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1 Introduction

In the recent years, special interest has been devoted to quantum corrections to the Za-
kharov equations for Langmuir waves in a plasma [1]. By use of a quantum fluid approach,
the following modified Zakharov equations are obtained:

iE; + Eyy — H2E, i = HE, 1)

g — Nyx + Hznxxxx = |E|2 (2)

xx?

where H is the dimensionless quantum parameter given by the ratio of the ion plasmon
and electron thermal energies. For H = 0, this system was derived by Zakharov in [2] to
model a Langmuir wave in plasma. The Zakharov system attracted many scientists’ wide
interest and attention [3—14].

In this paper, we deal with the following generalized Zakharov system:

iE,+ AE-H*A’E—nE=0, (3)

ny — An+ H*A*n— A|E? =0, (4)
where (E, n) : (x,t) € R? x R and the initial data are taken to be

E|s=0 = Eo(x), #ls=0 = no(x), Hyle=0 = n1(x). (5)

To study a smooth solution of the generalized Zakharov system, we transform it into the
following form:

iE, + AE - H*A’E - nE =0, (6)
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n,—Agp =0,

Or—Hn +H*An-|E? =0,
with initial data

Elizo=Eo(®),  nlo=mo(x),  ¢l0 = o).
Now we state the main results of the paper.

Theorem 1.1 Suppose that Eq(x) € H**(R?), no(x) € H*2(R?), n;(x) € H'(R?), 1> 0.
there exists a unique global smooth solution of the initial value problem (3)-(5).

E@x,0) e L™(0, T;H**(R?)),  Eix,t) € L™(0, T;H'(R?))

)
)

ny(x,t) € L(0, T; H' 2 (R?)).

n(x,t) € L*(0, T; H'** (R ny(x,t) € L*(0, T; H'(R?))
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7)

)

Then

The obtained results may be useful for better understanding the nonlinear coupling be-

tween the ion-acoustic waves and the Langmuir waves in a two-dimensional space.

2 Apriori estimates

Lemma 2.1 Suppose that Ey(x) € L*(R?). Then, for the solution of problem (6)~(9), we

have

IEN2 ey = | Eo@) 22 g

Proof Taking the inner product of (6) and E, then taking the imaginary part, we have

1d
2.dt
Im(AE - H*A’E - nE,E) = 0.

Im(iE;, E) = Re(E, E) = IEN,

Hence, we get
d 2
ZIEl2=0.

We thus get Lemma 2.1.

O

Lemma 2.2 (Sobolev’s estimations) Assume that u € L1(R"), D"u € L'(R"), 1 < q,r <

00,0 <j < m, we have the estimations

D] gy = €D

o 1—
L7 (R?) ”u”LqL(YR”)i

where C is a positive constant, 0 < -~ <a <1,

A
m

1 1 1
—=i+a(——ﬁ)+(1—a)—.
p n ron q
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Lemma 2.3 Suppose that Ey(x) € H*(R?), no(x) € H'(R?), ¢o(x) € H'(R?). Then we have
F(t) = F(0),
where
F(t) = |VE|;, + H*| AE|7, + /R2 n|E* dx + %HVQOH; + %Hl’llliz + H72||V"l||iz~
Proof Take the inner products of (6) and —E;. Since

, 1d _
Re(lEt» _Et) =0, RG(AE, _Et) = E a Il VE”LZx

H?> d

2 A2 2
Re(-H*A’E,-E,) = T&HAEHW

1
Re(-nE,-E;) = - / n|E|? dx
2 RZ

1d

1
=—— n|E|2dx——/ ny|E|* dx
2dt R2 2 R2

1d 1
=-— n|E|2dx——/ n,(¢r —n+ H* An) dx
Zdt RrR2 2 RrR2

1d 1 1d H> d
=== EPdx—= dx+ = —|n|% + — —||Vn|?
2dt/RZm | 2/RZnt<pt w4 oIl + - 1Vl

