is composed of the components of Qj, j = , , , . We can set |Nk| ≤ ε.
By a direct calculation, we have

|Mk| = |ek – λi|
∣
∣ek – λ′

i
∣
∣,

where

λi =

i +

√
(
i) – 


, λi =

i –

√
(
i) – 


, i = , , . . . , m,

are the eigenvalues of �. By Assumption , we have |λi| �= , |λ′
i| �= . Since |ek| = , it follows

that |Mk| > c > . We rewrite (.) as

�X = Y + �X.

Since |Mk| > , we have the operator � is invertible and hence X = �–(Y + �X). Set
�X = X – �–�X, then we have �X = L–Y . So

‖�X – �X‖ =
∥
∥�–�X – �–�X

∥
∥

≤ ∥
∥�–∥∥ · ∥∥�‖ · ‖X – X

∥
∥.
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Set ε = c
 , then we have

‖�X – �X‖ ≤ 

‖X – X‖.

By the implicit function theorem, we have ‖X‖ ≤ c‖Y‖, with c depending on A, B, C. So

‖Fi′j′ ‖D(s–ρ,r)×� ≤ cr‖Ri′j′ ‖D(s,r)×�

αν̄ρν

with (i′, j′) = (, ), (, ).
From the above discussion, we have

‖XF‖r;D(s–ρ,r)×� ≤ c
αν̄ρν

‖XR‖r;D(s,r)×� ≤ cε
αν̄ρν

, (.)

where ν̄ = n̄ +  and ν = τ (n̄ + ) + n̄ + n.
By (.) and (.), we obtain

‖� – id‖r;D(s–ρ, r
 )×� ≤ cε

αν̄ρν
,

‖D� – id‖r;D(s–ρ, r
 )×� ≤ cε

αν̄ρν+ .

From the above discussion, we get the conjugate mapping �+(·; ξ ) = �– ◦ � ◦ � gener-
ated by H+ = N̄ + P̄, where

N̄ = [R] +
〈
x + ω(ξ ) + R, ŷ

〉
+ 〈Au, v̂〉 +



〈Bu, u〉 +



〈Cv̂, v̂〉 + Q(x, u, v̂),

and

P̄ = ϒ + (P – R) –
〈
F(x), Qx

〉
.

Recalling (.), we find there are second order terms of u, v̂ in P+, so we will put these terms
into the main term. Let Q+ = –〈F(x), Qx〉+ϒ, where ϒ contains the second order term
on u, v̂ in ϒ .

Then we get H+ = N+ + P+, where

N+ = [R] +
〈
x + ω(ξ ) + R, ŷ

〉
+ 〈Au, v̂〉 +



〈Bu, u〉 +



〈Cv̂, v̂〉 + Q(x, u, v̂) + Q+

and

P+ = (P – R) + ϒ – ϒ.

We note that N+ has the same form as N .
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Since

P – R =
∑

|l|+|i|+|j|=

Plijŷluiv̂j +
∑

|l|+|i|+|j|≥

Plijŷluiv̂j,

we have

‖XP–R‖ηr;D(s–ρ,ηr)×� ≤ c · ε
(

η +
e–Kρ

η

)

. (.)

By (.) and (.), we have

‖XP+‖ηr;D(s–ρ,ηr)×� ≤ c · ε
(

η +
e–Kρ

η

)

+
cε

ηαν̄ρν
.

F. Choice of parameters.
We choose  < E <  and set

η = E, ε = ηανρνE,
e–Kρ

η = E, h =
α

(K + )τ+T
.

Fix σ ∈ (, ). We define

ρ+ = σρ, s+ = s – ρ, r+ = ηr,

α+ = α – (K + )τ+ε, ε+ = cηε, E+ = cE

 .

By the estimate of P+, supposing α < α+, we have

‖XP+‖ηr;D(s–ρ,ηr)×�+ ≤ c · ε
(

η +
e–Kρ

η

)

+
cε

ηαν̄ρν

≤ cηε = cανρνE

≤ cαν̄
+ ρτ

+ E
+.

Setting ε+ = cα+ρτ
+E

+, we arrive at

‖XP+‖r+;D(s+,r+)×�+ ≤ ε+.

