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Abstract
We study the log-convexity of the extended beta functions. As a consequence, we
establish Turán-type inequalities. The monotonicity, log-convexity, log-concavity of
extended hypergeometric functions are deduced by using the inequalities on
extended beta functions. The particular cases of those results also give the Turán-type
inequalities for extended confluent and extended Gaussian hypergeometric
functions. Some reverses of Turán-type inequalities are also derived.
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1 Introduction
For Re(x) > , Re(y) > , and Re(σ ) > , define the functions

Bσ (x, y) :=
∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt. ()

The function Bσ is known as the extended beta function, which was introduced by
Chaudhry et al. []. They discussed several properties of this extended beta functions
and also established connection with the Macdonald, error, and Whittaker functions (also
see []).

Later, using this extended beta function, an extended confluent hypergeometric func-
tions (ECHFs) were defined by Chaudhry et al. []. The series representation of the ex-
tended confluent hypergeometric functions is

�σ (b; c; x) :=
∞∑

n=

Bσ (b + n, c + n)
B(b, c – b)

xn

n!
, ()

where σ ≥  and Re(c) > Re(b) > . For σ > , the series converges for all x, provided that
c �= , –, –, . . . .

The ECHFs also have the integral representation

�σ (b; c; x) :=


B(b, c – b)

∫ 


tb–( – t)c–b– exp

(
xt –

σ

t( – t)

)
dt. ()
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Similarly, the extended Gaussian hypergometric functions (EGHFs) can be defined by

Fσ (a, b; c; x) :=
∞∑

n=

Bσ (b + n, c – b)
B(b, c – b)

(a)n

n!
xn, ()

where σ ≥ , Re(c) > Re(b) > , and |x| < . For σ > , the series converges when |x| <  and
c �= , –, –, . . . .

The EGHFs also have the integral form

Fσ (a, b; c; x) :=


B(b, c – b)

∫ 


tb–( – t)c–b–( – xt)–a exp

(
–

σ

t( – t)

)
dt. ()

Note that for p = , the series () and () respectively reduce to the classical confluent
hypergeometric series and the Gaussian hypergeometric series.

The aim of this article is to study the log-convexity and log-convexity of the mentioned
three extended functions. In particular, we give more emphasis on the Turán-type inequal-
ity [] and its reverse form.

The work here is motivated by the resent works [–] in this direction and references
therein. Inequalities related to beta functions and important for this study can be found
in [, ].

In Section ., we state and prove several inequalities for extended beta functions. The
classical Chebyshev integral inequality and the Hölder-Rogers inequality for integrals are
used to obtain the main results in this section. The results in the Section . are very useful
in generating inequalities for ECHFs and EGHFs, especially, the Turán-type inequality in
Section .. The log-convexity and log-convexity of ECHFs and EGHFs are also given in
Section ..

2 Results and discussion
2.1 Inequalities for extended beta functions
In this section, applying classical integral inequalities like Chebychev’s inequality for syn-
chronous and asynchronous mappings and the Hölder-Rogers inequality, we derive sev-
eral inequalities for extended beta functions. Few inequalities are useful in the sequel to
derive the Turán-type inequalities for EGHFs and ECHFs.

Theorem  Let x, y, x, y >  be such that (x – x)(y – y) ≥ . Then

Bσ (x, y)Bσ (x, y) ≤ Bσ (x, y)Bσ (x, y) ()

for all σ ≥ .

Proof To prove the result, we need to recall the classical Chebyshev integral inequality
([], p.): If f , g : [a, b] →R are synchronous (both increase or both decrease) integrable
functions and p : [a, b] → R is a positive integrable function, then

∫ b

a
p(t)f (t) dt

∫ b

a
p(t)g(t) dt ≤

∫ b

a
p(t) dt

∫ b

a
p(t)f (t)g(t) dt. ()

Inequality () is reversed if f and g are asynchronous.
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Consider the functions f (t) := tx–x , g(t) := ty–y , and

p(t) := tx–( – t)y– exp

(
–

σ

t( – t)

)
.

Clearly, p is nonnegative on [, ]. Since (x – x)(y – y) ≥ , it follows that f ′(t) = (x –
x)tx–x– and g ′(t) = (y – y)ty–y– have the same monotonicity on [, ].