Ld |EI*d 1/ Apgydx+ 23 7]l H d IVn|?
=—-— n X — — x+ ——|n|j+ ——|Vn
24t Jpo 2 Jo SO T e T g e
1d 1d 1d H?* d
_-° ERdx+ ——IVoll? + —— 2+ vn?,
2dt/RZm P de+ 2 lIVllE + 2 lnlp + - VAl

thus it follows that

4 IVE|?, + H*| AE|? +f n|5|2dx+1||v¢||2 +1||n||2 +52||w||2
dt 22 N 2 27T oy 22

-0. (10)
Letting
T 2 2 2 2 1 2 1o, H 2
F () = IVE|l, + H | AE|;> + /1{2 n|E|” dx + 5||V§0||L2 + §||”||Lz + 7||V”||Lz,
and noticing (10), we obtain

F(t) = F(0). O

Lemma 2.4 Suppose that Ey(x) € H*(R?), no(x) € H'(R?), o(x) € H'(R?). Then we have

SuI)T(IIEIIH2 +nllm + l@ll) < C.
0<t<
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Proof By Holder’s inequality, Young’s inequality and Lemma 2.2, it follows that

/ n|E)? dx
R2

2
< lInll2 | Ell 74

1 2 4
< lenlle +1E|l 4
1 2 3
< lenlle + CI|AE|211EN 2
1. ., H? )
< Ellnlle t5 |AE]7, + C.

From Lemma 2.3 we get

H?
IIVEIIL2+ IIAE||L2+ ||V</J||Lz ||n||L2+ IIanle_ 7(0) + C.
Take the inner products of Eq. (8) and ¢. It follows that

(pe—n+H*An—|E|>,¢) =0 (11)
since

(¢, ) = 5 dtllsolle,

1

(n+1E%9) < (Inll2 + |ENG) Il 2 < §||<P||i2 +C,
where

IEI74 < CIVE 21|l 2 < C.

2
(H?An, ) = H*(n, Ap) = H(n, 1) = ———|1n 7.
2 dt

Hence, from Eq. (11) we get

d 2 L H2l2) < 2 L C

E(Hﬁl)”Lz +H?||nll7,) < llgll;, + C.
Using Gronwall’s inequality, we obtain that

sup (llel3, + H?|n]},) <

0<t<T
We thus get Lemma 2.4. O

Lemma 2.5 Suppose that Ey(x) € H*(R?), no(x) € H*(R?), o (x) € H*(R?). Then we have

sup (IElps + 17l + 1@ll2 + 1Ecll 2 + Il 2 + llgell2) < C.
0<t<T
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Proof Differentiating (6) with respect to ¢, then taking the inner products of the resulting
equation and E;, we have

(iEu + AE, — H* A*E, — (nE),,E;) = 0 (12)

since

Im(iEy, E;) 1d
m , = ——
ey, Ly o dt

[Im(=nE, Ey)| < ClIEl < Il 2 1 Eell 2 < C(IET + el 7o)

IEl?  Im(AE,— H*A®E, - nE, E) =0,

By Lemma 2.2, it follows that

1

1o
[Ellzee < CIAEN A IEI 5

thus from Eq. (12) we get

d
5”&”; < C(IEN2 + lm]l2)- (13)

Differentiating Eq. (7) with respect to ¢, then taking the inner products of the resulting
equation and #;, we have

(s — A, ) =0 (14)
since

1 2
Wi, M) = —— || N
(42, 1my) 2dtll tlly2
(-A¢y,ny) = (-An+ H*A*n — A|E]*, )

1d H> d
=S IVrle + = g 18nlE - (AIEP, ).

Noting that
[(AIEP, 1) | < CIEN< | AEN 2 Inell 2 < C(Imell7, + 1),

from Eq. (14) we get

d
E[Hrztniz +1Va)2, + H*||An|2,] < C(llnel13, +1). (15)

From Eq. (13) and (15) we get

d
E[IIEtlliz +mell7s + 1VnllZ + HAl AR ] < C(IENT + Inell7> +1).

