RESEARCH

Some new lacunary statistical convergence with ideals

Adem Kilicman^{1*} and Stuti Borgohain^{1,2}

*Correspondence: akilic@upm.edu.my ¹Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, Serdang, 43400 Selangor, Malaysia Full list of author information is available at the end of the article

Abstract

In this paper, the idea of lacunary l_{λ} -statistical convergent sequence spaces is discussed which is defined by a Musielak-Orlicz function. We study relations between lacunary l_{λ} -statistical convergence with lacunary l_{λ} -summable sequences. Moreover, we study the l_{λ} -lacunary statistical convergence in probabilistic normed space and discuss some topological properties.

Keywords: Musielak-Orlicz function; ideal convergence; lacunary sequences; probabilistic normed space

1 Introduction

The concept of statistical convergence [1] which is the extended idea of convergence of real sequences has become an important tool in many branches of mathematics. For references one may see [2-8] and many more.

Similarly, *I*-convergence is also an extended notion of statistical convergence ([9]) of real sequences. A family of sets $I \subseteq 2^A$ (power sets of *A*) is an ideal if *I* is additive, *i.e.* $S, T \in I \Rightarrow S \cup T \in I$, and hereditary *i.e.* $S \in I$, $T \subseteq S \Rightarrow T \in I$, where *A* is any non-empty set.

A lacunary sequence is an increasing integer sequence $\theta = (i_j)$ such that $i_0 = 0$ and $h_j = i_j - i_{j-1} \rightarrow \infty$ as $j \rightarrow \infty$. As regards ideal convergence and lacunary ideal convergence, one may refer to [10–19] etc.

Note: Throughout this paper, θ will be determined by the interval $K_j = (k_{j-1}, k_j]$ and the ratio $\frac{k_j}{k_{j-1}}$ will be defined by ϕ_j .

2 Preliminary concepts

A sequence (x_i) of real numbers is statistically convergent to M if, for arbitrary $\xi > 0$, the set $K(\xi) = \{i \in \mathbb{N} : |x_i - M| \ge \xi\}$ has natural density zero, *i.e.*,

$$\lim_i \frac{1}{i} \sum_{j=1}^i \chi_{K(\xi)}(j) = 0,$$

where $\chi_{K(\xi)}$ denotes the characteristic function of $K(\xi)$.

A sequence (x_i) of elements of \mathbb{R} is *I*-convergent to $M \in \mathbb{R}$ if, for each $\xi > 0$,

$$\left\{i\in\mathbb{N}:|x_i-M|\geq\xi\right\}\in I.$$

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

For any lacunary sequence $\theta = (i_i)$, the space N_{θ} is defined as (Freedman *et al.* [5])

$$N_{\theta} = \left\{ (x_i) : \lim_{j \to \infty} i_j^{-1} \sum_{i \in K_j} |x_i - M| = 0, \text{ for some } M \right\}.$$

The concept of a Musielak-Orlicz function is defined as $\mathcal{M} = (M_j)$. The sequence $\mathcal{N} = (N_i)$ is defined by

$$N_i(a) = \sup\{|a|b - M_j(b): b \ge 0\}, \quad i = 1, 2, \dots,$$

which is named the complementary function of a Musielak-Orlicz function \mathcal{M} (see [20]) (throughout the paper \mathcal{M} is a Musielak-Orlicz function).

If $\lambda = (\lambda_i)$ is a non-decreasing sequence of positive integers such that Λ denotes the set of all non-decreasing sequences of positive integers. We call a sequence $\{x_i\}_{i \in \mathbb{N}}$ lacunary I_{λ} -statistically convergent of order α to M, if, for each $\gamma > 0$ and $\xi > 0$,

$$\left\{i \in \mathbb{N} : \frac{1}{\lambda_i^{\alpha}} \left| \left\{j \le i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{|x_j - M|}{\rho^{(j)}}\right) \ge \gamma \right\} \right| \ge \xi \right\} \in I.$$

We denote the class of all lacunary I_{λ} -statistically convergent sequences of order α defined by a Musielak-Orlicz function by $S_{I_{\lambda}}^{\alpha}(\mathcal{M}, \theta)$.

