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Abstract

We introduce the concepts of second-order radial composed tangent derivative,
second-order radial tangent derivative, second-order lower radial composed tangent
derivative, and second-order lower radial tangent derivative for set-valued maps by
means of a radial tangent cone, second-order radial tangent set, lower radial tangent
cone, and second-order lower radial tangent set, respectively. Some properties of
second-order tangent derivatives are discussed, using which second-order necessary
optimality conditions are established for a point pair to be a Henig efficient element
of a set-valued optimization problem, and in the expressions the second-order
tangent derivatives of the objective function and the constraint function are
separated.
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1 Introduction

In recent years, first-order optimality conditions in the set-valued optimization have at-
tracted a great deal of attention, and various derivative-like notions have been utilized to
express these optimality conditions. For example, Gong et al. [1] introduced the concept of
radial tangent cone and presented several kinds of necessary and sufficient conditions for
some proper efficiencies, Kasimbeyli [2] gave necessary and sufficient optimality condi-
tions based on the concept of the radial epiderivatives. At the same time, second-order op-
timality conditions and higher-order optimality conditions for vector optimization prob-
lems have been extensively studied in the literature (see [3—18]). Jahn et al. [3] proposed
second-order epiderivatives for set-valued maps, and by using these concepts they gave
second-order necessary optimality conditions and a sufficient optimality condition in set
optimization. Khan and Isac [15] proposed the concept of a second-order composed con-
tingent derivative for set-valued maps, using which they established second-order opti-
mality conditions in set-valued optimization. With a second-order composed contingent
derivative, Zhu et al. [4] established second-order Karush-Kuhn-Tucker necessary and
sufficient optimality conditions for a set-valued optimization problem. However, in [1, 4,
7-12,14], in the expressions of first-order and higher-order optimality conditions, the tan-
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gent derivatives of the objective function and the constraint function are not separated,
and thus the properties of the derivatives of the objective function are not easily obtained
from those of the constraint function.

On the other hand, some efficient points exhibit certain abnormal properties. To elim-
inate such anomalous efficient points, various concepts of proper efficiency have been
introduced [19-22]. Henig [19] introduced the concept of Henig efficiency, which is very
important for the study of set-valued optimization [13, 14, 20, 23].

In this paper, we introduce a new class of lower radial tangent cones and two new kinds
of second-order tangent sets, using which we introduce four new kinds of second-order
tangent derivatives. We discuss the properties of these second-order tangent derivatives,
using which we establish second-order necessary optimality conditions for a point pair to
be a Henig efficient element of a set-valued optimization problem.

2 Basic concepts

Throughout the paper, let X, Y, and Z be three real normed linear spaces, Ox, Oy, and 0z
denote the original points of X, Y, and Z, respectively. Let M be a nonempty subset of Y.
As usual, we denote the interior, closure, and cone hull of M by intM, cl M, and cone M,
respectively. The cone hull of M is defined by

coneM ={Am:A>0,me M}.

Let C and D be closed convex pointed cones in Y and Z, respectively. A nonempty con-
vex subset B C C is called a base of C if 0 ¢ cl B and C = cone B.

Denote the closed unit ball of Y by U. Suppose that C has a base B. Let § := inf{||b|| : b €
B} and

C.(B) := cone(eU + B)
forall 0 < ¢ < §.1Itis clear that § > 0 and C,(B) is a pointed convex cone for all 0 < ¢ < § (see
(21]).
Let F: X — 2¥ be a set-valued map. The domain, graph, and epigraph of F are defined

respectively by

domF:= {x € X : F(x) # 9},
graph F := {(x,y) € X x Y:yeF(x)},
epiF:={(xy) X xY:yeF(x)+C}.

Definition 2.1 (See [1]) Let A be a nonempty subset of X, and let ¥ € clA. The radial
tangent cone of A at x, denoted by R(A4, %), is given by

R(A, %) := {u € X :3t, >0 and x,, € A such that #,(x, — X) — u} (2.1)
Remark 2.1 Equation (2.1) is equivalent to
R(A,%X) ={u € X:3x,>0and u, — usuch that x + A,u, € A,Vn € N},

where N denotes the set of positive integers.



Xu et al. Journal of Inequalities and Applications (2017) 2017:7 Page 3 of 19

Definition 2.2 (See [24]) Let A be a nonempty subset of X, and let & € cl A. The contin-
gent cone of A at %, denoted by T'(4, %), is given by

T(A,X):= {u €X:3t,— 0" and u, — u such that x + t,u, € A,Vn € N}. (2.2)
Remark 2.2 (See [24]) Equation (2.2) is equivalent to
T(A,X) := {u € X :3A, — +o0o and x,, € A such that x,, — x and A,,(x, — X) — u}

Definition 2.3 (See [3]) Let A be a nonempty subset of X, and let % € clA. The second-

order contingent set of A at & in the direction w, denoted by T?(4,%, w), is given by
204 2 + . 1,
T°(A,x,w):=3veX:3t, - 0" and v, — vsuch that x + t,w + Etnv,, eA;.