By Gronwall’s inequality, it follows that

sup [IElI% + lnel12s + 1 Vall%, + H? | An|l%,] < C. (16)

0<t<T
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Take the inner products of Eq. (8) and ¢;. It follows that
(pe—n+H*An—|E*,¢) =0 17)
since

(@1, 1) = ||(0t||22,
(-n+H*An—|EP,¢1) < (Inll2 + HA Il ARl 2 + ILEN7a) @2l 2

1 2
< C+ Sl
From Eq. (17) we get
lgell7, < C.
Take the inner products of Eq. (6) and AE. It follows that
(iE¢ + AE - H* AE - nE, AE) = 0 (18)
since

(iE; = nE, AE) < (IIEll2 + | Ellzellnll2) IAE] 2 < C,

(AE - H?AE, AE) = | AE|% + H2|| V2E| .
From Eq. (18) we get
v, <.
From (6) we obtain
H?| A%E|| 2 < IEl 2 + 1AEN 2 + InEll 2 < C,
where
1 1 1 1
InEll2 < Inll4llElls < CIVall Ll LIVEILIEN, < C.
From (7) we obtain
A2 = lInll2 < C.
We thus get Lemma 2.5. O
Lemma 2.6 Suppose that fi,f» € H(Q2), Q € R". Then we have

1D -H) 2 < GIAN: | D 2 + |PA] 2 1A 12),

where the constant Cs is independent of fi and f5.
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Lemma 2.7 Suppose that Eq(x) € H™*(R?), no(x) € H™?(R?), @o(x) € H"?(R?), m > 0.
Then we have

sup ([EG.0) s + [0 ynie + |0 0)] 1) = €

0<t<T

OsupT(”Et(xl t) ||Hm + ”nt(x! t) ||Hm + ||§0t||]—[m) E C
<t<

Proof Lemma 2.7 is true when m = 0 (Lemma 2.5). Suppose that Lemma 2.7 is true when
m =k, (k > 0). Take the inner products of (8) and (—1)f*1 Ak*3¢_ It follows that

(¢r —n+ H*An— |EP, (-1 A%3g) = 0 (19)
since
1d
((pt, (_1)k+1Ak+3¢) _ 3 a ||Vk+3<p| i2’
1d
(—n, (_1)k+1Ak+3(p) _ (—n, (—l)k”A]”Znt) _ T ”Vkﬂ””iv
H2 Am (DI AR30) = H2(An (DR AR 2, = H_zi vk3 %
( n,(-1) (ﬂ)— ( n,(-1) nf)_ 2 dt” n”LZ’

[CIER, (DR %3) = | (THBIER, 94| < [VRIER] |95
< C“E”LZ || V/<+3EHL2 H Vk+3§0 HL2

<C(IV*0l +1),

thus from Eq. (19) it follows that

d
GV el + V52l + B 9*2n] ) < C(| V¥ 12 +1). (20)
By using Gronwall’s inequality, we have

sup (V4% 1o + [ V*2n s + [ 2n] ) < C.
0<t<T

From (7) and (8) we get

[V el o = V5] 2 = €

90l < CIT o+ |94+ UENA [ V4E] ) < C.

Differentiating (6) with respect to ¢, then taking the inner products of the resulting equa-
tion and (-1)**! A¥*1E,, we obtain

(iEw + AE, — H* A*E, — (nE),, (1) AFIE) = 0. (21)

Since

2

Im(iEtt; (—1)k+lAk+1Et) _ % % || vk+lEt “LZ’
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Im(AE; - H*AE,, (-1)FA*E,) = 0,

’Im(—ntE, (_1)k+1 Ak+lEt)| ’ Vk+l }’1 E) Vk+1E ) ’

IA

(V¥ 21N + [VEE] ol 2) [ VEE] o

IA

C
C(IV B +1),
(v

m(—nE;, (-1)* t
’I ( E ( 1)k+ Ak+lE)|

k+1 }’IE) vk+1E )|

IA

CUIV*nl el + [VEE o i) [V Ee] 12
C

IA

(I E 2 + 1),

thus from Eq. (21) we get

d
G IVEN < C(IVHE]L: + ).

