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1 Introduction
For any f € Cjo,1), the corresponding Bernstein operators and Bernsetin-Durrmeyer oper-
ators are defined by

Bu(f %)= Zf(g)pnkm (11)

k=0

and

n 1
D)=+ 1) ) [ SOt (12)

k=0

respectively, where p,(x) := (Z)xk(l —x)"*, k=0,1,...,n Both B,(f,x) and D,(f,x) have
played very important roles in approximation theory and computer science. There are
many generalizations of the operators B,(f,x) and D,(f,x). Among them, Gadjiev and
Ghorbanalizadeh [1] introduced the following new generalized Bernstein-Stancu type op-
erators with shifted knots:

n n k
Snap (%) := (n ;ﬂz) D(n : 2 )an(x), (1.3)

k=0

where x € A, =[5, 7:32], and

k n-k
n ol 1+ oy
n = - —_— = , k=0,1,...,n,
k) (k)(x n+ﬂ2) (VHﬁz x) "
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with o, Bk, k = 1,2 positive numbers satisfying 0 < oy < 1,0 < ay < ;. Obviously, when
ar=ay =P =Pr=0,S,4p(f %) reduces to the classical Bernstein operators in (1.1), when
ay = B =0, it reduces to the so-called Bernstein-Stancu operators which were introduced
by Stancu [2]:

[k
Bap (f,x) = Zf(n s ;)pnk(x) (1.4)

k=0

Some approximation properties and generalizations of the operators S, s(f,%) can be
found in [3-5].
Motivated by (1.3), we introduce the following generalization of the operators (1.2):

§W'ﬂ(f,x):= <n+,82) ank%k /%k(ﬁf(il;:gll)dt’

where

Ansz g dt, k=0,1,...m,
Ap

and oy, Bx, k = 1,2 positive numbers satisfying 0 < a3 < £, 0 < ay < .
By Lemma 1 in Section 2, we observe that §n,a,ﬂ (f,x) can be rewritten as follows:

~ n+ B\ nt + oy
Sn,a,ﬂ(f,x):< ” ) ank(x)(n+1)/ an(t)f( ) )dt.

Especially, when a; = oy = 1 = 52 = 0, §n,a,ﬂ(f,x) reduces to the classical Bernstein-
Durrmeyer operators in (1.2). Many authors have studied some special cases of the oper-
ators §,,,a,ﬁ (f,x). For example, the case a; = @ = 81 = 0 in [6] by Jung, Deo, and Dhamija,
the case a1 = 1 = 0 in [7] by Acar, Aral, and Gupta.

The main purpose of the present paper is to establish pointwise direct and converse
approximation theorems of approximation by §n,a, s(f,x). To state our result, we need some

notations:
wik(f, t) = sup sup (1.5)
0<h<t x+hp*eA,
D; = {f € C(A),f € A.Cuoe, |@*f"| < +00},
K, (f.t*) = mf{l[f gl + 22| g"||} (1.6)
l_)A ={feD, |f"| < +oo},
K, (f.6?) = inf {|If —gll +£*[0*¢"| + "II1 1.7)

geDby,

and ¢(x) = \/(x — -2 ) (%2 _x) 0 <A <1.Itis well known (see [8], Theorem 3.1.2) that

n+fy/ \n+pPo
wék (f,0) ~ K (f, 82) ~K o (£, 1), (1.8)

where x ~ y means that there exists a positive constant ¢ such that ¢y <x < cy.
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Our first result can be read as follows.

Theorem 1 Let f be a continuous function on A,, , € [0,1] be a fixed positive number.
Then there exists a positive constant C only depending on A, ay, oz, 1, and By such that

~ 1-A
a1 = (1222 o 2)), 19

where §,,(x) = o(x) +1//n ~ max{p(x),1/s/n}, and w(f, t) is the usual modulus of continuity
off on A,.

Throughout the paper, C denotes either a positive absolute constant or a positive con-
stant that may depend on some parameters but not on f, x, and #n. Their values may be
different at different locations.

For the converse result, we have the following.

