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Abstract
In this paper, the idea of lacunary Iλ-statistical convergent sequence spaces is
discussed which is defined by a Musielak-Orlicz function. We study relations between
lacunary Iλ-statistical convergence with lacunary Iλ-summable sequences. Moreover,
we study the Iλ-lacunary statistical convergence in probabilistic normed space and
discuss some topological properties.
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1 Introduction
The concept of statistical convergence [] which is the extended idea of convergence of real
sequences has become an important tool in many branches of mathematics. For references
one may see [–] and many more.

Similarly, I-convergence is also an extended notion of statistical convergence ([]) of
real sequences. A family of sets I ⊆ A (power sets of A) is an ideal if I is additive, i.e.
S, T ∈ I ⇒ S ∪ T ∈ I , and hereditary i.e. S ∈ I , T ⊆ S ⇒ T ∈ I , where A is any non-empty
set.

A lacunary sequence is an increasing integer sequence θ = (ij) such that i =  and hj =
ij – ij– → ∞ as j → ∞. As regards ideal convergence and lacunary ideal convergence, one
may refer to [–] etc.

Note: Throughout this paper, θ will be determined by the interval Kj = (kj–, kj] and the
ratio kj

kj–
will be defined by φj.

2 Preliminary concepts
A sequence (xi) of real numbers is statistically convergent to M if, for arbitrary ξ > , the
set K(ξ ) = {i ∈N : |xi – M| ≥ ξ} has natural density zero, i.e.,

lim
i


i

i∑

j=

χK (ξ )(j) = ,

where χK (ξ ) denotes the characteristic function of K(ξ ).
A sequence (xi) of elements of R is I-convergent to M ∈R if, for each ξ > ,

{
i ∈N : |xi – M| ≥ ξ

} ∈ I.
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For any lacunary sequence θ = (ij), the space Nθ is defined as (Freedman et al. [])

Nθ =
{

(xi) : lim
j→∞ i–

j

∑

i∈Kj

|xi – M| = , for some M
}

.

The concept of a Musielak-Orlicz function is defined as M = (Mj). The sequence N =
(Ni) is defined by

Ni(a) = sup
{|a|b – Mj(b) : b ≥ 

}
, i = , , . . . ,

which is named the complementary function of a Musielak-Orlicz function M (see [])
(throughout the paper M is a Musielak-Orlicz function).

If λ = (λi) is a non-decreasing sequence of positive integers such that � denotes the set
of all non-decreasing sequences of positive integers. We call a sequence {xi}i∈N lacunary
Iλ-statistically convergent of order α to M, if, for each γ >  and ξ > ,

{
i ∈N :


λα

i

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

( |xj – M|
ρ(j)

)
≥ γ

}∣∣∣∣ ≥ ξ

}
∈ I.

We denote the class of all lacunary Iλ-statistically convergent sequences of order α de-
fined by a Musielak-Orlicz function by Sα

Iλ (M, θ ).
Some particular cases:
. If Mj(x) = M(x), for all j ∈N, then Sα

Iλ (M, θ ) is reduced to Sα
Iλ (M, θ ).

Also, if Mj(x) = x, for all j ∈N, then Sα
Iλ (M, θ ) will be changed as Sα

Iλ (θ ).
. If λi = i, for all i ∈ N, then Sα

Iλ (M, θ ) will be reduced to Sα
I (M, θ ).

. If α = , then α-density of any set is reduced to the natural density of the set. So, the
set Sα

Iλ (M, θ ) reduces to SIλ (M, θ ) for α = .
. If θ = (r) and α = , then (xj) is said to be Iλ-statistically convergent defined by a

Musielak-Orlicz function, i.e. (xj) ∈ SIλ (M).
. if Mj(x) = x, θ = (r), λj = j, α = , then Iλ-lacunary statistically convergence of order

α defined by Musielak-Orlicz function reduces to I-statistical convergence.
In this article, we define the concept of lacunary Iλ-statistically convergence of order

α defined by M and investigate some results on these sequences. Later on, we investi-
gate some results of lacunary Iλ-statistically convergence of real sequences in probabilistic
normed space too.

