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Abstract
We consider a coupled chemotaxis fluid model and prove some blow-up criteria of
the local strong solution.
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1 Introduction
We consider the following coupled chemotaxis fluid model []:

ut + (u · ∇)u + ∇π – �u + n∇φ = , (.)

div u = , (.)

nt + (u · ∇)n – �n = –∇ · (nχ (p)∇p
)
, (.)

pt + (u · ∇)p = –nf (p), (.)

(u, n, p)(x, ) = (u, n, p)(x) in R
. (.)

Here u denotes the velocity vector field of the fluid and π is the pressure scalar, p and n
denote the concentration of oxygen and bacteria, respectively. ∇φ is the gravitation force.
f (p) ≥ f () =  and χ (p) ≥  are two given smooth functions of p.

When φ = , (.) and (.) are the well-known Navier-Stokes system. Kozono et al. []
and Kozono and Shimada [] proved the following blow-up criteria:

u ∈ L(, T ; Ḃ
∞,∞

)
, (.)

u ∈ L


–θ
(
, T ; Ḃ–θ

∞,∞
)

with  < θ < , (.)

ω := curl u ∈ L(, T ; Ḃ
∞,∞

)
. (.)

Here Ḃs
p,q denotes the homogeneous Besov space. Zhang et al. [] showed the following

blow-up criterion in terms of pressure:

π ∈ L


+r
(
, T ; Ḃr

∞,∞
)

with – ≤ r ≤ . (.)
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When u = ∇φ = , (.) and (.) are the Keller-Segel model which was studied in [, ].
Very recently, Chae et al.[] showed the local well-posedness of smooth solutions to

problem (.)-(.) and the following blow-up criterion:

u ∈ L
q

q–
(
, T ; Lq) and n ∈ L(, T ; L∞)

with  < q ≤ ∞. (.)

The aim of this paper is to refine (.) further; we will prove the following.

Theorem . Let the initial data (u, n, p) be given in Hl × Hl– × Hl for l > 
 and n,

p ≥  in R
 and

∫
R n dx < ∞. Suppose that φ is a smooth function. Let (u, n, p) be a local

smooth solution on [, T̃) for some T̃ ≤ ∞. If u satisfies (.) or (.) or (.) or π satisfies
(.) (r = –) and n satisfies

n ∈ L(, T ; L∞)
(.)

with T̃ ≤ T < ∞, then the solution (u, n, p) can be extended beyond T > .

Corollary . If u satisfies (.) or (.) or (.) or π satisfies (.) and ∇p satisfies

∇p ∈ L
q

q–
(
, T ; Lq) with  < q ≤ ∞, (.)

with T̃ ≤ T < ∞, then the solution (u, n, p) can be extended beyond T > .

Remark . By the very same calculations as those in Zhou [], we can prove the following
blow-up criteria:

π ∈ L
q

q–
(
, T ; Lq) with / < q ≤ ∞, (.)

or

∇π ∈ L
q

q–
(
, T ; Lq) with  < q ≤ ∞, (.)

and n satisfies (.). We omit the details here.

2 Preliminary
Here we recall the definitions and some properties of spaces.

Let B = {ξ ∈ R
d, |ξ | ≤ 

 } and C = {ξ ∈ R
d, 

 ≤ |ξ | ≤ 
 }. Choose two nonnegative

smooth radial functions χ , ϕ supported, respectively, in B and C such that

χ (ξ ) +
∑

j≥

ϕ
(
–jξ

)
= , ξ ∈R

d,

∑

j∈Z
ϕ
(
–jξ

)
= , ξ ∈R

d \ {}.
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We denote ϕj = ϕ(–jξ ), h = F–ϕ and h̃ = F–χ , where F– stands for the inverse Fourier
transform. Then the dyadic blocks �j and Sj can be defined as follows:

�jf = ϕ
(
–jD

)
f = jd

∫

Rd
h
(
jy

)
f (x – y) dy,

Sjf =
∑

k≤j–

�kf = χ
(
–jD

)
f = jd

∫

Rd
h̃
(
jy

)
f (x – y) dy.

Formally, �j = Sj – Sj– is a frequency projection to annulus {ξ : Cj ≤ |ξ | ≤ Cj}, and
Sj is a frequency projection to the ball {ξ : |ξ | ≤ Cj}. One can easily verify that, with our
choice of ϕ,

�j�kf =  if |j – k| ≥  and �j(Sk–f �kf ) =  if |j – k| ≥ .

With the introduction of �j and Sj, let us recall the definition of the Besov space.

