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Abstract

In this paper, we derive an anisotropic Picone identity for the anisotropic Laplacian,
which contains some known Picone identities. As applications, a Sturmian
comparison principle to the anisotropic elliptic equation and an anisotropic Hardy
type inequality are shown.
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1 Introduction and main results

In recent years, the anisotropic Laplacian

ou

P2 5y
a_x ~— ) Pi> 1, (11)

9
Za_xz< 0x;

i=1

has been considerably concerned. Note that if p; =2 (i = 1,...,n), then (1.1) becomes the
classical Laplacian; if p; = p = const, then (1.1) is the pseudo-p-Laplacian (see [1])
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The anisotropic Laplacian has not only the widespread practical background in the nat-
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ural science, but also the important theoretical value in the mathematics. For example, it
reflects anisotropic physical properties of some reinforced materials (Lions [2] and Tang
[3]), and describes the dynamics of fluids in the anisotropic media when the conductivi-
ties of the media are different in each direction [4, 5]. The equations associated with (1.1)
are also deduced in the image processing [6]. Existence, integrability, boundedness, and
continuity of solutions to anisotropic elliptic equations have received much attention; see
[7-15] and the references therein. In this paper, we prove an anisotropic Picone identity for
the anisotropic Laplacian, which contains some known Picone identities. As applications,
a Sturmian comparison principle to the anisotropic elliptic equation and an anisotropic
Hardy type inequality are given. Before giving the main results of this paper, we briefly
recall the existing results for the isotropic case.
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Picone [16] considered the homogeneous linear second order differential system

(a1 (x)u) + bi(x)u =0,
(ax(x)V) + by(x)v =0,

where u and v are differentiable functions in x, and proved the identity that, for the differ-

entiable function v(x) # 0,

u

/ 2
(% (alu/v - azm/)) =(by — b)u? + (a1 — ax)u'? + ay (u' - V/;) ; 1.2)

then a Sturmian comparison principle and the oscillation theory of solutions were ob-
tained via (1.2). Picone [17] (see also Allegretto [18]) generalized (1.2) to a Laplacian that,

for differentiable functions v > 0 and u# > 0,
u 2 u? u
(w - —Vv) = |Vul + 5 |Vv[* =2=Vv. Vu
14 v 14
u2
= |Vu|? - v(-)w (1.3)
1%

Allegretto and Huang [19], Dunninger [20] independently extended (1.3) to a p-Laplacian,
for differentiable functions v> 0 and # > 0,

W w1
|Vul? + (p - 1)V—p|vV|P —pmwvv’”w -Vu

u? )
= |Vulff = V{ — ||Vv|P~*Vy, (1.4)
vp-1

and applied (1.4) to derive a Sturmian comparison principle, Liouville’s theorem, the
Hardy inequality, and some profound results for p-Laplace equations and systems. For
other generalizations of the Picone identities and applications, see Bal [21], Dwivedi [22],
Dwivedi and Tyagi [23], Niu, Zhang and Wang [24], Tyagi [25]. These results indicate that
Picone identities are seemingly simple in form, but extremely useful in the study of partial
differential equations, and they have become an important tool in the analysis.

Our main results are as follows.

Theorem 1.1 (Anisotropic Picone identity) Letv > 0 and u > 0 be two differentiable func-
tions in the set 2 C R", and denote
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wherep; >1(i=1,...,n). Then

R(u,v) = L(u, v). 1.7)
Moreover, we have

L(u,v) > 0;
Sfurthermore, L(u,v) = 0 a.e. in Q ifand only if u = cv a.e. in Q, ¢ is a positive constant.
Remark 1.2 If p; =2 (i=1,...,n) in (1.5) and (1.6), we have (1.3) from (1.7). If p; =p =
const (i=1,...,n) in (1.5) and (1.6), the result in [26] follows. Moreover, the identity in

Theorem 1.1 is different from the one in [26].

Theorem 1.3 (Anisotropic Hardy type inequality) Let u € Cy(A), 1<pi<n,i=1,...,n,
A={xeR"x; #0,i=1,...,n}. Then we have

pi— 1 |u|19i
( Pi > / |xi|pi ' (18)
1

This paper is organized as follows: The proofs of Theorem 1.1 and a Sturmian com-

i=

parison principle to the anisotropic elliptic equation are given in Section 2; Section 3 is
devoted to the proof of Theorem 1.3 in which a key ingredient is to choose a suitable auxil-

iary function (see (3.3) below) for the anisotropic case. Two corollaries are also furnished.

2 Proof of Theorem 1.1
Proof of Theorem 1.1 One derives easily that

" du P wPi \ | av P2 v
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o ax, Piipit ypi~1 ax axi 0x; = ! Wi | 0x
:L(ur V);
which is (1.7). To check L(,v) > 0, we rewrite L(x, v) by
u”l kid pi= kid i
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where

b

pi 1 oy \Zi 1\ 7i-
Y e (G
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Recall Young’s inequality: for a > 0 and b > 0,

Pi qu
ab<2 2 2.2)
p q

where p;>1,¢4;>1(i=1,...,n) and i + l = 1; the equality holds if and only if a? = b1,

1
namely, a = b?i”T. We take a = |a” | and b=(% | )pi’1 in (2.2) to obtain
u av -
pi Bxi 8x,
P pi-1 Pt
oul” p;-1 0 T\ P
<p| || 42 . , (2.3)
pi| 0x; Di ax,
and so I > 0 from (2.3). Clearly, II > 0 in virtue of | 3; || - 837" 37” > 0. Hence L(u,v) > 0
from (2.1).