By Iteration Lemma, we have

∣
∣
〈
k,ω+(ξ )

〉
+ π l

∣
∣ ≥ ∣

∣
〈
k,ω(ξ ) + π l

〉∣
∣ –

∣
∣
〈
k,ω+(ξ ) – ω(ξ )

〉∣
∣

≥ 
( + |k|)τ

[
α – ( + K)τ+ε

]

=
α+

( + |k|)τ ,

where ξ ∈ �+ and  �= k ≤ K . So we choose α+ = α – ( + K)τ+ε. By the choice of α+, the
definition of �̄ in (.) and �+ = � \ �̄, it follows, for ∀ξ ∈ �+,

∣
∣
〈
k,ω+(ξ )

〉
+ π l

∣
∣ ≥ α+

( + |k|)τ , ∀k ∈ Z
n,  < |k| ≤ K+.
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Now we give the choice of T+. Suppose h+ ≤ 
 h. By the Cauchy estimate, for ξ ∈ �+

h+
,

we have

∣
∣∂

(
ω+(ξ ) – ω(ξ )

)
/∂ξ

∣
∣
h+

≤ |ω+(ξ ) – ω(ξ )|h
h – h+

≤ ε

h
.

Define T+ = T + ε
h and h+ = α+

T+(+K+)τ+ , then we have

max
ξ∈�h+

|∂ω+/∂ξ | ≤ max
ξ∈�h+

∣
∣∂

(
ω+ – ω(ξ )

)
/∂ξ

∣
∣+ max

ξ∈�h+
|∂ω/∂ξ | ≤ T+.

Thus all the parameters for H+ are defined, and so Iteration Lemma is proved.

2.2 Iteration
Define inductive sequences

ρj+ = σρj, sj+ = sj – ρ, rj+ = ηjrj,

αj+ = αj – ( + Kj)τ+εj, Ej+ = cE


j , Tj+ = Tj +

εj

dj
,

ηj+ = Ej+, εj+ = αν̄
j ρν

j+Ej+η

j+,

and

e–Kj+ρj+

η
j+

= Ej+, hj+ =
αj+

( + K)τ+
j Tj+

.

Define

�j+ =
{

ξ ∈ �j :
∣
∣
〈
ωj(ξ ) + π l, k

〉∣
∣ ≥ αj

(|k| + )τ
, Kj < |k| ≤ Kj+

}

and

�hj+ =
{
ξ ∈ Cn : dist(ξ ,�j+) ≤ hj+

}
.

In the following we give some estimates for Gevrey-smoothness.
Let γj = Kjρj = – ln E

j . We have Kj+
Kj

= 


ln c
ln Ej

+ 
σ

, and hence 
 ≤ Kj+

Kj
≤ 



ρ

for E small

enough. If  < Kj < Kj+, we have hj+
hj

= αj+
αj

Tj
Tj+

(+Kj)τ

(+Kj+)τ ≤ 
 , and hence hj+ ≤ 

 hj, which

means h+ ≤ 
 h holds. Suppose maxξ∈�hj

| ∂ωj
∂ξ

| ≤ Tj. Let Tj+ = Tj + εj
dj

. Then we have

| ∂ωj+
∂ξ

| = | ∂(ωj+–ωj+ωj)
∂ξ

| ≤ Tj+. By the choice of σ , we can easily get that ρj+γ
δ

τ+
j+ ≥ ρjγ

δ
τ+

j .

Since ργ
δ

τ+
 ≥ , we have ρjγ

δ
τ+

j ≥  for all j > .
By the definitions of Tj, hj and εj, we have Tj+ = Tj + εj

dj
= T + 

∑j
i=(γi)τ e–γi Ti. Not-

ing γj = – ln E
j and Ej ≤ (cE)( 

 )j , we can choose E to be sufficiently small such that
∑j

i=(γi)τ e–γi Ti ≤ 
 , then we have T ≤ Tj ≤ T + . Similarly, we have 

αj ≤ αj+ ≤ αj.
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By Iteration Lemma, there exists a sequence of symplectic mappings {�j(·; ξ )}, generated
by 〈p, q+〉 + Fj(p, q+), satisfying

‖�j – id‖rj ;D(sj–ρj ,rj)×�hj
≤ cεj

αν̄
j ρν

j
,

‖D�j – Id‖rj ;D(sj–ρj ,rj)×�hj
≤ cεj

αν̄
j ρν+

j
.

Define � j = � ◦� ◦· · ·◦�j. Then we have a sequence of symplectic mappings {�j+(·; ξ ) =
(� j)– ◦ �j ◦ � j}, generated by Hj+(·; ξ ) = Nj+ + Pj+, where

Nj+ =
〈
x + ωj+(ξ ), ŷ

〉
+ 〈Aj+u, v̂〉 +



〈Bj+u, u〉 +



〈Cj+v̂, v̂〉

with

|ωj+ – ωj| ≤ cεj, ∀j ≥ ,

and

‖XPj+‖rj+;D(sj+,rj+)×�hj+
≤ εj+.