By using Gronwall’s inequality, we get

sup |VHE|, < C
0<t<T

From (6) we obtain
|VE<9E] 2 < (| V" E:

||L2

Hence
OsupT(”E(x’ t) HH’“S + ” Vl(x, t) ||Hk+3 + “ go(x, t) ||Hk+3) =< Cr
=t<

sup (| Ee(, )| s + |76 O] e + el i) < C.
OSL'ST

+[VEPE] o+ [V | 1Bz + il [ VEE] ) =

Page 8 of 12

(22)

C.

This means Lemma 2.7 is true when m = k + 1. Thus Lemma 2.7 is proved completely. [

3 Existence and uniqueness of solution

Now, with these lemmas, we are able to prove Theorem 1.1. First we obtain the existence

and uniqueness of the global generalized solution of problem (6)-(9).

Definition 3.1 The functions E € L®(0, T;H*) N Wb(0,T;L?), n € L*(0,T;H*) N
W2°(0, T;L2) and ¢ € L>(0, T; H?) N W*°(0, T; L?) are called a generalized solution of

problem (6)-(9) if for any w € L? they satisfy the integral equality

(iEj, ») + (AE, 0) = H*(A’E;, 0) + (nEj0), j=1,2,...,N,
(ntr w) = (A% a));
(91, ®) + H*(An,0) = (n,0) + (|EP*, )

with initial data

E(x,0) = Eo(x), n(x,0) = no(x), @(%,0) = @o(x).
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Now, one can estimate the following theorem.

Theorem 3.1 Suppose that Ey(x) € H**(R?), no(x) € H**(R?), ¢o(x) € H*2(R?), [ > 0.
Then there exists a global smooth solution of the initial value problem (6)-(9).

E@x,0) e L>(0, T;H"*(R?)),  Eix,t) e L®(0,T; H'(R?)),
n(x,t) € L°(0, T; H'™*(R?)),  m(x,8) € L(0, T;H'(R?)),
o(x,t) e L*(0, T;H**(R?)),  ¢u(xt) € L*(0, T; H'(R?)).

Proof By using the Galerkin method, choose the basic periodic functions {w, (x)} as fol-
lows:

—Aw (%) = A (%), we(x) € HA(Q),k =1,...,1.

The approximate solution of problem (6)-(9) can be written as

! l
En) =) al@odx),  rx)=) B x),

k=1 k=1
!
¢'(x,0) =Y vl Do),
k=1

where

El(x, t) = (Ei,Eé,...,Ef\[), a,l((t) = (O‘:ld’“iz’---’“;lw)'
Q is a two-dimensional cube with 2D in each direction, that is, Q = {x = (1, x2) %] <
2D,j =1,2}. According to Galerkin’s method, these undetermined coefficients oe,l( (1), ,3,f 3}
and y/(t) need to satisfy the following initial value problem of the system of ordinary dif-
ferential equations:

(iEl, o) + (AE, o) = H*(A’E}, o) + (W'Ej, @), j=1,2,...,N, (23)
(n, o) = (A¢', o), (24)
(q)f, a)K) +H2(Anl, a)K) = (nl,w,() + (|El 2,a)K) (25)

with initial data

E'x0)=E\x),  nx0)=nhx),  ¢'(x0)=p)wx), (26)
where
B0 Ew, @D omw, @ g, 1 oo

Similarly to the proof of Lemmas 2.1-2.5, for the solution E(x, t), n'(x, t), ¢ (, t) of prob-
lem (23)-(26), we can establish the following estimates:

500 (1 s+ 1+ b+ UELL s + ]+ ) <



You and Ning Journal of Inequalities and Applications (2017) 2017:32 Page 10 of 12

where the constants C are independent of / and D. By compact argument, some subse-
quence of (E!, n!, "), also labeled by [, has a weak limit (E, 7, ¢). More precisely

El(x,t) > E(x,£) inL*® (0, T; H*) weakly star,

n(x,£) > n(x,t) inL® (0, T; H*) weakly star,

o (x,t) > (x,£) inL>® (O, T; H2) weakly star
and
E' > E, inL™® (0, T;L2) weakly star,

n—n, inL® (o, T;Lz) weakly star,

¢t — ¢, inL>®(0,T;L*) weakly star.