Theorem 2 Let f be a continuous function on A,, 0 < a < %, 0<A<1. Then
(S (12) = f@)] = O((n7285(x))) (110)

implies that
) o%L(f,0=0(); @) of,t)=0(""?). (111)

2 Auxiliary lemmas
Lemmal We have

n+l

1

Akn:/ g dt = [ 2 ., k=01...n 1)
An n+ po n+1

Proof Forp,q=1,2,..., set

S
= An x_”l+,32 V1+ﬁz_x ¥

n q-1
ntfy n
= / xP 1( - x) dx.
0 n+ B

Then

g-1 (w6 n _1 _1 n n -2
=—/ - —— -« —x dx
r Jo n+ By n+ B n+ B

qg-1 n X q-1_,
= -—B'(pg-1) - TB ®.9),
2

which implies that

q-1

_ B*(p,q -1).
p+q-1 n+py w.q-1)

B*(P’q) =
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Therefore,

n

k

m-k)n-k-1)---2-1__
<n+/32) () n+Dn---(k+ 2) B(k+1’1)

)”kk+1 ) X

Men = )B*(k+1 n—k+1)

X ax

n+ B n+1) Jo

‘( )
“\n+ph n+l

Page 4 of 13

O
Lemma 2 For any x € A, we have
< 2 Co
Sn,a,ﬂ ((t _x) ’x) =< _(Sn(x) (22)
n
Proof Write
2n+l n
~ n+p
Buapfx) = ( _ 2) ank(x)(n +1) / (O (O .
Then [7]
Doacs (L) = 1, Dy p (b 6) = 11— 4 1222 (2.3)
e T D S n+2)n+ Ba) ’
2
~ oy n(n-1)
Dyopg(ttx)=|x-
et (£%) (’“ " +/32) (n+2)(n+3)
n o 4n
+ Xx—
n+p n+pBy) (n+2)(n+3)
n 2 2 2noy o
+ + x—
n+pBy) m+2)n+3) (m+2)(n+ps) n+ B
2nay (%)
+ + ,
(m+2)(n+p2)? \n+ps
and
~ C
Dn,a,ﬂ ((t - x)Z’x) =< ;Si(x)
By the facts that
gn,a,ﬂ (1,%) = bn,oz,ﬂ (1,x) =1,
~ n ~ o
Snoz L, = —Dna t, » 2.4
a8 (L5 %) s a8( x)+n+ﬁ1 (2.4)
and
~ o~ 210 o?
Sna tzwx = 7Dna t2’ not (t;x) + 717
(%) = G g Dnes (03) + G P (n +Br)
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we get
"2
(n+ B1)?

( 2n’x 2no; 2nx )IND (%)
+ + - i (B X
(n+ B2 (P n+p)

gn,oz,ﬂ ((t - ?C)Z, x) = bn,a,ﬁ ((t - x)2’ x)

of 20, o,
Trr B nap Tt B
n? ) (BE+4B)n+2BE ,
= (e g e (€270 + 2 )
201(B1 + B + 2)n? + 2nay (BrBa + 2B1 +22) + 4041,31,32
N
(n+B)2(m+2)(n+ B)
o
M+&F
- C
<Duu ((t x)%, ) ;
< S50,
n

Lemma 3 For any given y > 0, we have

>

k=0

8 (%)

k+a 4
: | ()| < CW’ x€[0,1].

n+ B

—-X

Proof Tt was showed in [3] that

3

k=0

k+a 14 (8:(x))”
: @] < C=2 2, xe 0,1,

n+ B

—-X

where §%(x) := ¥ (x) + —= and ¥ (x) = V21 — x). We verify that
8%(x) ~ 8,(x), «x€]0,1].

200+1 n—fo+2an

By niby ], we have

In fact, when x € [

1 (0%}
—x<x-— <ux,
2 n+ By
1 2
—(1-x)< —x<l-x
2 n+ py
Thus,
v (x) ~ p(x),

which implies (2.7) for x € [22242, 1=P2+202] \\hen x € [0, 20‘”1) U (= ﬂ2+2a2 ,1], we have

n+fy’  nt+py

o) ~ 5. () ~
8, (x) ~ 8,(x) NG

and thus (2.7) also holds.

