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Abstract
In the article, we provide the necessary and sufficient conditions for the parameters α
and β such that the generalized Wilker-type inequality
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1 Introduction
The Wilker inequality [, ] for sine and tangent functions states that the inequality

(
sin x

x

)

+
tan x

x
–  >  (.)

holds for all x ∈ (,π/). The generalizations and improvements for the Wilker inequality
(.) have been the subject of intensive research in the recent years. Wu and Srivastava []
proved that the inequality
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holds for all x ∈ (,π/) if λ > , μ > , q >  or q ≤ min{–, –λ/μ}, and p ≤ qμ/λ. Baricz
and Sándor [] generalized inequality (.) to the Bessel functions.

In [], Zhu proved that the inequalities
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hold for x ∈ (,π/) and p ≥ . Matejíčka [] presented the best possible parameter p such
that the second inequality of (.) holds for x ∈ (,π/).
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Zhu [] proved that the inequalities
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are valid for all x ∈ (,π/) if (p,λ,η) ∈ {(p,λ,η)|p ≥ ,λ ≥  – (/π )p,η ≤ /} ∪
{(p,λ,η)| ≤ p ≤ /,λ ≥ /,η ≤  – (/π )p}.

In [], Yang and Chu provided the necessary and sufficient condition for the parameter
μ such that the generalized Wilker-type inequality
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holds for any fixed λ ≥  and all x ∈ (,π/).
Very recently, Chu et al. [] proved that the two parameter generalized Wilker-type in-

equality
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holds for all x ∈ (,π/) if (α,β) ∈ E, and inequality (.) is reversed if (α,β) ∈ E, where
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The main purpose of this paper is to provide the necessary and sufficient conditions
for the parameters α and β such that the generalized Wilker-type inequality (.) and its
reversed inequality hold for all x ∈ (,π/).

2 Lemmas
Lemma . (See [], Lemma .) Let –∞ < α < β < ∞, f, f : [α,β] → R be continuous
on [α,β] and differentiable on (α,β), and f ′

(x) 	=  on (α,β). Then the inequality

f(x) – f(α)
f(x) – f(α)

> (<)
f ′
 (α+)

f ′
(α+)

holds for all x ∈ (α,β) if there exists η ∈ (α,β) such that f ′
 (x)/f ′

(x) is strictly increasing
(decreasing) on (α,η) and strictly decreasing (increasing) on (η,β), and

f(β) – f(α)
f(β) – g(α)

≥ (≤)
f ′
 (α+)

f ′
(α+)

	= ∞.
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Lemma . (See [], Lemma .) Let β ∈ R, x ∈ (,π/), and F(x), G(x), H(x) and g(x) be
defined by

F(x) = cos x(sin x – x cos x)(x – sin x cos x), (.)

G(x) = (x – sin x cos x)(sin x – x cos x), (.)

H(x) = x
(

sin x
x +

tan x
x

– 
)

sin x cos x, (.)

and

g(x) =
βG(x) + H(x)

F(x)
, (.)

respectively. Then the following statements are true:
() The function g(x) is strictly increasing from (,π/) onto (β + /,  – π/) if

β = –.
() The function g(x) is strictly increasing from (,π/) onto (β + /,∞) if β > –.
() The function g(x) is strictly decreasing from (,π/) onto (–∞, β + /) if

β ≤ –/.

Let α,β ∈ R, x ∈ (,π/) and the functions Iα(x), Jβ (x) and Qα,β(x) be defined by

Iα(x) =
 – ( sin x

x )α

α
(α 	= ), I(x) = log x – log(sin x), (.)
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( tan x

x )β – 
β

(β 	= ), J(x) = log(tan x) – log x, (.)

and
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,

respectively.
Then it is not difficult to verify that
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(β < ). (.)

Lemma . (See [], Lemma .) Let x ∈ (,π/) and Qα,β (x) be defined by (.). Then
the following statements are true:
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() If α + β + / ≥  and β ≥ –, then Qα,β(x) is strictly decreasing on (,π/).
() If α ≤ π/ –  and –/ < β ≤ –, then Qα,β (x) is strictly increasing on (,π/).
() If α + β + / ≤  and β ≤ –/, then Qα,β(x) is strictly increasing on (,π/).