Definition . ([, ]) Let s ∈ R, (p, q) ∈ [,∞], the homogeneous space Ḃs
p,q is defined

by

Ḃs
p,q =

{
f ∈ S

′;‖f ‖Ḃs
p,q < ∞}

,

where

‖f ‖Ḃs
p,q =

⎧
⎨

⎩
(
∑

j∈Z sqj‖�jf ‖q
Lp )


q , for  ≤ q < ∞,

supj∈Z sj‖�jf ‖Lp , for q = ∞,

and S′ denotes the dual space of S = {f ∈ S(Rd); ∂α f̂ () = ;∀α ∈ N
d multi-index} and

can be identified by the quotient space of S ′/P with the polynomials space P .

Lemma . ([]) Let a measurable function π satisfy

π ∈ Ḃr
∞,∞

(
R

)

for some r with – ≤ r ≤ , then there exists a decomposition π := π� + πh such that

∇π� ∈ L∞(
R

) and πh ∈ W –,∞(
R

),

and

∥∥∇π�

∥∥


L∞ + ‖πh‖

W –,∞ ≤ C
(
e + ‖π‖ 

+r
Ḃr∞,∞

)
,

‖π�‖L ≤ C‖π‖L ,‖∇πh‖L ≤ C‖∇π‖L .

3 Proof of Theorem 1.1
This section is devoted to the proof of Theorem .. Since local existence results have been
proved in [], we only need to prove a priori estimates.
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To begin with, it is easy to see that

n ≥ ,  ≤ p ≤ C,
∫

R
n dx =

∫

R
n dx < ∞. (.)

Case . Let (.) and (.) hold true.
Testing (.) by u and using (.), we infer that




d
dt

∫

R
|u| dx +

∫

R
|∇u| dx =

∫

R
n∇φu dx

≤ ‖n‖L∞‖∇φ‖L‖u‖L ,

which leads to

‖u‖L∞(,T ;L) + ‖u‖L(,T ;H) ≤ C. (.)

In the following calculations, we will use the following elegant inequality [, ]:

‖∇u‖
L ≤ C‖u‖Ḃ∞,∞‖�u‖L .

Testing (.) by �u, using (.) and the above inequality, we find that




d
dt

∫

R
|∇u| dx +

∫

R
|�u| dx

=
∫

R
(u · ∇)u · �u dx +

∫

R
n∇φ�u dx

=
∑

i,j

∫

R
ui∂iu ∂

j u dx +
∫

R
n∇φ�u dx

= –
∑

i,j

∫

R
∂jui ∂iu∂judx +

∫

R
n∇φ�u dx

≤ C‖∇u‖
L‖∇u‖L + ‖n‖L∞‖∇φ‖L‖�u‖L

≤ C‖u‖Ḃ∞,∞‖�u‖L‖∇u‖L + C‖n‖L∞‖�u‖L

≤ 

‖�u‖

L + C‖u‖
Ḃ∞,∞

‖∇u‖
L + C‖n‖

L∞ ,

which gives

‖u‖L∞(,T ;H) + ‖u‖L(,T ;H) ≤ C. (.)

By (.), this completes the proof of Case .
Case . Let (.) and (.) hold true.
Testing (.) by –�u, using (.) and the following inequalities [, ]:

‖u · ∇u‖L ≤ C‖u‖Ḃ–θ∞,∞‖u‖Ḃ+θ
,

,  < θ < , (.)

‖u‖Ḃθ
,

≤ C‖u‖–θ
L ‖∇u‖θ

L ,  < θ < , (.)
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we derive




d
dt

∫

R
|∇u| dx +

∫

R
|�u| dx

=
∫

R
(u · ∇)u · �u dx +

∫

R
n∇φ�u dx

≤ ‖u · ∇u‖L‖�u‖L + ‖n‖L∞‖∇φ‖L‖�u‖L

≤ C‖u‖Ḃ–θ∞,∞‖∇u‖–θ
L ‖�u‖+θ

L + C‖n‖L∞‖�u‖L

≤ 

‖�u‖

L + C‖u‖
Ḃ


–θ∞,∞

‖∇u‖
L + C‖n‖

L∞ ,

which yields (.); this completes the proof of Case  again by (.).
Case . Let (.) and (.) hold true.
Testing (.) by –�u, using (.), we deduce that




d
dt

∫

R
|∇u| dx +

∫

R
|�u| dx

= –
∑

i,j

∫

R
∂jui ∂iu∂judx +

∫

R
n∇φ�u dx

=: I +
∫

R
n∇φ�u dx. (.)

By the very same calculations as those in [], we get

I ≤ 

‖�u‖

L + C‖∇u‖
L + C‖∇u‖Ḃ∞,∞‖∇u‖

L log
(
e + ‖∇u‖

L
)
. (.)

Inserting (.) into (.) and solving the resulting inequality, we arrive at (.). This com-
pletes the proof of Case .

Case . Let (.) (r = –) and (.) hold true.
Testing (.) by |u|u and using (.), we observe that




d
dt

∫

R
|u| dx +

∫

R
|u||∇u| dx +




∫

R

∣
∣∇|u|∣∣ dx

= –
∫

R
(u · ∇)π |u| dx –

∫

R
n∇φ|u|u dx

=: I + I. (.)