Page 5 of 13

(2.5)

(2.6)

(2.7)

(2.8)
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Now, by (2.6) and (2.7), we have

n }/ n
> @] <>

k=0 k=0
C V(x)
=< _y Z an(x )//2

k=0

8 (%)
- nv/2 :

k+0[2 k+(¥2 k+0l1

n+ B

—-X

n+By, n+p

—-X

14 n k 14
|gnic()] + A x| gu)]
n

o T B

Lemma 4 For any x € A,, we have

3 g+ 1 / $2(0gu(0)dt < C8(x) 29)

k=0

and
> sk [ 80000 = 5,7, (2.10)
Ap

Proof By a similar calculation to that of Lemma 1, we have

n+3
) S n (1 —k + 1)k +1)
fAn ? (gt at = (n " m) 2+ D) 21D

On the other hand, we have

“(k Kk no \"* ay no \"e- 5
Y(5mw)mo-(mm) -5)-(78) —
n-1 n \"? a \2
n (n+52) (x_n+/32>

n-1 no \"? ()
T oon <n+,32) ¢

Therefore,

1
ank n+1)/ £)guic(t dt<22an n+1)/ <¢2(t)+;)q,,k(t)dt
k=0 An

; n \"?(m-k+1)k+1)
§2§an(x)<n+/32) I

C n
+ =D gulx)
"o
n-kk 1 C
= CZan < ;) o

< C82(x),

which proves (2.9).
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By Lemma 1, we have

n / 52O qunpn(Odt < Cn [ (¢70) + 1) gmarin (0) dt
Ay

An

< Cn / (,0 51n+1k+1( )dt+ 1)

( b+ i qn_l,k(t) dt + 1)

k+1)(

(n+1) 1)
(k+ 1)(n-k)

Then

n-1
S i@ / 57200 O = CnS uas(®
k=0 k=0
= Cn < C82(%).
Hence, (2.10) is proved. O

Lemma 5 Iff is r times differentiable on [0,1], then

2n+1 r n-r
~ 1)!n!
S(r) : _ n+ ﬂz n (Vl + -
”’“’ﬁ(f %) ( n n+p) (m=r)lmn+r) kz;q )
H;z nt+o
X / ’ qn+r,k+r(t)f(r)( 1) dt. (2'12)
s n+

Proof By using Leibniz’s theorem, we have

) _(nt B2 el L (-1 (n +1)!
Snarg /) = < n > Z Z < > —)n-k-r+i)!

i=0 k=i
k—i n—k-r+i p2r%2
[0%) n+ oy n+By nt + oy
- - it dt
) (" n+ﬂ2) <n+ﬁz ") /ﬂ ol )f(”l+,31 )
2n+1 n— r+i r
n+ (-1)"n+1)!
() (),
n k=i i=0
T?ﬂz nt+a
X / : gkt )f( 1> dt
%2 + b1
n+py
2n+1 n-r
n+p (n+1)! ,
= : (~1) G ()
n (n—r)! —

ntay g

n+fy nt+o
faz Z() l)q,,kﬂt)f<n+ﬁll)dt.

n+py  i=0
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Since

r r

d
q;1+rk+r(t) Z (:) (_l)l (n i r) qn, ki (),

dt’
i=0
we have
0 n+ By \ 2"t (n + 1)‘n' —
n,a,ﬂ(f’x) = . l’l A V)‘ an rk(x)
n+o(2 nt+ao
x / ( l)rqnw k+r(t)f( l> dt.
rz+ﬂ '31
2
We obtain the required result by integrating by parts r times. O
Set
Ifllo = sup{ |85 It

x€Ay

Cap = {f € ClA, IIfllo < +00};

b

2
”f”l _ Sup”&(qZ—)L a)(1-A

x€Ay
Chy = {f € Cap IIf Ih < +00};
Ifll2 = Sup{|82“’ ) (x)f" (x)

x€Ay

C2, = {f € Cunf € ACuoas Ifll2 < +0};

Ky, (f,t) = mf {IF —gllo + tlglh};

uk

K30 = inf {IIf —gllo +llgll2}.
geC[M

Lemma 6 [f0 <X <1,0<a<?2,then

ISnas O], = CH"Pfllo,  f € Cans (2.13)

ISnas )], < Clifl, feCh,. (2.14)

Proof Firstly, we prove (2.13) by considering the following two cases.