Lemma . Let x ∈ (,π/), Qα,β (x) be defined by (.) and the function x → D(α,β ; x) be
defined by

D(α,β ; x) = Qα,β (x) –



. (.)

Then the following statements are true:
() If α ∈R is fixed and β < , then there exists a unique solution β = β(α) given by

β(α) =
α

[( 
π

)α – ]
(α 	= ), β() =


 log 

π

(.)

satisfies the equation D(α,β ; π


–) =  such that D(α,β ; π


–) >  for β < β(α) and D(α,β ;
π


–) <  for β > β(α).
() If β <  is fixed, then there exists a unique solution α = α(β) satisfies the equation

D(α,β ; π


–) =  such that D(α,β ; π


–) >  for α < α(β) and D(α,β ; π


–) <  for α > α(β). In
particular, one has

α = α(–) = –. · · · , α∗
 = α

(
–




)
= –. · · · . (.)

() The two functions α → β(α) and β → α(β) are strictly decreasing.

Proof Part () follows easily from (.)-(.) and the fact that [(/π )α – ]/α < .
() It follows from (.) and (.) that

lim
α→–∞ D

(
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Note that
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π

)–α
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for α 	= .
From (.), (.), and (.) we clearly see that the function α → D(α,β ; π


–) is strictly

decreasing. Therefore, there exists a unique solution α = α(β) that satisfies the equation
D(α,β ; π


–) =  such that D(α,β ; π


–) >  for α < α(β) and D(α,β ; π


–) <  for α > α(β) fol-

lows from (.) and the monotonicity of the function α → D(α,β ; π


–). Numerical com-
putations show that

α(–) = –. · · · , α

(
–




)
= –. · · · .

() The function α → β(α) is strictly decreasing follows easily from (.) and (.). The
function β → α(β) is strictly decreasing due to it is the inverse function of α → β(α). �
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Lemma . Let β(α) be defined by (.). Then

α = –. · · · (.)

is the unique solution of the equation β(α) = –α/ – / such that β(α) < –α/ – / for
α < α and β(α) > –α/ – / for α > α.

Proof Let P(α) = β(α) + α/ + /. Then from (.) we clearly see that

P(α) =
( 
π

)α


α

( 
π

)α – 
+




,

lim
α→–∞ P(α) = –∞, lim

α→∞ P(α) =



, (.)

dP(α)
dα

= –
( 
π

)α


log( 

π
)α – ( 

π
)α + 

[( 
π

)α – ]
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for α 	= , where the last of (.) due to log x – x +  <  for all x >  with x 	= .
Inequality (.) implies that the function α → P(α) is strictly increasing on (,∞).

Therefore, there exists a unique α = α that satisfies the equation β(α) = –α/ – /
such that β(α) < –α/ – / for α < α and β(α) > –α/ – / for α > α follows from
(.) and the monotonicity of the function α → P(α). Numerical computations show that
α = –. · · · . �

Lemma . Let Qα,β (x), β(α), α and α∗
 be defined by (.), (.), and (.), respectively.

Then the following statements are true:
() If α ≥ –/ = –. · · · , then the inequality Qα,β (x) > / holds for all

x ∈ (,π/) if and only if β ≤ –α/ – /.
() If α ≥ α∗

 , then the inequality Qα,β(x) < / holds for all x ∈ (,π/) if and only if
β ≥ β(α).

() If α ≤ –/, then the inequality Qα,β (x) < / holds for all x ∈ (,π/) if and only if
β ≥ –α/ – /.

() If α ≤ α, then the inequality Qα,β (x) > / holds for all x ∈ (,π/) if and only if
β ≤ β(α).

Proof () If α ≥ –/ and Qα,β(x) > / for all x ∈ (,π/), then from (.)-(.) one has

lim
x→+

x–
[

Qα,β (x) –



]
= lim

x→+
x–

[
–

α + β + 


x + o
(
x)

]
= –

α + β + 


≥ ,

which implies that β ≤ –α/ – /.
If α ≥ –/ and β ≤ –α/ – /, then we clearly see

α + β +



≤ , β ≤ –



. (.)