If u = cv, ¢ is a positive constant, then clearly L(x,v) = 0. Now let us conclude that
L(u,v) = 0 implies u = cv. In fact, if L(u, v)(xo) = 0, xg € 2, then we consider the two cases
u(xo) # 0 and u(xo) = 0, respectively.

(a) If u(xo) # 0, then I = 0 and II = 0. One shows by I = 0 that

ou| u|ov
—|==]— (2.4)
0x; v|0x;
Using II = 0, it implies
0 d
omw_.v (2.5)
Bxi Bx,»

Putting (2.5) into (2.4) yields u = cv.
(b) If u(xo) = 0, then we denote S = {x € Q|u(x) = 0} and g—; =0a.e.in S. Thus

ou v
K VIR TR T
ox; \ v v2 ’

which shows u = cv. The proof of Theorem 1.1 is completed. d
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Let us address anisotropic Sobolev spaces; see Adams [27], Lu [28], Troisi [29] etc. Given
adomain Q CR", p;>1,i=1,2,...,n. We define two anisotropic Sobolev spaces by

d
whe)(Q) = {ue whi(Q): 8—M eLri(Q),i=1 w”}
Xi
and
) d
Wy (@) = {u e Wy () a—u e LFi(Q),i=1 n}

with the norms

el e / |u|dx+z<f )1’11'

8x,

and
n

leell 100 gy = </
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ou

1
Pi p_L
— dx) ,

Bxi

respectively. Note that Wl b0 (€2) is the closure of C3°(£2) in Whed(Q). It is well known
that W) (Q) and W, Y7 (Q) are both separable and reflexive Banach spaces.

We will show a Sturmian comparison principle to the anisotropic elliptic equation by
Theorem 1.1.

Proposition 2.1 Let fi(x) and f(x) be two continuous functions with fi(x) < fo(x) in the
bounded domain Q. Assume that there exists a positive function u € Wé’(pi)(Q) satisfying

i—2 L
Y e (BT = YL i, xe,
u>0, xeQ, (2.6)
u=0, x €02

Then any nontrivial solution v to the following anisotropic elliptic equation:

i w9
= VPi~l i

i=

v [P
Bx,'

™ ) Zfz(x i, x€ 8, (2.7)

must change sign.

Proof Suppose that v to (2.7) does not change sign, without loss of generality, let v > 0
in Q. By (2.6), (2.7), and (1.7), we observe

OfLL(u,v)dx:/R(u,v)dx
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<0,

which is a contradiction. This completes the proof.

3 Proof of Theorem 1.3
To prove Theorem 1.3, we need a lemma from Theorem 1.1.

Lemma 3.1 If there exist a constant k; > 0 and a function h;(x), i =1,...

differentiable function v > 0 in the set 2 satisfies

a
8xi

then, for any 0 < u € C3(R2), we have

pi—2 P
—V> > kih(x)v? !
896,‘

av
Bxi

dx>Zk / x)ul dx.

Proof By (3.1) and (1.7), we see

O</ L(u,v)dx = /QR(u,v)dx

av [Pi7% gy
d
Z/ axl * Z,/ 0x; (Vpl ) Bxi
ubi av [Fi72 gy
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pi n
—| dx- Zki/ hi(x)u? dx,
[EE

which implies (3.2).
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, 1, such that a

(3.1)

(3.2)

O

Proof of Theorem 1.3 Without loss of generality, we let 0 < u € Ci°. To use Lemma 3.1, we

introduce the auxiliary function
n
v=[TIwl" = kv,

where 8 = p— and v; =[], %1%, hence

v
Py Bivilxi P2,
1

(3.3)
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ov [ pi=2ppi72 1 Bipi=2Bi-pi+2
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Taking k; = (p;—__l)”i and /1;(x) = = ‘pl , and using Lemma 3.1, we obtain (1.8). a

Corollary 3.2 For u € C}(A), it follows that

2
fqu| dx> |u|2 dx. (3.5)
A ||

Proof Letting p; =2 (i =1,...,n) in (1.8) and noting the elementary inequality

n -1 n
1 1 .
n(é 61—1) 5;(5 a,-) fora;>0,i=1,...,n, (3.6)
i=1

i=1

we have by taking a; = |x;|?,

/|Vu|2dx=
A i=1 A i
1/ o= 1
>— | |ul dx
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Corollary 3.3 If p > 2, then, for u € Cj(A), it follows that

—1\? p+ r
|Vul? dx > 2= inz ﬂ dx. (3.7)
A p A lxlP

Proof Letp;=p>2(i=1,...,n) in (1.8). Recall the inequality

2
n 5 n P p;Z )
Eai < Ea,f’ nr fora;>0,i=1,...,n,
i=1 i=1

which gives
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Taking a; = ﬁ in (3.8), it implies by (3.6) that
1
n n 5 2 2
1 p=2 1 p=2 ( n )7 pr2 1
—>n 2 — >n 2 | —— =n? —-. (3.9)
; Joil” ; o | o bl |xl”

Putting (3.9) into the right-hand side of (1.8),

n V4 V4 p V4
p-1 |u] p-1\" p2 [ |ul
E (_p ) /—|x 7 dx > _p n? _|x|p dx. (3.10)
A IXi A

i=1
On the other hand,
n a V4 n 8 2\ 2
/Z s dxf/ D dx:/|Vu|de. (3.11)
A 10 a\“o 10 A
Hence (3.7) is proved via (3.10) and (3.11). |
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