Definition 2.4 (See [4, 15]) Let F: X — 2¥ be a set-valued map, (%,7) € graph F, and
(&1, V) € X x Y. The second-order composed contingent derivative of F at (#,7) in the di-
rection (2, V) is the set-valued map D"F(&,, 4, 9) : X — 2Y defined by

graph D"F(%,5, &, V) = T (T (graph F, (%, 7)), (i, V).
Definition 2.5 (See [3]) Let F: X — 2Y be a set-valued map, (,7) € graph F, and (i, V) €

X x Y. The second-order contingent derivative of F at (¥,7) in the direction (i, V) is the
set-valued map D*F(&,,4,7) : X — 2Y defined by

D*F(,%, 1, 7)(x) = {y e€Y:(x,9) € Tz(graphF, ), (&, 17))}.

In the following, we introduce a new class of lower radial tangent cones and two new

kinds of second-order tangent sets.

Definition 2.6 Let Q be a nonempty subset of X x Y, and let (%, %) € cl1 Q. The lower radial
tangent cone of Q at (%, ) is defined by

R(Q,(%,9)) == {(u,v) €X X Y : V8, > 0,Yu, > 1,3v,, > v

such that (X + t,u,,y + t,v,) € Q}.
Definition 2.7 Let Q be a nonempty subset of X x Y, and let (%,7) € c1Q. The second-
order lower radial tangent set of Q at (¥,%) in the direction (i, ), denoted by R%(Q, *,9),
(&1, 9)), is given by

Rlz(Q, ®.), (it,f/)) = {(u,v) €eXxY:Vt,>0,Vu, — u,Iv, —> v

R 1 R 1
such that <x + bl + Etﬁun,y + it 0+ Etﬁvn> € Q}.
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Definition 2.8 Let A be a nonempty subset of X, and let X € cl A. The second-order radial
tangent set of A at & in the direction w, denoted by R*(A, &, w), is given by

1
R%(A,%,w) := {veX:EItn >0and v, — vsuch thatx + t,w + Etﬁvn eA}.

Remark 2.3 Let 3 #Q C X x Y, (%,%) € c1Q. Then
(i) RH(Q, (%,9), (&, 7)) C T*(Q, (%), (it, 7)) C R*(Q, (%, ), (&, V)).
However, none of the inverse inclusions is necessarily true, as is shown in the following

example.

Example 2.1 Let R be the set of real numbers, X =Y =R, Q = {(_%, nLZ) n=12..}U
{(x,9) : x> 0,y > 0} U {(-1,-1)}, and (%,7) = (&, V) = (0,0). A direct calculation gives
R[Z(Q’(O,O):(O,O)) = {(x,y) X > O,y > 0}, TZ(Q,(O,O),(O,O)) _ {(x,y) x> O,y > 0} y
{(x,0) : x < 0}, and R*(Q,(0,0),(0,0)) = {(x,9) : x> 0,y > 0} U {(x,0) : & < 0} U {(x,%) : x <
0JUUL {A=1, 5): A > 0}

3 The second-order lower radial tangent derivative

In this section, by virtue of the radial tangent cone, the second-order radial tangent set,
the lower radial tangent cone, and the second-order lower radial tangent set, we introduce
the concepts of the second-order radial composed tangent derivative, the second-order
radial tangent derivative, the second-order lower radial composed tangent derivative, and
the second-order lower radial tangent derivative for a set-valued map. Furthermore, we
discuss some important properties of the second-order lower radial composed tangent

derivative and the second-order lower radial tangent derivative.

Definition 3.1 Let F: X — 2! be a set-valued map, (%,7) € graphF, and (&,9) € X x Y.
The second-order radial composed tangent derivative of F at (%,9) in the direction (i, ¥)
is the set-valued map R"F(%,, 1, 7) : X — 2Y defined by

graphR"F(x,9,1,V) = R(R(epi F, (56,5/)), (1, f/)).

If R(R(epiF, (%,)), (&, V)) # ¥, then F is said to be second-order radial composed deriv-
able at (%,7) in the direction (#%,7V) or that the second-order radial composed tangent

derivative of F at (,) in the direction (&, V) exists.