Applying Chebyshev’s integral inequality (), for the selected f , g , and p, we have

(∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)

×
(∫ b

a
tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)

≤
(∫ b

a
tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)

×
(∫ b

a
tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)
,

which is equivalent to (). �

Theorem  The function σ �→ Bσ (x, y) is log-convex on (,∞) for any fixed x, y > . In
particular:

(i) The functions Bσ (x, y) satisfy the Turán-type inequality

B
σ (x, y) – Bσ+a(x, y)Bσ–a(x, y) ≤ ,

for all real a. This will further reduce to B
σ (x, y) ≤ B(x, y)Bσ (x, y) when σ = a. Here

B(x, y) = B(x, y) is the classical beta function.
(ii) The function σ �→ Bσ (x – , y – )/Bσ (x, y) is decreasing on (,∞) for any fixed

x, y > .

Proof By the definition of log-convexity it is required to prove that

Bασ+(–α)σ (x, y) ≤ (
Bσ (x, y)

)α(
Bσ (x, y)

)–α ()

for α ∈ [, ], σ,σ > , and fixed x, y > .
Clearly, () is trivially true for α =  and α = .
Let α ∈ (, ). It follows from () that

Bασ+(–α)σ (x, y) =
∫ 


tx–( – t)y– exp

(
–

ασ + ( – α)σ

t( – t)

)
dt

=
∫ 



(
tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)α

×
∫ 



(
tx–( – t)y– exp

(
–σ

t( – t)

)
dt

)–α

. ()
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Let p = /α and q = /( – α). Clearly, p >  and p + q = pq. Thus, applying the well-known
Hölder-Rogers inequality for integrals, () yields

Bασ+(–α)σ (x, y) <
(∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)α

×
(∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)–α

=
(
Bσ (x, y)

)α(
Bσ (x, y)

)–α . ()

This implies that σ �→ Bσ (x, y) is log-convex.
Choosing α = /, σ = σ – a, and σ = σ + a, inequality () gives

B
σ (x, y) – Bσ+a(x, y)Bσ–a(x, y) ≤ .

The log-convexity of Bσ (x, y) is equivalent to

∂

∂σ

( ∂
∂σ

Bσ (x, y)
Bσ (x, y)

)
≥ . ()

Now the identity [], p.,

∂n

∂σ n Bσ (x, y) = (–)nBσ (x – n, y – n), n = , , , . . . ,

reduces () to

∂

∂σ

(
Bσ (x – , y – )

Bσ (x, y)

)
≤ .

Hence the conclusion. �

Theorem  The function (x, y) �→ Bσ (x, y) is logarithmic convex on (,∞) × (,∞) for all
σ ≥ . In particular,

B
σ

(
x + x


,

y + y



)
≤ Bσ (x, y)Bσ (x, y).

Proof Let α,α >  be such that α + α = . Then, for σ ≥ , we have

Bσ

(
α(x, y) + α(x, y)

)

=
∫ 


tαx+αx–( – t)αy+αy– exp

(
–

σ

t( – t)

)
dt

=
∫ 



(
tx–( – t)y– exp

(
–

σ

t( – t)

))α

×
(

tx–( – t)y– exp

(
–

σ

t( – t)

))α

dt.

Again by considering p = /α and q = /α, by the Hölder-Rogers inequality for integrals
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it follows that

Bσ

(
α(x, y) + α(x, y)

) ≤
(∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)α

×
(∫ 


tx–( – t)y– exp

(
–

σ

t( – t)

)
dt

)α

= Bσ (x, y)α Bσ (x, y)α .

For α = α = /, this inequality reduces to

B
σ

(
x + x


,

y + y



)
≤ Bσ (x, y)Bσ (x, y). ()

Let x, y >  be such that

min
a∈R

(x + a, x – a) > .

Then x = x + a, x = x – a and y = y + b, y = y – b in () yields

[
Bσ (x, y)

] ≤ Bσ (x + a, y + b)Bσ (x – a, y – b) ()

for all σ ≥ . �

The Grüss inequality [], pp.-, for the integrals is given in the following lemma.

Lemma  Let f and g be two integrable functions on [a, b]. If

m ≤ f (t) ≤ M and l ≤ g(t) ≤ L for each t ∈ [a, b],

where m, M, l, L are given real constants. Then

∣∣D(f , g; h)
∣∣ ≤ D(f , f ; h)/D(g, g; h)/ ≤ 


(M – m)(L – l)

[∫ b

a
h(t) dt

]

, ()

where

D(f , g; h) :=
∫ b

a
h(t) dt

∫ b

a
h(t)f (t)g(t) dt –

∫ b

a
h(t)f (t) dt

∫ b

a
h(t)g(t) dt.

Our next result is the application of the Grüss inequality for the extended beta mappings.