Some particular cases:

- 1. If $M_j(x) = M(x)$, for all $j \in \mathbb{N}$, then $S_{I_\lambda}^{\alpha}(\mathcal{M}, \theta)$ is reduced to $S_{I_\lambda}^{\alpha}(\mathcal{M}, \theta)$. Also, if $M_j(x) = x$, for all $j \in \mathbb{N}$, then $S_{I_\lambda}^{\alpha}(\mathcal{M}, \theta)$ will be changed as $S_{I_\lambda}^{\alpha}(\theta)$.
- 2. If $\lambda_i = i$, for all $i \in \mathbb{N}$, then $S_{I_i}^{\alpha}(\mathcal{M}, \theta)$ will be reduced to $S_I^{\alpha}(\mathcal{M}, \theta)$.
- 3. If $\alpha = 1$, then α -density of any set is reduced to the natural density of the set. So, the set $S_{I_{\lambda}}^{\alpha}(\mathcal{M}, \theta)$ reduces to $S_{I_{\lambda}}(\mathcal{M}, \theta)$ for $\alpha = 1$.
- 4. If $\theta = (2^r)$ and $\alpha = 1$, then (x_j) is said to be I_{λ} -statistically convergent defined by a Musielak-Orlicz function, *i.e.* $(x_j) \in S_{I_{\lambda}}(\mathcal{M})$.
- 5. if $M_j(x) = x$, $\theta = (2^r)$, $\lambda_j = j$, $\alpha = 1$, then I_{λ} -lacunary statistically convergence of order α defined by Musielak-Orlicz function reduces to *I*-statistical convergence.

In this article, we define the concept of lacunary I_{λ} -statistically convergence of order α defined by \mathcal{M} and investigate some results on these sequences. Later on, we investigate some results of lacunary I_{λ} -statistically convergence of real sequences in probabilistic normed space too.

3 Main results

Theorem 3.1 Let $\lambda = (\lambda_i)$ and $\mu = (\mu_i)$ be two sequences in Λ such that $\lambda_i \leq \mu_i$ for all $i \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$ for fixed reals α and β . If $\liminf_{i \to \infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} > 0$, then $S_{I_{\mu}}^{\beta}(\mathcal{M}, \theta) \subseteq S_{I_{\lambda}}^{\alpha}(\mathcal{M}, \theta)$.

Proof Suppose that $\lambda_i \leq \mu_i$ for all $i \in \mathbb{N}$ and $\liminf_{i \to \infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} > 0$. Since $I_i \subset J_i$, where $J_i = [i - \mu_i + 1, i]$, so for $\gamma > 0$, we can write

$$\left\{j \in J_i : |x_j - M| \ge \gamma\right\} \supset \left\{j \in I_i : |x_j - M| \ge \gamma\right\},\$$

which implies

$$\frac{1}{\mu_i^{\beta}} \left| \left\{ j \in J_i : |x_j - M| \ge \gamma \right\} \right| \ge \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} \cdot \frac{1}{\lambda_i^{\alpha}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right|,$$

for all $i \in \mathbb{N}$.

Assume that $\liminf_{i\to\infty}\frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} = a$, so from the definition we see that $\{i \in \mathbb{B} : \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} < \frac{a}{2}\}$ is finite. Now for $\xi > 0$,

$$\begin{cases} i \in \mathbb{N} : \frac{1}{\lambda_i^{\beta}} \left| \left\{ j \in J_i : |x_j - M| \ge \gamma \right\} \right| \ge \xi \end{cases} \subset \begin{cases} i \in \mathbb{N} : \frac{1}{\mu_i^{\alpha}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right| \ge \frac{a}{2} \xi \end{cases} \\ \cup \left\{ i \in \mathbb{N} : \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} < \frac{a}{2} \right\}. \end{cases}$$

Since I is admissible and (x_i) is a lacunary I_{μ} -statistically convergent sequence of order β defined by \mathcal{M} , by using the continuity of \mathcal{M} , we see with the lacunary sequence $\theta = (h_i)$, the right hand side belongs to *I*, which completes the proof.

Theorem 3.2 If $\lim_{i\to\infty} \frac{\mu_i}{\lambda_i^{\beta}} = 1$, for $\lambda = (\lambda_i)$ and $\mu = (\mu_i)$ two sequences of Λ such that $\lambda_i \leq \mu_i, \forall i \in \mathbb{N} \text{ and } 0 < \alpha \leq \beta \leq 1 \text{ for fixed } \alpha, \beta \text{ reals, then } S^{\alpha}_{I_{\lambda}}(\mathcal{M}, \theta) \subseteq S^{\beta}_{I_{\mu}}(\mathcal{M}, \theta).$

Proof Let (x_i) be lacunary I_{λ} -statistically convergent to M of order α defined by \mathcal{M} . Also assume that $\lim_{i\to\infty}\frac{\mu_i}{\lambda_i^{\beta}}=1$. Choose $m\in\mathbb{N}$ such that $|\frac{\mu_i}{\lambda_i^{\beta}}-1|<\frac{\xi}{2}$, $\forall i\geq m$.