Definition 3.2 Let F: X — 2Y be a set-valued map, (%,7) € graph F, and (&,7) € X x Y.
The second-order radial tangent derivative of F at (%,7) in the direction (i, V) is the set-
valued map R2F(&, 9,1, 7) : X — 2Y defined by

graph R*F(%, 9, i1, 9) = R*(epi F, (%, ), (il, V).
If R%(epi F, (%, ), (&L, )) # @, then F is called second-order radial derivable at (%, 9) in the

direction (i, V) or that the second-order radial tangent derivative of F at (,7) in the direc-

tion (i, V) exists.
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Definition 3.3 Let F: X — 2 be a set-valued map, (%,7) € graph F, and (&1,7) € X x Y.
The second-order lower radial composed tangent derivative of F at (%,7) in the direction
(i1, V) is the set-valued map R/F(#,,1,7) : X — 2V defined by

graph R F(%,5,1,V) = R, (Rl (epi F, (%, j/)), (1, f/)).
If R(Ry(epiF, (%,9)), (&, V) # @, then F is said to be second-order lower radial composed

derivable at (¥,%) in the direction (&, 7) or that the second-order lower radial composed
tangent derivative of F at (¥,7) in the direction (i, V) exists.

Definition 3.4 Let F: X — 27 be a set-valued map, (%,) € graph F, and (&1,7) € X x Y.
The second-order lower radial tangent derivative of F at (%,9) in the direction (i, V) is the
set-valued map R?F(, 7,1, v) : X — 2% defined by
graph R7F(,9,1,7) = R} (epi F,(x,%), (&, f/)).
If R (epi F, (%,7), (i1, 7)) # ¥, then F is called second-order lower radial derivable at (%,7)
in the direction (&, ¥) or that the second-order lower radial tangent derivative of F at (,7)

in the direction (i, V) exists.

Proposition 3.1 Suppose that E C X and the second-order lower radial composed tangent
derivative of F : X — 2Y at (X,9) € graph F in the direction (it, V) exists. Then

R/F(%,5,1,V) (R(R(E, x), lft)) C clcone(clcone(P(E) +C —j/) - f/).

Proof Letv e R/F(,9,4,V)(R(R(E, %), ). Then there exists u € R(R(E, X), it) such that
veR/F(x,5,u,V)(u).

Thus,
(u,v) € graph R/F(%,5, ,V) = Ri(R;(epi F, (%,)), (i, V). (3.1)

From u € R(R(E, %), iz) it follows that there exist sequences t, > 0 and u,, — u such that
U+ tyu, € R(E,X).

Therefore, there exist sequences t’n‘ >0 and u’; — U + t,u, such that
Z+thuk e E.

For such ¢, and #,, it follows from (3.1) that there exists a sequence v, — v such that
(@ + tyu,, V + t,v,) € Rl(epi F, (fc,j/)).

Then, for the same X and u¥, there exists a sequence v* — ¥ + £,v,, such that

(% +thul, 5+ thvh) € epiF,
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and, consequently,
J+tk e F(x+tul) + C.
Thus,

= tlk(F(fc+t£uﬁ) +C-7),
n

and, consequently,

VX € cone(F(E) + C - 7).

n

k

< — ¥+ t,v, as k — 00, we obtain

Since v
¥ + t,vy € clcone(F(E) + C - ).
Thus,
vy %(clcone(F(E) +C=3)-0),
and, consequently,
v € cone(clcone(F(E) + C - ) - ¥).
Taking 7 — 00, we get
v € clcone(clcone(F(E) + C - ) - 7).
So,
JF (%9, 4, V) (R(R(E, %), &) ) C clcone(clcone(F(E) + C - 3) - ). O

Proposition 3.2 Suppose that E C X and the second-order lower radial tangent derivative
of F: X — 2Y at (x,7) € graph F in the direction (i1, V) exists. Then

RYF(%,7, 11, V) (R*(E, %, 1)) C clcone(cone(F(E) + C - ) - ).

Proof Letv € RIF(x,9, 1, V)(R*(E, %, t)). Then there exists u € R*(E, %, it) such that
v e RER, 9, i, 9) (u).

Thus,

(u,v) € graph R7F(%,, &1, V) = R} (epi F, (&, ), (iL, ). (3.2)
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From u € R*(E, %, 1) it follows that there exist sequences t, > 0 and u,, — u such that
A ~ 1,
X+ Lyl + Et”u" eE.

For such £, and u,,, it follows from (3.2) that there exists a sequence v,, — v such that
N A 1, ~ 1, .
X+t + itnu,,,y +t,V+ Ethn eepiF.