Theorem  Let σ,σ, x, y > . Then

∣∣Bσ+σ (x + y + , x + y + ) – Bσ (x + , x + )Bσ (y + , y + )
∣∣

≤ [
Bσ (x + , x + ) – Bσ (x + , x + )] 



× [
Bσ (y + , y + ) – Bσ (y + , y + )] 



≤ exp(–(σ + σ))
x+y+ . ()
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Proof To prove the inequality, it is required to determine the upper and lower bounds of

f (t) := tx( – t)x exp

(
–

σ

t( – t)

)

and

g(t) := ty( – t)y exp

(
–

σ

t( – t)

)

for t ∈ [, ] and x, y,σ,σ > . Clearly, f () = f () =  and g() = g() = . Now for t ∈ (, ),
the logarithmic differentiation of f yields

f ′(t) = f (t)( – t)
(

xt( – t) + σ

t( – t)

)
.

Since f (t) >  and xt( – t) + σ >  on t ∈ (, ), f ′(t) >  for t > / and f ′(t) <  for t < /.
This implies

M =
exp(–σ)

x .

Similarly, we can show that

L =
exp(–σ)

y .

Now setting f , g as before and h(t) =  for all t ∈ [, ] in Lemma  gives (). �

Remark  Consider the functions

f (t) = tx, g(t) = ( – t)y and h(t) = tx–( – t)y– exp

(
–

σ

t( – t)

)

for t ∈ [, ], x, y, x, y > . Clearly, M = L =  and m = l = . Thus, from Lemma  we have
the following inequality:

∣∣Bσ (x, y)Bσ (x + x, y + y) – Bσ (x + x, y)Bσ (x, y + y)
∣∣

≤ [
Bσ (x, y)Bσ (x + x, y) – B

σ (x + x, y)
] 



× [
Bσ (x, y)Bσ (x, y + y) – B

σ (x, y + y)
] 



≤ B
σ (x, y)


. ()

Similarly, if f , g , and h defined as

f (t) := tm( – x)n, g(t) := tp( – t)q and h(t) := tα–( – t)β– exp

(
–

σ

t( – t)

)

for t ∈ [, ] and α,β , m, n, p, q > , then (see []) we have

M =
mmnn

(m + n)m+n and L =
ppqq

(p + q)p+q ;
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hence, the inequality

∣∣Bσ (α,β)Bσ (α + m + p,β + n + q) – Bσ (α + m,β + n)Bσ (α + p,β + q)
∣∣

≤ [
Bσ (α,β)Bσ (α + m,β + n) – B

σ (α + m,β + m)
] 



× [
Bσ (α,β)Bσ (α + p,β + q) – B

σ (α + p,β + q)
] 



≤ B
σ (α,β)


· mmnn

(m + n)m+n · ppqq

(p + q)p+q ()

follows from Lemma .

Remark  It is evident from Theorem  and inequalities () and () that the results
discussed in [, ] for classical beta functions can be replicated for the extended beta
functions.

2.2 Inequalities for ECHFs and EGHFs
Along with the integral inequalities mentioned in the previous section, the following result
of Biernacki and Krzyż [] will be used in the sequel.

Lemma  [] Consider the power series f (x) =
∑

n≥ anxn and g(x) =
∑

n≥ bnxn, where
an ∈ R and bn >  for all n. Further, suppose that both series converge on |x| < r. If the
sequence {an/bn}n≥ is increasing (or decreasing), then the function x �→ f (x)/g(x) is also
increasing (or decreasing) on (, r).

We note that this lemma still holds when both f and g are even or both are odd functions.

Theorem  Let b ≥  and d, c > . Then following assertions for ECHFs are true:
(i) For c ≥ d, the function x �→ �σ (b; c; x)/�σ (b; d; x) is increasing on (,∞).

(ii) For c ≥ d, we have d�σ (b + ; c + ; x)�σ (b; d; x) ≥ c�σ (b; c; x)�σ (b + ; d + ; x).
(iii) The function x �→ �σ (b; c; x) is log-convex on R.
(iv) The function σ �→ �σ (b; c; x) is log-convex on (,∞) for fixed x > .
(v) Let δ > . Then the function

b �→ B(b, c)�σ (b + δ; c; x)
B(b + δ, c)�σ (b; c; x)

is decreasing on (,∞) for fixed c, x > .

Proof From the definition of ECHFs it follows that

�σ (b; c; x)
�σ (b; d; x)

=
∑∞

n= αn(c)xn∑∞
n= αn(d)xn , where αn(t) :=

Bσ (b + n, t – b)
B(b, t – b)n!