By using Guo and Shen’s method [15], one can prove the existence of a local solution for
the periodic initial problem (6)-(9). Similarly to Zhou and Guo’s proof [16], letting D —
00, the existence of a local solution for the initial value problem (6)-(9) can be obtained.
By the continuation extension principle, from the conditions of the theorem and a priori
estimates in Section 2, we can get the existence of a global generalized solution for problem
(6)-(9). By Lemma 2.7 and the Sobolev imbedding theorem, Theorem 3.1 is proved. [

Next, we prove the uniqueness of a solution for problem (6)-(9).

Theorem 3.2 Suppose that Ey(x) € H**(R?), no(x) € H*2(R?), o(x) € H*2(R?), [ > 0.
Then the global solution of the initial value problem (6)-(9) is unique.

Proof Suppose that there are two solutions Ej, 71, ¢ and Ej, 13, ¢5. Let
E=E - b, n=nmn —n, Y =¢1— @

From (6)-(9) we get

iE, + AE — H*A?E — mE; + myE; =0, (27)
ny— Ap =0, (28)
@ —n+H?*An—|E|? + |Ey|* =0, (29)

with initial data
El=0 =0, nlp=0 =0, ¢li=0 =0, xeR% (30)

Take the inner product of (27) and E. Since

, 1d
Im(iE,, E) = E&”E”Lb

Im(AE - H*A’E,E) = 0,
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|Im(n1E1 - l’lezyE)| = i(ﬂEl + Vle,E)|
< C(IE: Iz lInll 2 + Imall oo I Ell 2) | El 2

2 2
< C(lInll7 + I1E13,),
thus we obtain

d
aﬂﬂ@<CWM§+MﬁJ (31)

Take the inner product of (29) and ¢. Since

1d
(01, 0) = - —

5 dtllwllfz, ((=m,9)| < C(Inl} + llgl7),

2 _ (2 — (H2 - ]izi 2
(H*An, @) = (H*n, Ap) = (H*n,n,) = 5 dt||n||Lz,
|(~IEL* + |E2 )%, @) | = | (B - E2)Er + Ex(Ey - E2), )|
< CUEN = IEl 2Nl + IE2l IEN 2) ol 2

<C(IEIZ + loll%),

thus we get

d
E(”QDHEZ +H|nl7,) < C(IENG + Inl7 + llel7)- (32)

Hence from (31) and (32) we get

d
&(”EHE2 + 13 + Igll32) < CIENZ + lImllZ, + l@ll72)- (33)

By using Gronwall’s inequality and noticing (30), we arrive at

Theorem 3.2 is proved. This completes the proof of Theorem 1.1. O

4 Results and discussion
One can regard (3)-(4) as the Langmuir turbulence parameterized by H and study the
asymptotic behavior of systems (3)-(4) when H goes to zero.

5 Conclusions
By a priori integral estimates and the Galerkin method, we have the following conclusion.
Suppose that Eo(x) € H**(R?), ny(x) € H*2(R?), n;(x) € H'(R?), [ > 0. Then there exists
a unique global smooth solution of the initial value problem (3)-(5).
E(x,t) € L*(0, T;H**(R?)),  Euxt) € L(0, T; H'(R?))
n(x,t) e L°(0, T; H'**(R%)),  m(xt) € L®(0, T; H'(R?))
ny(x,t) € L(0, T; H' 2 (R?)).
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