Since $I_i \subset J_i$, for $\gamma > 0$, we may write

$$\begin{aligned} \frac{1}{\mu_i^{\beta}} \left| \left\{ j \in J_i : |x_j - M| \ge \gamma \right\} \right| &= \frac{1}{\mu_i^{\beta}} \left| \left\{ i - \mu_i + 1 \le j \le i - \lambda_i : |x_j - M| \ge \gamma \right\} \right| \\ &+ \frac{1}{\mu_i^{\beta}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right| \\ &\le \frac{\mu_i - \lambda_i}{\mu_i^{\beta}} + \frac{1}{\mu_i^{\beta}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right| \\ &\le \frac{\mu_i - \lambda_i^{\beta}}{\lambda_i^{\beta}} + \frac{1}{\mu_i^{\beta}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right| \\ &\le \left(\frac{\mu_i}{\lambda_i^{\beta}} - 1 \right) + \frac{1}{\lambda_i^{\alpha}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right| \\ &= \frac{\xi}{2} + \frac{1}{\lambda_i^{\alpha}} \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right|. \end{aligned}$$

Hence,

$$\left\{i \in \mathbb{N}: \frac{1}{\mu_i^{\beta}} \left| \left\{j \le i: |x_j - M| \ge \gamma \right\} \right| \ge \xi \right\} \subset \left\{i \in \mathbb{N}: \frac{1}{\lambda_i^{\alpha}} \left| \left\{j \in I_i: |x_j - M| \ge \gamma \right\} \right| \ge \frac{\xi}{2} \right\} \cup \{1, 2, 3, \dots, m\}.$$

Since (x_i) is lacunary I_{λ} -statistically convergent sequence of order α defined by \mathcal{M} and since *I* is admissible, by using the continuity of \mathcal{M} , it follows that the set on the right hand side with the lacunary sequence $\theta = (h_i)$ belongs to *I* and

$$S_{I_{\lambda}}^{\alpha}(\mathcal{M},\theta) \subseteq S_{I_{\mu}}^{\beta}(\mathcal{M},\theta).$$

We define the lacunary I_{λ} -summable sequence of order α defined by \mathcal{M} as

$$w_{I_{\lambda}}^{\alpha}(\mathcal{M},\theta) = \left\{ i \in \mathbb{N} : \frac{1}{\lambda_{i}^{\alpha}} \left(j \leq i : \frac{1}{h_{i}} \sum_{j \in I_{i}} M_{j} \left(\frac{|x_{j} - M|}{\rho^{(j)}} \right) \geq \gamma \right) \right\} \in I.$$

Theorem 3.3 Given $\lambda = (\lambda_i)$, $\mu = (\mu_i) \in \Lambda$. Suppose that $\lambda_i \leq \mu_i$ for all $i \in \mathbb{N}$, $0 < \alpha \leq \beta \leq 1$. *Then*:

1. If $\liminf_{i\to\infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} > 0$, then $w_{\mu}^{\beta}(\mathcal{M},\theta) \subset w_{\lambda}^{\alpha}(\mathcal{M},\theta)$. 2. If $\lim_{i\to\infty} \frac{\mu_i}{\lambda_i^{\beta}} = 1$, then $\ell_{\infty} \cap w_{\lambda}^{\alpha}(\mathcal{M},\theta) \subset w_{\mu}^{\beta}(\mathcal{M},\theta)$.

Theorem 3.4 Let $\lambda_i \leq \mu_i$ for all $i \in \mathbb{N}$, where $\lambda, \mu \in \Lambda$. Then, if $\liminf_{i \to \infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} > 0$, and if (x_j) is lacunary I_{μ} -summable of order β defined by \mathcal{M} , then it is lacunary I_{λ} -statistically convergent of order α defined by \mathcal{M} . Here $0 < \alpha \leq \beta \leq 1$, for fixed reals α and β .