Then

A ~ o1y - o1,
Y+ t,V+ Etn‘/n eFlx+t,u+ Et"u" +C,
and, consequently,
.1 1 . .1 o
V+ Etnvn € E<F<x+ t,u+ Etﬁu,,) + C—y).
Thus,
.1 N
v+ Et,,v,, € cone(F(E) +C —y).
Hence,
2 ~ A
v, € t—(cone(F(E) +C—-9)-9).
n
Therefore,
vy € cone(cone(F(E) + C - ) - V).
Taking n — oo, we get
ve clcone(cone(F(E) +C —5/) - f/).
So,

R}F(,5, i1, V) (R*(E, %, 1)) C clcone(cone(F(E) + C - 3) - ). O

tion 3.1, then none of the inclusions
D'F(%,3,u,V)(R(R(E, %), &)) C clcone(clcone(F(E) + C —7) — )
and

R'F(%,,11,9)(R(R(E, %), it)) C clcone(clcone(F(E) + C - 3) — )
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is necessarily true. If we substitute D*F(,5,,v) or R*F(%,9,1,V) for R?F(%,5,,V) in

Proposition 3.2, then none of the inclusions

D*F(%,9, 1, 9)(R*(E, %, #)) C clcone(cone(F(E) + C - ) — )
and

R*F(%,5, 11, 9) (R*(E, , %)) C clcone(cone(F(E) + C - 7) - )
is necessarily true, as is shown in the following example.

Example 3.1 Let R be the set of real numbers, X =Y =R, C={t:t>0},and E = {x: x >
0}. Define the set-valued map F : X — 2¥ by

_ {J"}’EO} 1fx20¢

F(x) =
¢ {y:y> ¥x} otherwise.

(i) Let (%,%) = (0,0), (&, ¥) = (0,-1). A direct calculation gives

R(E,0) = R(R(E, 0),0) = [0, +00),

T(epiF,(0,0)) = R(epiF, (0,0)) = {(x,9) : x>0,y > 0} U{(x,9) :x <0,y € R},
T(T(epiF,(0,0)),(0,-1)) = {(x,») :x <0,y € R},

R(R(epiF,(0,0)),(0,-1)) = {(x,y) :x <0,y e R} U {(x,9) : x> 0,y > 0},

R, x<0,

D"F(0,0,0,-1)(x) =
( ) !ﬂ, o

R'F(0,0,0,-1)(x) = {R’ #=0,
{y:y=0}, x>0,

R(epiF,(0,0)) = {(x,y): x € R,y > 0},

R;(Rl(epiF, (0,0)), (o, —1)) =0,

R/F(0,0,0,-1)(x) =¥, x€R.
Consequently,

D"F(0,0,0,-1)(R(R(E,0),0)) = R"F(0,0,0,-1)(R(R(E,0),0)) = R,
R/F(0,0,0,-1)(R(R(E,0),0)) =¥,

clcone(clcone(F(E) +C —j/) - f/) = [0, +00).
Then, the inclusion of Proposition 3.1 is true. However,

D'F(%,5,11,7)(R(R(E, %), 1)) ¢ clcone(clcone(F(E) + C - 3) — )
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and
R'F(x,5,11,7) (R(R(E, x), it)) 7 clcone(clcone(F(E) +C —j/) - 17).
(i) Let (%,7) = (0,0), (&1,¥) = (0,0). A direct calculation gives

R(R(E,0),0) = R*(E,0,0) = R(E, 0) = [0, +00),

T(T(epiF,(0,0)),(0,0)) = R(R(epiF, (0,0)),(0,0)) = T*(epiF, (0,0),(0,0))
= R*(epiF, (0,0),(0,0))
= T(epiF,(0,0)) = R(epiF, (0,0))
={®y):x>0,y>0} U{(x,»):x<0,yeR},

R, x <0,

D"F(0,0,0,0)(x) = RF(OOOO)(x)_{{ y>0}, x>0,

, ) B R x < 0,
D°F(0,0,0,0)(x) = R°F(0,0,0,0)(x) = !{ >0}, x>0,
Ri(Ri(epiF, (0,0)),(0,0)) = Ri (epi F, (0,0), (0,0))

= Ry(epiF,(0,0)) = {(,9) :x € Ry = 0},

R/F(0,0,0,0)(x) = R7F(0,0,0,0)(x) = [0,+00), «x€R.
Consequently,

D"F(0,0,0,0)(R(R(E,0),0)) = R"F(0,0,0,0)(R(R(E, 0),0))

= D?*F(0,0,0,0)(R*(E, 0,0))

= R*F(0,0,0,0)(R*(E,0,0)) =R,
R/F(0,0,0,0)(R(R(E,0),0)) = R7F(0,0,0,0)(R*(E, 0,0)) = [0, +00),

clcone(clcone(F(E) +C —j/) — f/) = clcone(cone(F(E) +C —j/) - f/) = [0, +00).
Then, the inclusions of Propositions 3.1 and 3.2 are true. However,

D'F(x,y,1,7) (R(R(E %),1)) ¢ clcone(clcone(F(E) + C —j/) - 17),
R'F(x,5,11,7) (R(R(E X), )) ¢ clcone(clcone(F(E) + C —j/) - 17),

D*F(%,%, 1, )(R (Ex,10) ¢ clcone(cone(F(E) +C— y) - V)
and
R*F(&,5, 1, V) (R*(E, %, #1)) ¢ clcone(cone(F(E) + C - 3) - ).