3 Main results
Theorem . Let λ = (λi) and μ = (μi) be two sequences in � such that λi ≤ μi for all i ∈N

and  < α ≤ β ≤  for fixed reals α and β . If lim infi→∞
λα

i
μ

β
i

> , then Sβ

Iμ (M, θ ) ⊆ Sα
Iλ (M, θ ).

Proof Suppose that λi ≤ μi for all i ∈ N and lim infi→∞
λα

i
μ

β
i

> . Since Ii ⊂ Ji, where Ji =

[i – μi + , i], so for γ > , we can write

{
j ∈ Ji : |xj – M| ≥ γ

} ⊃ {
j ∈ Ii : |xj – M| ≥ γ

}
,
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which implies


μ

β

i

∣∣{j ∈ Ji : |xj – M| ≥ γ
}∣∣ ≥ λα

i

μ
β

i
.


λα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣,

for all i ∈N.
Assume that lim infi→∞

λα
i

μ
β
i

= a, so from the definition we see that {i ∈ B : λα
i

μ
β
i

< a
 } is

finite. Now for ξ > ,

{
i ∈N :


λ

β

i

∣∣{j ∈ Ji : |xj – M| ≥ γ
}∣∣ ≥ ξ

}
⊂

{
i ∈N :


μα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣ ≥ a


ξ

}

∪
{

i ∈ N :
λα

i

μ
β

i
<

a


}
.

Since I is admissible and (xj) is a lacunary Iμ-statistically convergent sequence of order
β defined by M, by using the continuity of M, we see with the lacunary sequence θ = (hi),
the right hand side belongs to I , which completes the proof. �

Theorem . If limi→∞ μi
λ
β
i

= , for λ = (λi) and μ = (μi) two sequences of � such that

λi ≤ μi, ∀i ∈ N and  < α ≤ β ≤  for fixed α, β reals, then Sα
Iλ (M, θ ) ⊆ Sβ

Iμ (M, θ ).

Proof Let (xj) be lacunary Iλ-statistically convergent to M of order α defined by M. Also
assume that limi→∞ μi

λ
β
i

= . Choose m ∈N such that | μi
λ
β
i

– | < ξ

 , ∀i ≥ m.

Since Ii ⊂ Ji, for γ > , we may write


μ

β

i

∣∣{j ∈ Ji : |xj – M| ≥ γ
}∣∣ =


μ

β

i

∣∣{i – μi +  ≤ j ≤ i – λi : |xj – M| ≥ γ
}∣∣

+


μ
β

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣

≤ μi – λi

μ
β

i
+


μ

β

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣

≤ μi – λ
β

i

λ
β

i
+


μ

β

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣

≤
(

μi

λ
β

i
– 

)
+


λα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣

=
ξ


+


λα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣.

Hence,
{

i ∈N :


μ
β

i

∣∣{j ≤ i : |xj – M| ≥ γ
}∣∣ ≥ ξ

}
⊂

{
i ∈N :


λα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣ ≥ ξ



}

∪ {, , , . . . , m}.

Since (xj) is lacunary Iλ-statistically convergent sequence of order α defined by M and
since I is admissible, by using the continuity of M, it follows that the set on the right hand
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side with the lacunary sequence θ = (hi) belongs to I and

Sα
Iλ (M, θ ) ⊆ Sβ

Iμ (M, θ ). �

We define the lacunary Iλ-summable sequence of order α defined by M as

wα
Iλ (M, θ ) =

{
i ∈N :


λα

i

(
j ≤ i :


hi

∑

j∈Ii

Mj

( |xj – M|
ρ(j)

)
≥ γ

)}
∈ I.

Theorem . Given λ = (λi), μ = (μi) ∈ �. Suppose that λi ≤ μi for all i ∈N,  < α ≤ β ≤ .
Then:

. If lim infi→∞
λα

i
μ

β
i

> , then wβ
μ(M, θ ) ⊂ wα

λ(M, θ ).

. If limi→∞ μi
λ
β
i

= , then �∞ ∩ wα
λ(M, θ ) ⊂ wβ

μ(M, θ ).

Theorem . Let λi ≤ μi for all i ∈ N, where λ,μ ∈ �. Then, if lim infi→∞
λα

i
μ

β
i

> , and if

(xj) is lacunary Iμ-summable of order β defined by M, then it is lacunary Iλ-statistically
convergent of order α defined by M. Here  < α ≤ β ≤ , for fixed reals α and β .