Proof For any $\gamma > 0$, we have

$$\begin{split} \sum_{j \in J_i} |x_j - M| &= \sum_{j \in J_i, |x_j - M| \ge \varepsilon} |x_j - M| + \sum_{j \in J_i, |x_j - M| < \varepsilon} |x_j - M| \\ &\ge \sum_{j \in I_i, |x_j - M| \ge \varepsilon} |x_j - M| + \sum_{j \in I_i, |x_j - M| \ge \varepsilon} |x_j - M| \\ &\ge \sum_{j \in I_i, |x_j - M| \ge \varepsilon} |x_j - M| \\ &\ge \left| \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \right|. \gamma. \end{split}$$

Therefore,

$$\begin{split} \frac{1}{\mu_i^\beta} \sum_{j \in J_i} |x_j - M| &\geq \frac{1}{\mu_i^\beta} \left| \left\{ j \in I_i : |x_j - M| \geq \gamma \right\} \right|. \gamma \\ &\geq \frac{\lambda_i^\alpha}{\mu_i^\beta} \cdot \frac{1}{\lambda_i^\alpha} \left| \left\{ j \in I_i : |x_j - M| \geq \gamma \right\} \right|. \gamma \end{split}$$

If $\liminf_{i\to\infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} = a$, then $\{i \in \mathbb{N} : \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} < \frac{a}{2}\}$ is finite. So, for $\delta > 0$, we get

$$\begin{split} \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i^{\alpha}} \left| \left\{ j \le i : \sum_{j \in J_i} |x_j - M| \ge \gamma \right\} \right| \ge \xi \right\} \\ & \subset \left\{ i \in \mathbb{N} : \frac{1}{\mu_i^{\beta}} \left\{ j \in I_i : |x_j - M| \ge \gamma \right\} \ge \frac{a}{2} \xi \right\} \\ & \cup \left\{ i \in \mathbb{N} : \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} < \frac{a}{2} \right\}. \end{split}$$

Since *I* is admissible and (x_j) is lacunary I_{μ} -summable sequence of order β defined by \mathcal{M} , using its continuity and using the lacunary sequence $\theta = (h_i)$, we can conclude that $w_{I_{\mu}}^{\beta}(\mathcal{M},\theta) \subseteq S_{I_i}^{\alpha}(\mathcal{M},\theta)$.

Theorem 3.5 Let $\lim_{i\to\infty} \frac{\mu_i}{\lambda_i^{\beta}} = 1$, where $0 < \alpha \leq \beta \leq 1$ for fixed reals α and β and $\lambda_i \leq \mu_i$, for all $i \in \mathbb{N}$, where $\lambda, \mu \in \Lambda$. Also let θ ! be a refinement of θ . Let (x_i) to be a bounded sequence. If (x_j) is lacunary I_{λ} -statistically convergent sequence of order α defined by \mathcal{M} , then it is also a lacunary I_{μ} -summable sequence of order β defined by \mathcal{M} . i.e. $S_{I_{\lambda}}^{\alpha}(\mathcal{M}, \theta) \subseteq$ $w_{I_{\mu}}^{\beta}(\mathcal{M}, \theta!)$.

Proof Suppose that (x_j) is lacunary I_{λ} -statistically convergent sequence of order α defined by \mathcal{M} .

Given that $\lim_{i\to\infty} \frac{\mu_i}{\lambda_i^{\beta}} = 1$, we can choose $s \in \mathbb{N}$ such that $|\frac{\mu_i}{\lambda_i^{\beta}} - 1| < \frac{\delta}{2}$, $\forall i \ge s$.

Assume that there are a finite number of points $\theta! = (j_i^!)$ in the interval $I_i = (j_{i-1}, j_i]$. Let there exists exactly one point $j_i^!$ of $\theta!$ in the interval I_i , that is, $j_{i-1} = j_{p-1}^! < j_p^! < j_{p+1}^! = j_i$, for $p \in \mathbb{N}$.

Let $I_i^1 = (j_{i-1}, j_p]$, $I_i^2 = (j_p, j_i]$, $h_i^1 = j_p - j_{i-1}$, $h_i^2 = j_i - j_p$. Since $I_i^1 \subset I_i$ and $I_i^2 \subset I_i$, both h_i^1 and h_i^2 tend to ∞ as $i \to \infty$. We have