4 Second-order necessary optimality conditions
Let F: X — 2Y,G: X — 2%, and (F, G) : X — 2¥*Z be defined by (F, G)(x) = F(x) x G(x).
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Consider the following optimization problem with set-valued maps:

(VP) minF(x),
st. Gx)N(-D) #9, =xeX.

The feasible set of (VP) is denoted by E, thatis, E = {x e X:Gx)N(-D)#d}.

Definition 4.1 (See [13,19, 21]) Letx € E, y € F(%). A pair (%,7) is called a Henig efficient
element of (VP) if there exists ¢ € (0,8) such that

N

(F(E) - 3) N (~intcone(eU + B)) =4,
where 8 := inf{||b| : b € B}, F(E) = |, F(x), and U is the closed unit ball of Y.

xe€E

Definition 4.2 (See [10]) The interior tangent cone IT(S,y) of S at y is the set of ally € Y
such that for any ¢, — 0* and y, — y, we have y + t,y, € S.

Remark 4.1 (See [10]) If S C Y is convex, y € S, and int S # @, then

IT(S, ) = IT(int S, y) = intcone(S — ).
Theorem 4.1 Suppose that (x,9) is a Henig efficient element of (VP), z € G(x) N (-D),
(&t,V,w) € X x (=C) x (=D), F is second-order lower radial composed derivable at (x,7)
in the direction (i1, ), and G is second-order radial composed derivable at (x,Z) in the di-
rection (it, w). Then there exists & € (0, 8) such that

(R/F(%,3,11,9)(x), R"G(%, 2, 1, W)(x)) N ((~ intcone(¢U + B)) x (~intD)) = ¢ (4.1)

Sor all x e dom R/F(X,y, 1, ) Ndom R" G(%, 2, it, W).

Proof Since (,7) is a Henig efficient element of (VP), there exists a number &, € (0, §)
such that

(F(fE) —3) N (~intcone(eoU + B)) = 4. (4.2)

On the contrary, suppose that (4.1) does not hold. Then there exist X € dom R/ F(x, 7,

~ AA A A

u,v) NdomR"G(&, 2, it, W), y € R/F(X,, 4, V)(x), and z € R"G(X, z, &t, W) (¥) such that

y € —intcone(eoU + B) (4.3)
and

zZ € —intD. (4.4)
From z € R"G(x, z, it, w) () it follows that

(%,z) € graph R"G(%, 2, 1, W) = R(R(epi G, (%, 2)), (i1, W)).
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Hence, there exist ¢, > 0 and (i, w,) € R(epi G, (%, z)) such that
bn (s W) = (81, W)) — (%,2). (4.5)
From (4.4) it follows that there exists N; € N such that
t,(w,—w) € —intD, Vn>Nj.
Since —int D is a cone, we obtain
w,—wE—intD, Vn>N;.
Since w € —D and -D is a convex cone, it follows that
w, €—intD—-D=—intD, Vn>Nj. (4.6)
Since (u,, w,) € R(epi G, (%, 2)), there exist sequences t’; >0 and (x’;,zﬁ) € epi G such that
5 ((+5,2) = &,2)) = (n, W),k — +o00. (4.7)
It follows from (4.6) that there exists Kj(#) € N such that
t5(zX -2) e —intD, V¥n>Ny,Vk> Ki(n).
Since —int D is a cone, we obtain
Z-2e-intD, Vn>Ny,Vk>Ki(n).
Since zZ € —D and —-D is a convex cone, it follows that
2 e—intD-D=—intD, Vn>Ny,Vk>Ky(n).

Since (x,z%) € epi G, we obtain 28 € G(xX) + D. Hence, there exists zX € G(x) such that

k

z

k'€ zk + D. Consequently,

Ze -Dc-intD-D=—intD.