Casel.x € B, := [:3;; , ”;f_%;l]. In this case, we have

(x)>min( <a2+1) <n+a2—1))>£
v =\ s ) e ) U

which means that

8,(x) ~ @(x) forx € B,. (2.15)



Dong and Yu Journal of Inequalities and Applications (2017) 2017:28 Page 9 of 13

By simple calculations, we have

@i (x) = ng~>(x) (l}:—;i - x) Gk (%) (2.16)

and

5(nt+oz1)_ <t oy al—ﬂlt)(nﬂxz ; ﬁlt—al)_ri
"\n+p ) _n+/32+ n+ B n+,82_ * n+ By Jn
1 1 1
= (pz(t)+O<;>+ﬁ“’<p(t)+ﬁ=5n(t)- (2.17)

By (2.1), (2.15)-(2.17), and Holder’s inequality, we have

(FZ-o)1-2) , =
I&f g (x)S;,a,ﬂ(f,x)I

) e+ ,8 2n+1
< an(ﬂ—a)(l—k)—Z(x)( 2)
n
" k+as nt + o
X Z an(x) —-X (}’1 + 1) f an(t) dt
k=0 n+ B Ap n+ Py
- k
< Cllf lop Zr 012 () > qux) x4 1) ‘ / 840N (£) g (t) dt‘
Py n+ By An
2 Z k+oan a(l-3)/2
< Cnllflop' =70 2(x) Y " g(x) —x ((n +1) / S0 g (2) dt)
Py n+ By An
1-a(1-1)/2
. ((n 0 [ 4u) dr)
An
2 = k+ay a(l-3)/2
< Crllf lop 202 @) )| —— 5 " ((n +1) / 8 (O)quc(t) dt) :
2 Ay

k=0

By (2.9), (2.15) (2.5), and Holder’s inequality again, we have

(75 -0)1-1), ¥
|8, (®)S),0,5 (%))

k+ oo
I’l+ﬂ2

n W 1-a(1-1)/2
2 —all-
< Cnllfllop' 70D () (Z Tk (%) )

k=0

n a(l-1)/2
x (ank(x)(n o) [ 80gu0 dt)
k=0 An

2(1-2)
< Cn"|flog 27 (&) < CH'CPf . (218)
o o+l n+ar—-1 n+o .
Case2.x € B = [n+/232’ niﬁz) U ( n+/232 , ﬁ]. In this case, we have
1 C
Su(x) ~—, xeB,. (2.19)

i
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Noting that
@) = 1(Gn-14-1(%) — Guo1x(%))
with g,,_1,-1(%) = gu-1,,(x) = 0, we get

n-1
nt + oy

S plfox)=n Z Gn-1,(x) (%) (n + 1) A f(n—> (@ni1 () = gui(0)) dt.
k=0 "

+ b1

Then, by using (2.17) and Holder’s inequality twice,

(35 -0)1-1),
18,27 W)S, 0 50|

-1
(2 —a)(1-2) < e
< Cn8, 7 I o) Y g + 1) / XU (G (£) + qui(2)) dt
k=0 An

n-1 a(l-1)

<8 W1l S g1k ((n +1) [ 82O(@unr(6) + g (0) dt)

k=0 An

a(l-1)
2

2 n-1
<3, P @Il (2 Grr k@) + 1) /A 52O (@i 8) + dni(2)) dt)
k=0

n

(5% —o)(1-2) _
< Cnd, 7T @) |f lose 0

< Cn7x |f o, (2:20)

where in the fourth inequality, we used the following fact, which can be deduced exactly
in the same way as (2.10):

n-1
>t @r+ 1) [ 820,00 dt = C).
k=0 An

We obtain (2.13) by combining (2.18) and (2.20).
Now, we begin to prove (2.14). If (237 —a)(X —1) <0, by (2.12) and using Hoélder’s in-
equality twice, we get

(5% - 11, =
I&q2 * (x)Sn,a,ﬂ(f,x)I

72 —a)(A-1)

n-1
(25 -@)(1-%) (
<CI |82 @Y guon() / Gt i1 (£)5,2 (t)dt
k=0 An

An

1-1 (2 —w)(1-2)
X (”/ qn+1,k+1(t) dt)
An

2 a0 n-1
< Clf s ”(x)an_l,k(m(n / qml,m(t)s;z(t)dt)
k=0

An

(Zr-a)1-2), . 2%
< Cllf 8" ®) ) gn1x() (n / Anr i (£)8,2(0) dt)
k=0

155 —a)(1-2)

(by (2.1))
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(5% -0)1-1)

[T

n-1
(525 -a)(1-) _
< Clf 187 <x><§ g1k / qn+1,k+1(t>af(t)dt>
k=0

An

= Clifllv

where, in the last inequality, (2.10) is applied.
If (% —a)(A —1) >0, by using (2.9) instead of (2.10), we also can deduce that