$$\begin{split} &\frac{1}{\mu_i^{\beta}} \left(h_i^{-1} \sum_{j \in I_i} |x_j - M| \right) \\ &\leq \frac{1}{\mu_i^{\beta}} \left(\left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} \sum_{j \in I_i^{1}} |x_j - M| + \left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \sum_{j \in I_i^{2}} |x_j - M| \right) \\ &\leq \left(\frac{\mu_i - \lambda_i}{\mu_i^{\beta}} \right) \left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} L + \frac{1}{\mu_i^{\beta}} \left(\left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \sum_{j \in I_i^{2}} |x_j - M| \right) \\ &\leq \left(\frac{\mu_i - \lambda_i^{\beta}}{\lambda_i^{\beta}} \right) \left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} L + \frac{1}{\mu_i^{\beta}} \left(\left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \sum_{j \in I_i^{2}} |x_j - M| \right) \\ &\leq \left(\frac{\mu_i}{\lambda_i^{\beta}} - 1 \right) \left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} L + \frac{1}{\mu_i^{\beta}} \left(\left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \sum_{j \in I_i^{2}, |x_j - M| \ge \varepsilon} |x_j - M| \right) \\ &+ \frac{1}{\mu_i^{\beta}} \left(\left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \sum_{j \in I_i^{2}, |x_j - M| < \varepsilon} |x_j - M| \right) \\ &\leq \left(\frac{\mu_i}{\lambda_i^{\beta}} - 1 \right) \left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} L + \frac{L}{\lambda_i^{\alpha}} |\{j \in I_i : \left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} |x_j - M| \ge \varepsilon} \}| \\ &+ \varepsilon \left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1}, \quad \forall i \in \mathbb{N} \\ &= \frac{\delta}{2} \left(h_i^{-1} h_i^{1} \right) \left(h_i^{1} \right)^{-1} L + \frac{L}{\lambda_i^{\alpha}} |\{j \in I_i : \left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} |x_j - M| \ge \varepsilon} \}| + \varepsilon \left(h_i^{-1} h_i^{2} \right) \left(h_i^{2} \right)^{-1} \end{split}$$

Since $x \in w_{I_u}^{\beta}(\mathcal{M}, \theta!)$, we have $0 < h_i^{-1}h_i^1 \le 1$ and $0 < h_i^{-1}h_i^2 \le 1$.

Hence, for $\xi > 0$,

$$\left\{i \in \mathbb{N} : \frac{1}{\mu_i^{\beta}} \left(\frac{1}{h_i} \sum_{j \in J_i} |x_j - M| \ge \gamma\right) \ge \xi\right\} \subset \left\{i \in \mathbb{N} : \frac{L}{\lambda_i^{\alpha}} \left| \left\{j \in I_i : \frac{1}{h_i^2} |x_j - M| \ge \gamma\right\} \right| \ge \xi\right\}$$
$$\cup \{1, 2, 3, \dots, s\}.$$

Since (x_j) is lacunary I_{λ} -statistically convergent sequence of order α defined by \mathcal{M} and since I is admissible, by using the continuity of \mathcal{M} , we can say that

$$S_{I_{\lambda}}^{\alpha}(\mathcal{M},\theta) \subseteq w_{I_{\mu}}^{\beta}(\mathcal{M},\theta!).$$

Corollary 3.1 Let $\lambda \leq \mu_i$ for all $i \in \mathbb{N}$ and $0 < \alpha \leq \beta \leq 1$. Let $\liminf_{i \to \infty} \frac{\lambda_i^{\alpha}}{\mu_i^{\beta}} > 0$, θ ! be the refinement of θ . Also let $\mathcal{M} = (M_i)$ be a Musielak-Orlicz function where (M_i) is pointwise convergent. Then $w_{I_{ii}}^{\beta}(\mathcal{M}, \theta) \subset S_{I_i}^{\alpha}(\mathcal{M}, \theta)$ iff $\lim_i M_i(\frac{\gamma}{\rho(i)}) > 0$, for some $\gamma > 0$, $\rho^{(i)} > 0$.

Corollary 3.2 Let $\mathcal{M} = (\mathcal{M}_i)$ be a Musielak-Orlicz function and $\lim_{i\to\infty} \frac{\mu_i}{\lambda_i^{\beta}} = 1$, for fixed numbers α and β such that $0 < \alpha \leq \beta \leq 1$. Then $S_{I_{\lambda}}^{\alpha}(\mathcal{M}, \theta) \subset w_{I_{\mu}}^{\beta}(\mathcal{M}, \theta)$ iff $\sup_{\nu} \sup_{\nu} (\frac{\nu}{\alpha^{(i)}})$.