Proof For any γ > , we have

∑

j∈Ji

|xj – M| =
∑

j∈Ji ,|xj–M|≥ε

|xj – M| +
∑

j∈Ji ,|xj–M|<ε

|xj – M|

≥
∑

j∈Ii ,|xj–M|≥ε

|xj – M| +
∑

j∈Ii ,|xj–M|≥ε

|xj – M|

≥
∑

j∈Ii ,|xj–M|≥ε

|xj – M|

≥ ∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣.γ .

Therefore,


μ

β

i

∑

j∈Ji

|xj – M| ≥ 
μ

β

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣.γ

≥ λα
i

μ
β

i
.


λα

i

∣∣{j ∈ Ii : |xj – M| ≥ γ
}∣∣.γ .

If lim infi→∞
λα

i
μ

β
i

= a, then {i ∈N : λα
i

μ
β
i

< a
 } is finite. So, for δ > , we get

{
i ∈N :


λα

i

∣∣∣∣

{
j ≤ i :

∑

j∈Ji

|xj – M| ≥ γ

}∣∣∣∣ ≥ ξ

}

⊂
{

i ∈N :


μ
β

i

{
j ∈ Ii : |xj – M| ≥ γ

} ≥ a

ξ

}

∪
{

i ∈N :
λα

i

μ
β

i
<

a


}
.
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Since I is admissible and (xj) is lacunary Iμ-summable sequence of order β defined by
M, using its continuity and using the lacunary sequence θ = (hi), we can conclude that
wβ

Iμ (M, θ ) ⊆ Sα
Iλ (M, θ ). �

Theorem . Let limi→∞ μi
λ
β
i

= , where  < α ≤ β ≤  for fixed reals α and β and λi ≤ μi,

for all i ∈ N, where λ,μ ∈ �. Also let θ ! be a refinement of θ . Let (xj) to be a bounded
sequence. If (xj) is lacunary Iλ-statistically convergent sequence of order α defined by M,
then it is also a lacunary Iμ-summable sequence of order β defined by M. i.e. Sα

Iλ (M, θ ) ⊆
wβ

Iμ (M, θ !).

Proof Suppose that (xj) is lacunary Iλ-statistically convergent sequence of order α defined
by M.

Given that limi→∞ μi
λ
β
i

= , we can choose s ∈N such that | μi
λ
β
i

– | < δ
 , ∀i ≥ s.

Assume that there are a finite number of points θ ! = (j!
i) in the interval Ii = (ji–, ji]. Let

there exists exactly one point j!
i of θ ! in the interval Ii, that is, ji– = j!

p– < j!
p < j!

p+ = ji, for
p ∈ N.

Let I
i = (ji–, jp], I

i = (jp, ji], h
i = jp – ji–, h

i = ji – jp. Since I
i ⊂ Ii and I

i ⊂ Ii, both h
i and

h
i tend to ∞ as i → ∞. We have


μ

β

i

(
h–

i

∑

j∈Ji

|xj – M|
)

≤ 
μ

β

i

((
h–

i h
i
)(

h
i
)– ∑

j∈I
i

|xj – M| +
(
h–

i h
i
)(

h
i
)– ∑

j∈I
i

|xj – M|
)

≤
(

μi – λi

μ
β

i

)(
h–

i h
i
)(

h
i
)–L +


μ

β

i

((
h–

i h
i
)(

h
i
)– ∑

j∈I
i

|xj – M|
)

≤
(

μi – λ
β

i

λ
β

i

)(
h–

i h
i
)(

h
i
)–L +


μ

β

i

((
h–

i h
i
)(

h
i
)– ∑

j∈I
i

|xj – M|
)

≤
(

μi

λ
β

i
– 

)(
h–

i h
i
)(

h
i
)–L +


μ

β

i

((
h–

i h
i
)(

h
i
)– ∑

j∈I
i ,|xj–M|≥ε

|xj – M|
)

+


μ
β

i

((
h–

i h
i
)(

h
i
)– ∑

j∈I
i ,|xj–M|<ε

|xj – M|
)

≤
(

μi

λ
β

i
– 

)(
h–

i h
i
)(

h
i
)–L +

L
λα

i

∣∣{j ∈ Ii :
(
h–

i h
i
)(

h
i
)–|xj – M| ≥ ε

}∣∣

+ ε
(
h–

i h
i
)(

h
i
)–, ∀i ∈N

=
δ


(
h–

i h
i
)(

h
i
)–L +

L
λα

i

∣∣{j ∈ Ii :
(
h–

i h
i
)(

h
i
)–|xj – M| ≥ ε

}∣∣ + ε
(
h–

i h
i
)(

h
i
)–.