Thus, G(x’;) N (=D) # @, that is, x’; € E. 1t follows from (4.7) that t’n‘(x’; —X) = u, as
k — 00, and hence, u, € R(E,%). It follows from (4.5) that t,(u, — it) — x, and hence,

A A A A

% € R(R(E, %), ib). By Proposition 3.1, since y € R/F(&, 3, i1, V)(x), we conclude that
y € R/F(%,9,11,7) (R(R(E, x),i)) C clcone(clcone(F(E) +C-j)-").
From (4.3) it follows that

clcone(clcone(F(E) +C —j/) - f/) N (— intcone(eoU + B)) Z0.
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Since —intcone(goU + B) is open, we obtain
cone(clcone(F(E) +C —5/) - f/) N (—intcone(sou + B)) .
Since cone(ggU + B) is a pointed cone, it follows that
(clcone(F(E) +C—7) —¥) N (~intcone(eoU + B)) # ¥,
and thus,
clcone(F(E) +C —5/) N (f/ — intcone(go U + B)) .
It follows from ¥ € —C C —cone(goU + B) that

v — int(cone(eoU + B)) C —cone(goU + B) — int(cone(eoU + B))

C —intcone(goU + B).

Consequently,

clcone(F(l:f) +C - ) N (~intcone(eoU + B)) # 0.
In the similar way, we conclude that

(F(E) +C - 7) N (~intcone(eoU + B)) # .
Since C C cone(eoU + B) and cone(eoU + B) is a point cone, we obtain

(F(E) —5/) N (— intcone(goU + B)) #0.
This is a contradiction to (4.2). The proof is completed. d

Corollary 4.1 Suppose that (x,%) is a Henig efficient element of (VP), z € G(x) N (-D),
(21, V,w) € X x (-C) x (=D), F is second-order lower radial composed derivable at (x,9) in
the direction (i1,V), and G is second-order lower radial composed derivable at (x,Zz) in the
direction (i1, w). Then there exists a number & € (0,8) such that

(R/F(%,9, 4, v)(x), R} G(%, 2, 1, W)(x)) N ((~intcone(U + B)) x (~intD)) =
for all x € dom R/F(%,9,,9) N dom R G(&, 2, 1, ¥).

Proof The proof follows directly from Theorem 4.1 and Remark 2.3(ii). O

Corollary 4.2 Suppose that (x,9) is a Henig efficient element of (VP), z € G(x) N (-D),
(&t,v,w) € X x (=C) x (=D), C has a convex base B, F is second-order lower radial com-
posed derivable at (x, ) in the direction (i1, V), and G is second-order lower radial composed
derivable at (x,Z) in the direction (i, ). Then there exists a number € € (0,8) such that

(R/F(%,5,11,9)(x), R) G(%, 2, 1, W)(x)) N (IT (- intcone(éU + B), -V) x (~intD)) = @

Sor all x e dom R/F(%,%,4,V) N domR] G(X, z, i, W).
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Proof

IT(-intcone(¢U + B), V) = intcone(— intcone(éU + B) + ¥)
C —C —intcone(¢U + B)
C —cone(¢U + B) — intcone(U + B)

C —intcone(éU + B). a
We provide the following example to explain Theorem 4.1 and Corollaries 4.1 and 4.2.

Example 4.1 Let R be the set of real numbers, X =Y =Z=R, C=D={t:t >0}, B={1}.
Define the set-valued maps F: X — 2¥ and G: X — 2% by

_ {J"J’EO} lfxzo,

F(x) = Gl
() = G&) {y:y>x% otherwise.

Let (%,%) = (0,0), (&, 1,w) = (1,0,0) € X x (-C) x (=D), & = % A direct calculation gives

€ G(0)N (-D) = {0},

Ri(epiF,(0,0)) = Ri(epi G, (0,0)) = {(x,9) : x>0,y > 0},

R(epi G, (0,0)) = {(x,9) :x € R,y = 0},

Ry(Ri(epiF, (0,0)),(1,0)) = R(Ri(epi G, (0,0)),(1,0)) = {(x,9) : x>0,y > 0},
R(R(epi G, (0,0)),(1,0)) = {(x,y) :x € R,y > 0},

{y:y=0} ifx>0,

R/F(0,0,1,0)(x) = R/G(0,0,1,0)(x) = )
otherwise,

R’G(0,0,1,0)(x) = [0,+00), x€R,
IT(— intcone(sU + B),—f/) = —intcone(sU + B) = (-00,0).
Then, the inclusions of Theorem 4.1 and Corollaries 4.1 and 4.2 are true.

Theorem 4.2 Suppose that (x,y) is a Henig efficient element of (VP), z € G(x) N (-D),
(&t,V,w) € X x (=C) x (=D), F is second-order lower radial derivable at (%,y) in the di-
rection (it,v), and G is second-order radial derivable at (x,Zz) in the direction (i1, w). Then
there exists a number & € (0,8) such that

(R%F(fc,j/, o, V)(x), R G(%,2, 11, ﬁ/)(x)) N ((—intcone(éu + B)) X (—intD)) =0 (4.8)
Sor all x € dom R?F (%, %, it, ¥) N dom R*G (%, 2, it, W).