. ()

If we denote fn = αn(c)/αn(d), then

fn – fn+ =
αn(c)
αn(d)

–
αn+(c)
αn+(d)

=
B(b, d – b)
B(b, c – b)

(
Bσ (b + n, c – b)
Bσ (b + n, d – b)

–
Bσ (b + n + , c – b)
Bσ (b + n + , d – b)

)
.
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Now set x := b + n, y := d – b, x := b + n + , and y := c – b in (). Since (x – x)(y – y) =
c – d ≥ , it follows from Theorem  that

Bσ (b + n, c – b)
Bσ (b + n, d – b)

≤ Bσ (b + n + , c – b)
Bσ (b + n + , d – b)

,

which is equivalent to say that the sequence {fn} is increasing, and by Lemma  we can
conclude that x �→ �σ (b; c; x)/�σ (b; d; x) is increasing on (,∞).

To prove (ii), we need to recall the following identity from [], p.:

dn

dxn �σ (b; c; x) =
(b)n

(c)n
�σ (b + n; c + n; x). ()

Now the increasing property of x �→ �σ (b; c; x)/�σ (b; d; x) is equivalent to

d
dx

(
�σ (b; c; x)
�σ (b; d; x)

)
≥ . ()

This, together with (), implies

�′
σ (b; c; x)�σ (b; d; x) – �σ (b; c; x)�′

σ (b; d; x)

=
b
c
�σ (b + ; c + ; x)�σ (b; d; x) –

b
d

�σ (b; c; x)�σ (b + ; d + ; x) ≥ .

A simple computation prove the assertion.
The log-convexity of x �→ �σ (b; c; x) can be proved by using the integral representation

of ECHFs as given in () and by applying to the Hölder-Rogers inequality for integrals as
follows:

�σ

(
b; c;αx + ( – α)y

)

=


B(b, c – b)

∫ 


tb–( – t)c–b– exp

(
αxt + ( – α)yt –

σ

t( – t)

)
dt

=


B(b, c – b)

∫ 



[(
tb–( – t)c–b– exp

(
xt –

σ

t( – t)

))α

×
(

tb–( – t)c–b– exp

(
yt –

σ

t( – t)

))–α]
dt

≤
[


B(b, c – b)

∫ 


tb–( – t)c–b– exp

(
xt –

σ

t( – t)

)
dt

]α

×
[


B(b, c – b)

∫ 


tb–( – t)c–b– exp

(
yt –

σ

t( – t)

)
dt

]–α

=
(
�σ (b; c; x)

)α(
�σ (b; c; y)

)–α ,

where x, y ≥  and α ∈ [, ]. This proves that x �→ �σ (b; c; x) is log-convex for x ≥ . For
the case x < , the assertion follows immediately from the identity ([], p.)

�σ (b; c; –x) = e–x�σ (c – b; c; x).
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It is known that the infinite sum of log-convex functions is also log-convex. Thus, the
log-convexity of σ �→ �σ (b; c; x) is equivalent to showing that σ �→ Bσ (b + n, c – b) is log-
convex on (,∞) and for all nonnegative integers n. From Theorem  it is clear that σ �→
Bσ (b + n, c – b) is log-convex for c > b > , and hence (iv) is true.

Let b′ ≥ b. Set p(t) := tb′–( – t)c–b′– exp(xt – σ
t(–t) ),

f (t) :=
(

t
 – t

)b–b′

and g(t) :=
(

t
 – t

)δ

.

Then using the integral representation () of ECHFs, we have

B(b, c)�σ (b + δ; c; x)
B(b + δ, c)�σ (b; c; x)

–
B(b′, c)�σ (b′ + δ; c; x)
B(b′ + δ, c)�σ (b′; c; x)

=
∫ 

 f (t)g(t)p(t) dt∫ 
 f (t)p(t) dt

–
∫ 

 g(t)p(t) dt∫ 
 p(t) dt

. ()

It is easy to determine that for b′ ≥ b, the function f is decreasing, whereas for δ ≥ , the
function g is increasing. Since p is nonnegative for t ∈ [, ], by the reverse Chebyshev
integral inequality () it follows that

∫ 


p(t)f (t) dt

∫ 


p(t)g(t) dt ≤

∫ 


p(t) dt

∫ 


p(t)f (t)g(t) dt. ()

This, together with (), implies

B(b, c)�σ (b + δ; c; x)
B(b + δ, c)�σ (b; c; x)

–
B(b′, c)�σ (b′ + δ; c; x)
B(b′ + δ, c)�σ (b′; c; x)