(% -o)1-1), =~
18,7 ®)S),0,5F>%)| < CIfIIr- O

Lemma?7 [fO0<A<1,0<a<2,then

”gn,a,ﬁ(f) ”2 =< C”l|lf||0, f € Ca,)n (221)
s, < Cllflla feCli (2.22)
Proof It can be proved in a way similar to Lemma 6. O
Lemma8 For0<t< %, t<x=<1-%,x€(0,1], B <2, we have
)
/ 8P (x + u)du < C(B)L5,P (x). (2.23)
~t/2

Lemma 9 For0<t<i,tfxfl—t,xe[0,1],0§ﬁ§2,wehave

H2 ptf2
/ / 8;5(x +u+v)dudv < CtZS;'g (x). (2.24)
—t/2 J-t/2

It has been shown in [9] that Lemma 8 and Lemma 9 are valid when §,(¢) is replaced by
8 (t), which combining with (2.8) proves Lemma 8 and Lemma 9.

3 Proofs of theorems
3.1 Proof of Theorem 1
Define the auxiliary operators S, g(f,x) as follows:

Sn,oz,ﬂ (f; x) = §n,oz,/i (f; x) + Ln,a,ﬂ (f, x), (3.1)

where

Lup (f,x) =f(x) _f(S:n,a,ﬁ(t) x))

By (2.3) and (2.4), we have

~ C

’Sn,a,ﬂ(t’x) _x‘ S ] (32)
n

Sn,a,ﬂ Lx)=1, Sn,a,ﬂ (t-—xx)=0, (3.3)

and

ISnapll = 3. (3.4)
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It follows from (3.2) that

|Lnas (1] < of,

En,a,ﬁ(t,x) - x|) <Cw <f; %) (3.5)

From (1.7) and (1.8), for any fixed x, A, and #, we may choose a g, ., (t) € l_)i such that

If - gll < Co2, (F, n728,7 (), (3:6)
() g = G (785, @)
(]/[_1/26}!_)‘ (x))4/(2*)u) Hg// || < CwiA (f; n—l/282—l(x)). (38)

By (3.4) and (3.6), we have

Snas (%) = f(®)] < |Snas((f —),%)| + [f(x) — )| + |Snap(g,%) - g)|
< 4|f - gll + |Snap(gx) — g)|
< Ca)ik (f, n_l/zé,lq_x(x)) + ‘Sn,a,ﬂ(g,x) —g(x)‘. (3.9)

Noting that ¢**(x) and §?*(x) are concave functions on [0,1], for any ¢,x € [0,1], and u
between x and ¢, say u = Ox + (1 — 0)t, 0 <0 <1, we have

|t — ul 0t — x| 0|t - x| |t — x|
21 Ty = 2A P = BT ’ (3.10)
P () e (Ox+(1-0)t) T 09> (x) + 1 -0)p>*(t) — ¢**(x)
|t —ul |t—x]|
(3.11)

82H(u) ~ 8 (x)

By using Taylor’s expansion
t
80 =g + ¢ W(e-)+ [ (t-1g W)
(3.3), and (3.11),

1S (g, %) — g(¥)| =

Sn,a,ﬂ (/t(t - u)g//(l/l) du,x)
§n,a,ﬁ (/t(t - u)g" (u) du,x)

En,ot,ﬂ (t,x)
/ (S (&%) — 1) g () dus
X

<

+

When x € B, by (2.15), (3.10), (3.2), and (2.2), we have

(t —x)*
@ (x)
< Cn—lsz—ZA (x) ” g02)»g// H

S (€0) — g()| < cugo%g"ua,,a,ﬁ( ) @070 | B t6) )

< cwzA (f, n 2857 (), (3.12)

where in the last inequality, (3.7) is applied.
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When x € B, by (2.19), (3.10), (3.2), and (2.2), we have

~ t—x)?
0009~ g9 = CIo2¢ (81 (G #) 5.7 W52 | Gripe) )

1
< Cn_183_21(x)(||g02xg”|| + ; ”g//”)

< Cn’lfSﬁ’M(x) ”(pzxgu “ + C(nf1/25iﬁ\(x))4/(2—k) ||g”||

< cw;A (f, n 2857 (), (3.13)

where in the last inequality, we used (3.7) and (3.8).
We complete the proof of Theorem 1 by combining (3.1), (3.5), (3.9), (3.12), and (3.13).

3.2 Proof of Theorem 2
With Lemma 6-Lemma 9, the proof of Theorem 2 can be found exactly in the same way
as that of [9]. We omit the details here.
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