Proof On the contrary, suppose that (4.8) does not hold. Then, forany ¢ € (0, §), there exist

A A A A

x € domR?F(,5, 1, ) N dom R*G(%, 2,1, W), y € RIF(%,), i, V)(x), and z € R*G(%, 2, i, W) (%)
such that

y € —intcone(eU + B) (4.9)
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and
z€—intD. (4.10)
From z € R2G(&, 2, i1, ) (%) it follows that
(%,2) € graph R*G(%, 2, it, W) = R* (epi G, (%, 2), (i1, W)).
Hence, there exist ¢, > 0, x, — X, and z,, — Z such that
(& + il + %tﬁxnﬁ W+ %tﬁzn> cepiG.
Thus,
N L 1, A A
Z+ W+ Etnz,, € G(x + bl + Et”x"> +D. (4.11)

The set of positive integers is denoted by N. From (4.10) and z,, — z it follows that there
exists N € N such that

z, € —intD, Vn>Nj.
Since —int D and —D are convex cones, we obtain
A L1, . .
Z+ W+ Et”Z” €e-D-D-intD=-intD, Vn>Nj. (4.12)
It follows from (4.11) that there exists Z,, € G(X + £,,2t + %tﬁx,,) such that
A . 1, -
Z+ W+ Etnz,, e {z,}+D.
Since (4.12) and D is a convex cone, we obtain
- A .1 . .
Z, € {z+ t,w+ Etﬁzn} -DC—-intD-D=—intD C -D.
Thus,
R 1
G<x + byt + Etixn> N (=D) #,
that is,
A ~ 1, A
X+ t,u + Etnxn e E.

From t, > 0 and x, — % it follows that ¥ € R2(E,%,&). By Proposition 3.2 and y €
R?F(%,, i1, v)(x) we obtain

AS R%F(fc,ji, i, V) (RZ(E, X, Ift)) C clcone(cone(F(E) +C —j/) - f/).
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It follows from (4.9) that
clcone(cone(F(E) +C—j) - ) N (~intcone(elU + B)) # .
Since —intcone(eU + B) is open, we obtain
cone(cone(l—"(é) +C—7) - ) N (~intcone(e U + B)) # ¥.
Since cone(eU + B) is a pointed cone, it follows that
(cone(F(E) +C —5/) - f/) al (— intcone(e U + B)) #,
and thus,
cone(F(E) +C —j/) N (f/ — intcone(eU + B)) .
It follows from ¥ € —C C —cone(eU + B) that

v — int(cone(eU + B)) C —cone(¢U + B) — int(cone(sU + B))

C —intcone(eU + B).
Consequently,
cone(F(E) +C - 3) N (~intcone(eU + B)) # .
In a similar way, we conclude that
(F(E) + C - 3) N (~intcone(eU + B)) # ¥.

Since C C cone(eU + B) and cone(elU + B) is a pointed cone, we obtain

N

(F(E) —5/) N (— intcone(eU + B)) .
This is a contradiction to the assumption that (,) is a Henig minimizer of (VP). O
Corollary 4.3 Suppose that (x,9) is a Henig efficient element of (VP), z € G(x) N (-D),
(&1, v, W) € X x (-C) x (=D), F is second-order lower radial derivable at (X, y) in the direction

(21, V), and G is second-order lower radial derivable at (x,Zz) in the direction (i1, w). Then
there exists a number & € (0,8) such that

(R%F(fc,j/, i, f/)(x),R?G(fc, z, U, ﬁ/)(x)) n ((— intcone(¢ U + B)) X (—intD)) =0
Sor all x € dom R?F(%,7, 1, 7) N dom R} G(%, 2, i1, W).

Proof The proof follows immediately from Theorem 4.2 and Remark 2.3(ii). O
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Corollary 4.4 Suppose that (%,9) is a Henig efficient element of (VP), z € G(x) N (-D),
(it,V,w) € X x (-=C) x (-D), B is a base of C, F is second-order lower radial derivable at
(%,9) in the direction (i1, V), and G is second-order lower radial derivable at (x,Z) in the
direction (i, ). Then there exists a number & € (0,8) such that

(RIF (3,5, i1, 9)(x), R} G(%, 2, &1, W) (x)) N (IT (- intcone(6U + B), V) x (=intD)) = ¢
for all x € dom R?F (%, %, i1, ¥) N dom R? G(, 2, i1, W).
Proof 1t is similar to the proof of Corollary 4.2. O
We give the following example to illustrate Theorem 4.2 and Corollaries 4.3 and 4.4.