≥ ,

which is equivalent to saying that the function

b �→ B(b, c)�σ (b + δ; c; x)
B(b + δ, c)�σ (b; c; x)

is decreasing on (,∞). �

Remark  In particular, the decreasing property of

b �→ B(b, c)�σ (b + δ; c; x)
B(b + δ, c)�σ (b; c; x)

is equivalent to the inequality

�
σ (b + δ; c; x) ≥ B(b + δ, c)

B(b + δ, c)B(b, c)
�σ (b + δ; c; x)�σ (b; c; x). ()

Now define

f (δ) :=
B(b + δ, c)

B(b + δ, c)B(b, c)
=

(�(b + δ))�(b + δ + c)�(b + c)
(�(b + c + δ))�(b + δ)�(b)

.
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A logarithmic differentiation of f yields

f ′(δ)
f (δ)

= ψ(b + δ) + ψ(b + δ + c) – ψ(b + c + δ) – ψ(b + δ),

where y �→ ψ(y) = �′(y)/�(y) is the digamma function, which is increasing on (,∞) and
has the series form

ψ(y) = –γ +
∑
k≥

(

k

–


y + k

)
.

This implies that

f ′(δ)
f (δ)

= 
∞∑

k=

(


b + c + δ + k
–


b + c + δ + k

)
+ 

∞∑
k=

(


b + δ + k
–


b + δ + k

)

= δ

∞∑
k=

(


(b + c + δ + k)(b + c + δ + k)
–


(b + δ + k)(b + δ + k)

)

= –δ

∞∑
k=

c(b + δ + k + c)
(b + c + δ + k)(b + c + δ + k)(b + δ + k)(b + δ + k)

≤ .

Thus, f is a decreasing function of δ on [,∞), and f (δ) ≤ f () = .
Interestingly, for σ = , inequality () reduces to the Turán-type inequality of classical

confluent hypergeometric functions

F
 (b + δ; c; x) ≥ B(b + δ, c)

B(b + δ, c)B(b, c) F(b + δ; c; x)F(b; c; x). ()

Since

B(b + δ, c)
B(b + δ, c)B(b, c)

≤ ,

we can conclude that inequality () is an improvement of the inequality given in [],
Theorem (b), for fixed c, x > . However, our result does not expound the other cases in
[], Theorem (b).

Now following the remark given in [], p., for integer δ and b = δ + a in (), will also
improve inequality ([], Theorem , Corollary ), for classical confluent hypergeometric
functions.

Our next result is on the extended Gaussian hypergeometric functions (EGHFs).

Theorem  Let b ≥  and d, c > . Then following assertions for EGHFs are true.
(i) For c ≥ d, the function x �→ Fσ (a, b; c; x)/Fσ (a, b; d; x) is increasing on (, ).

(ii) For c ≥ d, we have

dFσ (a + , b + ; c + ; x)Fσ (a, b; d; x) ≥ cFσ (a + , b + ; d + ; x)Fσ (a, b; c; x).
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(iii) The function σ �→ Fσ (a, b; c; x) is log-convex on (,∞) for fixed b > , c > , and
x ∈ (, ).

(iv) The function a �→ Fσ (a, b; c; x) is log-convex on (,∞) and for fixed x ∈ (, ).

Proof Cases (i)-(iii) can be proved by following the proof of Theorem  and considering
the series form () and an integral representation () of EGHFs, we omit the details.

From a result of Karp and Sitnik [] we know that if

f (a, x) =
∑
n≥

fn
(a)n

n!
xn,

where fn is independent of a, and we suppose that a′ > a >  and δ > , then the function

f (a + δ, x)f (b, x) – f (b + δ, x)f (a, x) =
∑
m≥

φmxm

has negative power series coefficient φm < , so that a �→ f (a, x) is strictly log-convex for
x >  if the sequence {fn/fn–} is increasing. In what follows, we use this result for the func-
tion Fσ (a, b; c; x). For this, let

fn =
Bσ (b + n, c – b)

B(b, c – b)
.

Thus, to prove (iv), it suffices to show that the sequence dn = fn/fn– is decreasing. Clearly,

dn – dn– =
Bσ (b + n, c – b)

Bσ (b + n – , c – b)
–

Bσ (b + n – , c – b)
Bσ (b + n – , c – b)

.

Now if we replace x, y, x, y in () by x = b + n, x = b + n – , and y = y = c – b, then
it follows that dn ≥ dn–. Hence the conclusion. �

3 Conclusion
In this article, we prove several properties of the extended beta functions resembling the
classical beta functions. A few of those properties are a key to establish inequalities for
ECHFs and EGHFs. Using classical integral inequalities, we also give Turán-type and re-
verse Turán-type inequalities for ECHFs and EGHFs.
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