4 Lacunary l_{λ} -statistical convergence in probabilistic normed spaces

Let *X* be a real linear space and $v : X \to D$, where *D* is the set of all distribution functions $g : \mathbb{R} \to \mathbb{R}_0^+$ such that it is non-decreasing and left-continuous with $\inf_{t \in \mathbb{R}} g(t) = 0$ and $\sup_{t \in \mathbb{R}} g(t) = 1$. The probabilistic norm or *v*-norm is a *t*-norm [21] satisfying the following conditions:

- 1. $v_p(0) = 0$,
- 2. $v_p(t) = 1$ for all t > 0 iff p = 0,
- 3. $\nu_{\alpha p}(t) = \nu_p(\frac{t}{|\alpha|})$ for all $\alpha \in \mathbb{R} \setminus \{0\}$ and for all t > 0,
- 4. $v_{p+q}(s+t) \ge \tau(v_p(s), v_q(t))$ for all $p, q \in X$ and $s, t \in \mathbb{R}_0^+$;

 (X, ν, τ) is named a probabilistic normed space, in short PNS.

A sequence $x = (x_i)$ is *I*-convergent to $M \in X$ in (X, v, τ) for each $\xi > 0$ and t > 0, $\{i \in \mathbb{N} : v_{x_i-M}(t) \le 1 - \xi\} \in I$ (here *I* is a non-trivial ideal of \mathbb{N}) [19].

We define a sequence $x = (x_i)$ to be lacunary I_{λ} -statistical convergent to M in (X, ν, τ) defined by \mathcal{M} , if, for each $\nu > 0$, M > 0, $\mu > 0$, $\xi > 0$ and t > 0,

$$\left\{i\in\mathbb{N}:\frac{1}{\lambda_i}\left|\left\{j\leq i:\frac{1}{h_i}\sum_{j\in I_i}M_j\left(\frac{\nu_{x_j-M}(t)}{\rho^{(j)}}\right)\leq 1-\mu\right\}\right|\leq 1-\xi\right\}\in I.$$

We write it as $I_{\lambda}^{\nu}(\theta) \lim x = \psi$.

Example: Let (\mathbb{R}, ν, τ) be a PNS with the probabilistic norm $\nu_p(t) = \frac{t}{t+|p|}$ (for all $p \in \mathbb{R}$ and every t > 0) and $\tau(a, b) = ab$. Also, let I be a non-trivial admissible ideal such that $I = \{B \subset \mathbb{N} : \delta(B) = 0\}$. Define a sequence x as follows:

$$x_i = \begin{cases} \frac{1}{i} & \text{if } i = k^2, \, i \in \mathbb{N}; \\ 0 & \text{otherwise.} \end{cases}$$

Then we have, for each $\nu > 0$, M > 0, $\mu > 0$, $\xi > 0$ and t > 0, $\delta(K) = 0$, where

$$K = \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \left| \left\{ j \le i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - \mathcal{M}}(t)}{\rho^{(j)}} \right) \le 1 - \mu \right\} \right| \le 1 - \xi \right\},$$

which implies $K \in I$ and $I_{\lambda}^{\nu}(\theta) - \lim \theta = 0$.

Theorem 4.1 Let (X, v, τ) be a PNS. If $x = (x_i)$ is lacunary I_{λ}^{v} -statistical convergent, then it has a unique limit.

Proof Suppose $x = (x_i)$ to be lacunary I_{λ}^{ν} -statistical convergent in X which has two limits, M_1 and M_2 .

For $\beta > 0$ and t > 0, let us choose $\xi > 0$ such that $\tau((1 - \xi), (1 - \xi)) \ge 1 - \beta$. Take the following sets:

$$\begin{split} K_1(\xi,t) &= \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \left| \left\{ j \le i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M_1}(t)}{\rho^{(j)}} \right) \le 1 - \mu \right\} \right| \le 1 - \xi \right\}, \\ K_2(\xi,t) &= \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \left| \left\{ j \le i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M_2}(t)}{\rho^{(j)}} \right) \le 1 - \mu \right\} \right| \le 1 - \xi \right\}. \end{split}$$

Since $x = (x_i)$ is lacunary I_{λ}^{ν} -statistical convergent to M_1 , we have $K_1(\xi, t) \in I$. Similarly, $K_2(\xi, t) \in I$.

Now, let $K(\xi, t) = K_1(\xi, t) \cup K_2(\xi, t) \in I$. We see that $K(\xi, t)$ belongs to I, from which it is clear that $K^C(\xi, t)$ is non-empty set in F(I), where F(I) is the filter associated with the ideal I [9].