I can be bounded as follows:

I ≤ ‖n‖L∞‖∇φ‖L‖u‖
L . (.)

We bounded I as follows:

I =
∫

R
πu · ∇|u| dx

≤ ‖π‖L‖u‖L
∥∥∇|u|∥∥L
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≤ ‖π‖ 

Ḃ–∞,∞

‖∇π‖/
L ‖u‖L

∥∥∇|u|∥∥L

≤ ‖π‖ 

Ḃ–∞,∞

(‖u · ∇u‖L + ‖n∇φ‖L
)/‖u‖L

∥
∥∇|u|∥∥L

≤ ‖π‖ 

Ḃ–∞,∞

(∥∥u|∇u|∥∥L + ‖n‖L∞
)/‖u‖L

∥
∥∇|u|∥∥L

≤ 

∥
∥∇|u|∥∥

L +


∥
∥u|∇u|∥∥

L + C‖π‖
Ḃ–∞,∞

‖u‖
L + C‖n‖

L∞ , (.)

where we have used the elegant inequality [, ]

‖π‖
L ≤ C‖π‖Ḃ–∞,∞‖∇π‖L , (.)

and the pressure estimate

‖∇π‖L ≤ C
(‖u · ∇u‖L + ‖n∇φ‖L

)
. (.)

Inserting (.) and (.) into (.) and using the Gronwall inequality, we conclude that

‖u‖L∞(,T ;L) ≤ C. (.)

By (.), this completes the proof of Case .

4 Proof of Corollary 1.1
Testing (.) by nm– (m ≥ ), using (.) and (.) and denoting w := n m

 , we have


m

d
dt

∫

R
w dx +

(m – )
m

∫

R
|∇w| dx

≤ C
∣
∣∣
∣

∫
χ (p)∇p · w∇w dx

∣
∣∣
∣

≤ C‖∇p‖Lq‖w‖
L

q
q–

‖∇w‖L

≤ C‖∇p‖Lq‖w‖– 
q

L ‖∇w‖+ 
q

L

≤ m – 
m ‖∇w‖

L + C‖∇p‖
q

q–
Lq ‖w‖

L ,

which implies

‖n‖L∞(,T ;Lm) ≤ C for m > . (.)

Here we used the Gagliardo-Nirenberg inequality

‖w‖
L

q
q–

≤ C‖w‖– 
q

L ‖∇w‖

q
L with  < q ≤ ∞. (.)

Now, since the proofs of other cases are very similar to those in Case , Case , Case 
and Case , we only prove the following case: Let (.) (– < r ≤ ) and (.) hold true.

We still have (.) and (.).
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Using Lemma ., (.), (.) and the pressure estimate

‖π‖L ≤ C
(‖u‖

L +
∥∥(–�)– 

 (n∇φ)
∥∥

L
)

≤ C
(‖u‖

L + ‖n∇φ‖
L




)

≤ C
(‖u‖

L + 
)
, (.)

. we bound I as follows:

I = –
∫

R
u∇π�|u| dx –

∫

R
u∇πh|u| dx

≤ ‖∇π�‖L‖u‖
L +

∫

R
uπh∇|u| dx

≤ ‖π�‖


L

∥∥∇π�

∥∥


L∞‖u‖

L + ‖u‖L‖πh‖L
∥∥∇|u|∥∥L

≤ ‖π�‖


L

∥
∥∇π�

∥
∥



L∞‖u‖

L + ‖u‖L‖πh‖


W –,∞‖∇πh‖



L

∥
∥∇|u|∥∥L

≤ ∥∥∇π�

∥∥


L∞

(‖u‖
L + 

)
+ C‖πh‖



W –,∞

(‖u · ∇u‖L + 
) 

 ‖u‖L
∥∥∇|u|∥∥L

≤ 

∥∥∇|u|∥∥

L +


‖u · ∇u‖

L + C
(
e + ‖π‖Br∞,∞

) 
+r

(‖u‖
L + 

)
+ C. (.)

Inserting (.) and (.) into (.), we obtain (.).
By the classical regularity theory of parabolic equations [], it follows from (.), (.),

(.) and (.) that

‖∇n‖L(,T ;Lr̃ ) ≤ C
(
 + ‖un‖L(,T ;Lr̃ ) +

∥∥nχ (p)∇p
∥∥

L(,T ;Lr̃)

)

≤ C
(
 + ‖u‖L∞(,T ;L)‖n‖

L∞(,T ;L
r̃

–r̃ )
+ ‖n‖

L∞(,T ;L
qr̃

q–r̃ )
‖∇p‖L(,T ;Lq)

)

≤ C (.)

for some  < r̃ <  and r̃ < q.
Therefore,

‖n‖L(,T ;L∞) ≤ C. (.)

This completes the proof.
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