Example 4.2 Let R be the set of real numbers, X =Y =Z=R, C=D={t:t> 0}, and
B = {1}. Define the set-valued maps F: X — 2¥ and G: X — 27 by
Fx)={y:y>0}, x€R,

Gx)={y:y>x}, x€R.
Let (%,7) = (0,0), (it,,w) = (-1,0,-1),and ¢ = % A direct calculation gives

£€ G(0)N(-D) = {0},

R} (epiF,(0,0),(-1,0)) = {(x,) :x € R,y = 0},
R*(epiG,(0,0),(-1,-1)) = {(x,9) :x € R,y > x},

R (epi G, (0,0),(-1,-1)) = {(x,9) :x € R,y > x},
R}F(0,0,-1,0)(x) = {y:y>0}, x€R,

R2G(0,0,-1,-1)(x) = R2G(0,0,-1,-1)(x) = {y : y > &}, x€R,

IT(-intcone(eU + B), —V) = —intcone(e U + B) = (-00,0).
Then, the inclusions of Theorem 4.2 and Corollaries 4.3 and 4.4 are true.

Let us recall that the upper (inferior) limit in the sense of Painlevé-Kuratowski of a
set-valued map @ : X — 2% is defined as limsup,_,,; ®(u) := {y € Y : Ju,, — ,3y, €
®(u,) such thaty, — y} and liminf,_; ®(u) := {y € Y : Yu,, — u,3y, € ®(u,) such that
yn — y}. If f : X — Y is Fréchet differentiable at % € X, its Fréchet derivative is denoted by
S ).

The profile map of F is the set-valued map F, : X — 2Y defined by F,(x) = F(x) + C,
x € domF.

In what follows, we consider vector optimization.

Letf: X—> Y, g: X —> Z.

Consider the following vector optimization:

(P) minf(x),

st.gix)e-D, xeX.
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Similarly to Definition 4.3 in [18], we introduce the following second-order generalized
lower (upper) directional derivative for vector-valued functions.

Definition 4.3 Let f : X — Y be Fréchet differentiable at %, and i, x € X. The parabolic

second-order generalized lower directional derivative of % in the direction (i, x) is

. R+ti+ 12x) —fR) - tf R
D2 (&, 1) (x) = timint L 2 1) @O -F @
t>04"—x Etz

Remark 4.2 When the set-valued map F becomes to a vector-valued function f, which is
Fréchet differentiable at &, letting v := f'(®)#, we have

. X+tin+ Le2x) - f.(3) -t R
RF(G,9,,9)(x) = Dif, Go i) = limin 2 l)ﬂf*( ) - @)
t>0,x' —>x =
” 2

Definition 4.4 Let f : X — Y be Fréchet differentiable at %, and &, x € X. The parabolic
second-order generalized upper directional derivative of & in the direction (&, x) is
. R+ tin+ 22x) - f(R) - tf R
D*f (&, t)(x) := lim supf( 2 1) @ -FR) .
~f2

>0, —x 2

Remark 4.3 When the set-valued map F becomes to a vector-valued function f, which is
Fréchet differentiable at &, letting v := f'(®)it, we have

- G+t i) - f.R) - (R
R’F(%,9, 1, V) (x) = D*f, (&, ) (x) = limsupf ( 2 l)tz S &) - .
>0, —x 2

Corollary 4.5 Suppose that (x,9) is a Henig efficient element of (P) and g(x) € —D. Then
there exists a number & € (0,8) such that

(D}f. (&, i) (x), D*g, (%, &) (x)) N ((~ intcone(8U + B)) x (~intD)) = &
for any x € dom D, (%, ) N dom D?g, (%, i1).
Proof The proof follows immediately from Theorem 4.2 and Remarks 4.2 and 4.3. O

5 Conclusions

In this paper, we introduced some new kinds of lower radial tangent cone, second-order
lower radial tangent set, and second-order radial tangent set. By virtue of these concepts,
second-order radial composed tangent derivative, second-order radial tangent deriva-
tive, second-order lower radial composed tangent derivative, and second-order lower
radial tangent derivative for a set-valued map are introduced. Compared with the second-
order composed contingent derivative D"F(%,%, i, V) introduced in [4, 15], the second-
order contingent derivative D*F(Z, 7, i1, V), second-order radial composed tangent deriva-
tive R"F (&, 9, &L, ), and second-order radial tangent derivative R*F(%,7, it, ), second-order
lower radial composed tangent derivative R/F(%,%,,7), and second-order lower radial
tangent derivative R?F(&,7, i1, V) have nice properties:

R/F(%,,11,9)(R(R(E, %), it)) C clcone(clcone(F(E) + C - 3) — )
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and
RPF(%,7, 11, V) (R*(E, %, 1)) C clcone(cone(F(E) + C - ) - ),

which are demonstrated in Propositions 3.1 and 3.2. Just applying these properties, we
established second-order necessary optimality conditions for a point pair to be a Henig
efficient element of a set-valued optimization problem where the second-order tangent
derivatives of the objective function and constraint function are separated.
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