Since x ∈ wβ

Iμ (M, θ !), we have  < h–
i h

i ≤  and  < h–
i h

i ≤ .
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Hence, for ξ > ,

{
i ∈N :


μ

β

i

(

hi

∑

j∈Ji

|xj – M| ≥ γ

)
≥ ξ

}
⊂

{
i ∈N :

L
λα

i

∣∣∣∣

{
j ∈ Ii :


h

i
|xj – M| ≥ γ

}∣∣∣∣ ≥ ξ

}

∪ {, , , . . . , s}.

Since (xj) is lacunary Iλ-statistically convergent sequence of order α defined by M and
since I is admissible, by using the continuity of M, we can say that

Sα
Iλ (M, θ ) ⊆ wβ

Iμ (M, θ !). �

Corollary . Let λ ≤ μi for all i ∈ N and  < α ≤ β ≤ . Let lim infi→∞
λα

i
μ

β
i

> , θ ! be the

refinement of θ . Also let M = (Mi) be a Musielak-Orlicz function where (Mi) is pointwise
convergent. Then wβ

Iμ (M, θ !) ⊂ Sα
Iλ (M, θ ) iff limi Mi( γ

ρ(i) ) > , for some γ > , ρ(i) > .

Corollary . Let M = (Mi) be a Musielak-Orlicz function and limi→∞ μi
λ
β
i

= , for fixed

numbers α and β such that  < α ≤ β ≤ . Then Sα
Iλ (M, θ ) ⊂ wβ

Iμ (M, θ ) iff supν supi( ν

ρ(i) ).

4 Lacunary Iλ-statistical convergence in probabilistic normed spaces
Let X be a real linear space and ν : X → D, where D is the set of all distribution func-
tions g : R → R

+
 such that it is non-decreasing and left-continuous with inft∈R g(t) = 

and supt∈R g(t) = . The probabilistic norm or ν-norm is a t-norm [] satisfying the fol-
lowing conditions:

. νp() = ,
. νp(t) =  for all t >  iff p = ,
. ναp(t) = νp( t

|α| ) for all α ∈R\{} and for all t > ,
. νp+q(s + t) ≥ τ (νp(s),νq(t)) for all p, q ∈ X and s, t ∈R

+
 ;

(X,ν, τ ) is named a probabilistic normed space, in short PNS.
A sequence x = (xi) is I-convergent to M ∈ X in (X,ν, τ ) for each ξ >  and t > , {i ∈N :

νxi–M(t) ≤  – ξ} ∈ I (here I is a non-trivial ideal of N) [].
We define a sequence x = (xi) to be lacunary Iλ-statistical convergent to M in (X,ν, τ )

defined by M, if, for each ν > , M > , μ > , ξ >  and t > ,

{
i ∈N :


λi

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}∣∣∣∣ ≤  – ξ

}
∈ I.

We write it as Iν
λ (θ ) lim x = ψ .

Example: Let (R,ν, τ ) be a PNS with the probabilistic norm νp(t) = t
t+|p| (for all p ∈ R

and every t > ) and τ (a, b) = ab. Also, let I be a non-trivial admissible ideal such that
I = {B ⊂N : δ(B) = }. Define a sequence x as follows:

xi =

⎧
⎨

⎩


i if i = k, i ∈N;

 otherwise.
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Then we have, for each ν > , M > , μ > , ξ >  and t > , δ(K) = , where

K =
{

i ∈N :

λi

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}∣∣∣∣ ≤  – ξ

}
,

which implies K ∈ I and Iν
λ (θ ) – lim = .

Theorem . Let (X,ν, τ ) be a PNS. If x = (xi) is lacunary Iν
λ -statistical convergent, then it

has a unique limit.