If $i \in K^C(\xi, t)$, then we have $i \in K_1^C(\xi, t) \cap K_2^C(\xi, t)$ and so

$$v_{M_1-M_2}(t) \ge \tau \left(v_{x_i-M_1}\left(\frac{t}{2}\right), v_{x_i-M_2}\left(\frac{t}{2}\right) \right) > \tau \left((1-\xi), (1-\xi) \right).$$

Since $\tau((1-\xi), (1-\xi)) \ge 1-\beta$, it follows that $\nu_{M_1-M_2}(t) > 1-\beta$.

Theorem 4.2 Let (X, v, τ) be a PNS. If x is lacunary I^v -statistical convergent, then it is lacunary I^v_{λ} -statistical convergent if $\lim_i \frac{\lambda_i}{i} > 0$.

For arbitrary $\beta > 0$, we get $\nu_{M_1-M_2}(t) = 1$ for all t > 0, which proves $M_1 = M_2$.

Proof For given $\mu > 0$, $\xi > 0$, and t > 0,

$$\bigg\{j \leq i: \frac{1}{h_i} \sum_{j \in I_i} M_j \bigg(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \bigg) \leq 1 - \mu \bigg\} \supset \bigg\{j \in I_i: \frac{1}{h_i} \sum_{j \in I_i} M_j \bigg(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \bigg) \leq 1 - \mu \bigg\}.$$

Therefore,

$$\frac{1}{i} \left\{ j \leq i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \right) \leq 1 - \mu \right\}$$
$$\geq \frac{1}{i} \left\{ j \in I_i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \right) \leq 1 - \mu \right\}$$

$$\geq \frac{1}{\lambda_i} \cdot \frac{\lambda_i}{i} \left\{ j \in I_i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \right) \leq 1 - \mu \right\},$$

$$\left\{ i \in \mathbb{N} : \frac{1}{i} \left\{ j \leq i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \right) \leq 1 - \mu \right\} \leq 1 - \xi \right\}$$

$$\geq \frac{\lambda_i}{i} \left\{ i \in \mathbb{N} : \frac{1}{\lambda_i} \left\{ j \in I_i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - M}(t)}{\rho^{(j)}} \right) \leq 1 - \mu \right\} \leq 1 - \xi \right\}.$$

Since $\lim_{i} \frac{\lambda_i}{i} > 0$ and taking the limit $i \to \infty$, we get $I_{\lambda}^{\nu}(\theta) - \lim x = M$.

We define $x = (x_i)$ to be lacunary λ -statistically convergent to M with respect to ν as

$$\delta\left(\left\{i\in\mathbb{N}:\frac{1}{\lambda_i}\left|\left\{j\leq i:\frac{1}{h_i}\sum_{j\in I_i}M_j\left(\frac{\nu_{x_j-M}(t)}{\rho^{(j)}}\right)\leq 1-\mu\right\}\right|\leq 1-r\right\}\right)=0.$$

Theorem 4.3 Let (X, v, τ) be a PNS.

- 1. If x is lacunary λ -statistically convergent to M, then it is also lacunary I_{λ}^{ν} -statistically convergent to M.
- 2. If $I_{\lambda}^{\nu}(\theta) \lim x = M_1$, $I_{\lambda}^{\nu}(\theta) \lim y = M_2$, then $I_{\lambda}^{\nu}(\theta) \lim(x_k + y_k) = (M_1 + M_2)$.
- 3. If $I_{\lambda}^{\nu}(\theta) \lim x = M$, then $I_{\lambda}^{\nu}(\theta) \lim \alpha x = \alpha M$.

Theorem 4.4 Let (X, v, τ) be a PNS. If x is lacunary λ -statistical convergent to M, then $I_{\lambda}^{v}(\theta) - \lim x = M$.

Proof Let $x = (x_i)$ be lacunary λ -statistically convergent to M, then, for every t > 0, $\xi > 0$ and $\mu > 0$, there exists $i_0 \in \mathbb{N}$ such that

$$\delta\left(\left\{i\in\mathbb{N}:\frac{1}{\lambda_i}\left\{j\leq i:\frac{1}{h_i}\sum_{j\in I_i}M_j\left(\frac{\nu_{x_j-\psi}(t)}{\rho^{(j)}}\right)\leq 1-\mu\right\}\leq 1-\xi\right\}\right)=0,$$

for all $i \ge i_0$. Therefore the set

$$B = \left\{ i \in \mathbb{N} : \left\{ j \le i : \frac{1}{h_i} \sum_{j \in I_i} M_j \left(\frac{\nu_{x_j - \psi}(t)}{\rho^{(j)}} \right) \le 1 - \mu \right\} \le 1 - \xi \right\} \subseteq \{1, 2, 3, \dots, i_0 - 1\}.$$

Since *I* is admissible, we have $B \in I$. Hence $I_{\lambda}^{\nu}(\theta) - \lim x = \psi$.