2.3 The convergence of the KAM iteration
Now we prove the convergence of the KAM iteration. Similar to [], we have

∥
∥� j – � j–∥∥

rj ;D(sj–ρj ,rj)×�hj
≤ cαν̄

j–ρ
ν
j–E

j–,

and

∥
∥D

(
� j – � j–)∥∥

rj ;D(sj–ρj ,rj)×�hj
≤ αν̄

j–ρ
ν+
j– E

j–.

By the Cauchy estimate, we have

∥
∥∂

β

ξ

(
� j – � j–)∥∥

rj ;D(sj–ρj ,rj)×�hj
≤ cαν̄

j–ρ
ν
j–E

j–β !

h|β !|
j

,

∥
∥∂

β

ξ D
(
� j – � j–)∥∥

rj ;D(sj–ρj ,rj)×�hj
≤ cαν̄

j–ρ
ν+
j– E

j–β !

h|β !|
j

and

∥
∥∂

β

ξ

(
ωj – ωj–)∥∥

�j
≤ cεj–β !

h|β !|
j

.

Let Uβ

j =
cαν̄

j–ρ
ν
j–E

j–β !

h|β !|
j

and Gβ

j = cεj–β !

h|β !|
j

. Now we estimate Uβ

j and Gβ

j for β ∈ Z+
n .

Since ρjγ
δ

τ+
j ≥  for all j > , we have 

ρj
≤ γ

δ
τ+

j . Then we have Kj = γj
ρj

≤ γ
+ δ

τ+
j , which

means that K τ+
j ≤ γ τ++δ

j . Noting that hj = αj
(K+)τ+

j Tj
, Tj < T + , 

α ≤ αj and Ej– = E


j =
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e–
γj
 , we have

Uβ

j ≤ cαν̄ρν
j β !

(
T + 

α


)|β|(
γ τ++δ

j
)|β|e–

γj


≤ cρν
j

(
(T + )

α

)|β|
β !

[
γ

β
j e–

γj



(τ+δ)(n+) · · ·γ βn

j e–
γj



(τ+δ)(n+)

]τ+δe–
γj



n+

≤ cρν
j J |β|β !μJ


(n+)

j ,

where J = T+
α

[ (μ–)(n+)
 ]μ–,μ = τ + δ, and c only depends on n,α,μ.

In the same way, we have

Gβ

j ≤ cρν
j J |β|β !μE


(n+)
j .

Note that sj → s
 , rj → , hj →  as j → ∞. Let D∗ = D( s

 , ),�∗ =
⋂

j≥ �j and �∗ =
limj→∞ � j. Then we have

∥
∥∂

β

ξ (�∗ – id)
∥
∥ r

 ;D(∗)×�∗ ≤ cρν
 J |β|β !μE


(n+)
 , ∀β ∈ Z+

n .

Since �j is affine in y, � j is also affine in y, and hence we have the convergence of ∂
β

ξ � j to
∂

β

ξ �∗ on D( s
 , r

 ) and

∥
∥∂

β

ξ (�∗ – id)
∥
∥ r

 ;D( s
 , r

 )×�∗ ≤ cρν
 J |β|β !μE


(n+)
 ,

∀β ∈ Z+
n . Thus we proved (.).

Let ω∗ = limj→∞ ωj. Similarly, it follows that

∣
∣∂

β

ξ

(
ω∗(ξ ) – ω

)
(ξ )

∣
∣
�∗ ≤ cρν

 J |β|β !μE


(n+)
 , ∀β ∈ Z+

n .

Moreover we have

∣
∣
〈
ω∗(ξ ), k

〉∣
∣ ≥ α∗

( + |k|)τ

for all ξ ∈ ∏
∗ and  �= k ∈ Zn, where α∗ = limj→∞ αj, with α

 ≤ α∗ ≤ α. Thus we proved
(.) and (.).

2.4 Estimate of measure
We note that β ≥  in Assumption  for symplectic mappings , while β ≥  in Hamiltonian
systems [, ]. So the non-degeneracy condition in symplectic mappings and that in
Hamiltonian systems are different. It means that the estimate of measure is different in
two cases. But the proof for symplectic mappings is similar to [, ], so we omit the
details.
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