Proof Suppose x = (xi) to be lacunary Iν
λ -statistical convergent in X which has two limits,

M and M.
For β >  and t > , let us choose ξ >  such that τ (( – ξ ), ( – ξ )) ≥  – β .
Take the following sets:

K(ξ , t) =
{

i ∈ N :

λi

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M (t)

ρ(j)

)
≤  – μ

}∣∣∣∣ ≤  – ξ

}
,

K(ξ , t) =
{

i ∈N :

λi

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M (t)

ρ(j)

)
≤  – μ

}∣∣∣∣ ≤  – ξ

}
.

Since x = (xi) is lacunary Iν
λ -statistical convergent to M, we have K(ξ , t) ∈ I . Similarly,

K(ξ , t) ∈ I .
Now, let K(ξ , t) = K(ξ , t) ∪ K(ξ , t) ∈ I . We see that K(ξ , t) belongs to I , from which it

is clear that KC(ξ , t) is non-empty set in F(I), where F(I) is the filter associated with the
ideal I [].

If i ∈ KC(ξ , t), then we have i ∈ KC
 (ξ , t) ∩ KC

 (ξ , t) and so

νM–M (t) ≥ τ

(
νxi–M

(
t


)
,νxi–M

(
t


))
> τ (( – ξ ), ( – ξ )).

Since τ (( – ξ ), ( – ξ )) ≥  – β , it follows that νM–M (t) >  – β .
For arbitrary β > , we get νM–M (t) =  for all t > , which proves M = M. �

Theorem . Let (X,ν, τ ) be a PNS. If x is lacunary Iν-statistical convergent, then it is
lacunary Iν

λ -statistical convergent if limi
λi
i > .

Proof For given μ > , ξ > , and t > ,

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
⊃

{
j ∈ Ii :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
.

Therefore,


i

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}

≥ 
i

{
j ∈ Ii :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
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≥ 
λi

.
λi

i

{
j ∈ Ii :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
,

{
i ∈N :


i

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
≤  – ξ

}

≥ λi

i

{
i ∈N :


λi

{
j ∈ Ii :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}
≤  – ξ

}
.

Since limi
λi
i >  and taking the limit i → ∞, we get Iν

λ (θ ) – lim x = M. �

We define x = (xi) to be lacunary λ-statistically convergent to M with respect to ν as

δ

({
i ∈N :


λi

∣∣∣∣

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–M(t)

ρ(j)

)
≤  – μ

}∣∣∣∣ ≤  – r
})

= .

Theorem . Let (X,ν, τ ) be a PNS.
. If x is lacunary λ-statistically convergent to M, then it is also lacunary

Iν
λ -statistically convergent to M.

. If Iν
λ (θ ) – lim x = M, Iν

λ (θ ) – lim y = M, then Iν
λ (θ ) – lim(xk + yk) = (M + M).

. If Iν
λ (θ ) – lim x = M,then Iν

λ (θ ) – limαx = αM.

Theorem . Let (X,ν, τ ) be a PNS. If x is lacunary λ-statistical convergent to M, then
Iν
λ (θ ) – lim x = M.

Proof Let x = (xi) be lacunary λ-statistically convergent to M, then, for every t > , ξ > 
and μ > , there exists i ∈N such that

δ

({
i ∈N :


λi

{
j ≤ i :


hi

∑

j∈Ii

Mj

(
νxj–ψ (t)

ρ(j)

)
≤  – μ

}
≤  – ξ

})
= ,

for all i ≥ i. Therefore the set

B =
{

i ∈N :
{

j ≤ i :

hi

∑

j∈Ii

Mj

(
νxj–ψ (t)

ρ(j)

)
≤  – μ

}
≤  – ξ

}
⊆ {, , , . . . i – }.

Since I is admissible, we have B ∈ I . Hence Iν
λ (θ ) – lim x = ψ . �

Theorem . Let (X,ν, τ ) be a PNS. If x is lacunary λ-statistical convergent, then it has a
unique limit.

Theorem . Let (X,ν, τ ) be a PNS. If x is lacunary λ-statistically convergent, then there
exists a subsequence (xmk ) of x such that it is also lacunary λ-statistically convergent to M.
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