Theorem 4.5 Let (X, v, τ) be a PNS. If x is lacunary λ -statistical convergent, then it has a unique limit.

Theorem 4.6 Let (X, v, τ) be a PNS. If x is lacunary λ -statistically convergent, then there exists a subsequence (x_{m_k}) of x such that it is also lacunary λ -statistically convergent to M.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both of the authors jointly worked on deriving the results and approved the final manuscript.

 \square

Author details

¹Department of Mathematics and Institute for Mathematical Research, University Putra Malaysia, Serdang, 43400 Selangor, Malaysia. ²Department of Mathematics, Indian Institute of Technology, Bombay, Powai, 400076 Mumbai, India.

Acknowledgements

The authors would like to extend their sincere appreciation to the referees for very useful comments and remarks for the earlier version of the manuscript.

Received: 29 August 2016 Accepted: 23 December 2016 Published online: 10 January 2017

References

- 1. Fast, H: Sur la convergence statistique. Colloq. Math. 2, 241-244 (1951)
- Belen, C, Mohiuddine, SA: Generalized weighted statistical convergence and application. Appl. Comput. Math. 219, 9821-9826 (2013)
- 3. Fridy, JA: On statistical convergence. Analysis 5, 301-313 (1985)
- 4. Fridy, JA, Orhan, C: Lacunary statistically convergence. Pac. J. Math. 160(1), 43-51 (1993)
- 5. Freedman, AR, Sember, JJ: Densities and summability. Pac. J. Math. 95, 293-305 (1981)
- Schoenberg, JJ: The integrability of certain functions and related summability methods. Am. Math. Mon. 66, 361-375 (1959)
- de Malafossa, B, Rakočević, V: Matrix transformation and statistical convergence. Linear Algebra Appl. 420, 377-387 (2007)
- Mohiuddine, SA, Lohani, QMD: On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos Solitons Fractals 42, 1731-1737 (2009)
- 9. Kostyrko, P, Šalăt, T, Wilczyński, W: On I-convergence. Real Anal. Exch. 26(2), 669-685 (2000-2001)
- Das, P, Savaş, E: On *I*-statistical and *I*-lacunary statistical convergence of order *α*. Bull. Iran. Math. Soc. 40(2), 459-472 (2014)
- 11. Hazarika, B, Mohiuddine, SA: Ideal convergence of random variables. J. Funct. Spaces Appl. 2013, Article ID 148249 (2013)
- Kiliçman, A, Borgohain, S: Strongly almost lacunary *I*-convergent sequences. Abstr. Appl. Anal. 2013, Article ID 642535 (2013)
- Kiliçman, A, Borgohain, S: Spaces of generalized difference lacunary *I*-convergent spaces. New Trends Math. Sci. 3(3), 11-17 (2015)
- 14. Kiliçman, A, Borgohain, S: Some new classes of genaralized difference strongly summable *n*-normed sequence spaces defined by ideal convergence and Orlicz function. Abstr. Appl. Anal. **2014**, Article ID 621383 (2014)
- 15. Kiliçman, A, Borgohain, S: Genaralized difference strongly summable sequence spaces of fuzzy real numbers defined by ideal convergence and Orlicz function. Adv. Differ. Equ. 2013, 288 (2013)
- Mohiuddine, SA, Aiyub, M: Lacunary statistical convergence in random 2-normed spaces. Appl. Math. Inf. Sci. 6(3), 581-585 (2012)
- 17. Mohiuddine, SA, Alghamdi, MA: Statistical summability through lacunary sequence in locally solid Riesz spaces. J. Inequal. Appl. 2012, 225 (2012)
- Mursaleen, M, Mohiuddine, SA: On lacunary statistical convergence with respect to the intuitionistic fuzzy normed space. J. Comput. Appl. Math. 233(2), 142-149 (2009)
- 19. Mursaleen, M, Mohiuddine, SA: On ideal convergence in probabilistic normed spaces. Math. Slovaca 62, 49-62 (2012)
- Musielak, J: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034. Springer, Berlin, Germany (1983)
- 21. Schweizer, B, Sklar, A: Probabilistic Metric Spaces. North-Holland, New York-Amsterdam-Oxford (1983)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at > springeropen.com