Therefore, Qα,β (x) > / for all x ∈ (,π/) follows from Lemma .() and (.) together
with (.).
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() If α ≥ α∗
 and Qα,β (x) < / for all x ∈ (,π/), then from (.) and Lemma .() we

clearly see that D(α,β ; π


–) ≤  and β ≥ β(α).
Next, we prove that Qα,β(x) < / for all x ∈ (,π/) if α ≥ α∗

 and β ≥ β(α). It follows
from (.) and (.) together with the fact that

∂Jβ (x)
∂β

=
( tan x

x )β

β

[
log

(
tan x

x

)β

+
(

x
tan x

)β

– 
]

> 

for x ∈ (,π/) and β 	=  that the function β → Qα,β (x) is strictly decreasing. Therefore,
it suffices to prove that Qα,β(x) < / for all x ∈ (,π/) if α ≥ α∗

 and β = β(α).
From (.) and Lemma .() we get

β = β(α) ≤ β
(
α∗


)

= –



. (.)

Let αβ 	= , F(x), G(x), H(x), g(x), Iα(x) and Jβ (x) be defined by (.)-(.), respectively.
Then simple computations lead to

[
I′α(x)
J′
β (x)

]′
= –

cosβ x sinα–β– x
(x – sin x cos x)

[
g(x) + α

]
F(x)xβ–α–, (.)

J′
β (x) =

x – sin(x)
x cos x

(
tan x

x

)β–

>  (.)

for x ∈ (,π/).
Let α = –. · · · be defined by (.). Then it follows from Lemma .(),

Lemma ., and (.) together with α ≥ α∗
 = –. · · · > α that the function

x → g(x) + α is strictly decreasing on (,π/) and

lim
x→+

[
g(x) + α

]
= α + β +




> , lim
x→ π


–

[
g(x) + α

]
= –∞. (.)

From (.) and (.) together with the monotonicity of the function x → g(x) + α on
the interval (,π/) we clearly see that there exists x ∈ (,π/) such that the function
x → I′α(x)/J′

β(x) is strictly decreasing on (, x) and strictly increasing on (x,π/).
Note that

Iα( π


–) – Iα(+)
Jβ(α)( π


–) – Jβ(α)(+)

= Qα,β(α)

(
π


–
)

= D
(

α,β(α);
π


–
)

+



=



. (.)

Therefore, Qα,β(x) < / for all x ∈ (,π/) follows from Lemma ., (.), (.), (.),
and the piecewise monotonicity of the function x → I′α(x)/J′

β (x) on the interval (,π/).
() If α ≤ –/ and Qα,β (x) < / for all x ∈ (,π/), then from (.)-(.) we have

lim
x→+

x–
[

Qα,β (x) –



]
= lim

x→+
x–

[
–

α + β + 


x + o
(
x)

]
= –

α + β + 


≤ ,

which implies that β ≥ –α/ – /.
If α ≤ –/ and β ≥ –α/ – /, then we clearly see that

α + β +



≥ , β ≥ –. (.)
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Therefore, Qα,β (x) < / for x ∈ (,π/) follows easily from Lemma .(), (.), and
(.).

() If α ≤ α and Qα,β (x) > / for all x ∈ (,π/), then (.) and Lemma .() lead to
the conclusion that D(α,β ; π


–) ≥  and β ≤ β(α).

Next, we prove that Qα,β (x) > / for all x ∈ (,π/) if α ≤ α and β ≤ β(α). Since the
function β → Qα,β (x) is strictly decreasing which was proved in part (), we only need
to prove that Qα,β (x) > / for all x ∈ (,π/) if α ≤ α and β = β(α). It follows from
Lemma .() and (), Lemma .(), Lemma ., and α ≤ α < α that β ≥ β(α) = –
and the function g(x) + α is strictly increasing on (,π/) such that

lim
x→+

[
g(x) + α

]
= α + β +




< , (.)

lim
x→ π


–

[
g(x) + α

]
=

⎧⎨
⎩

α + ∞, β(α) > –,

α +  – π

 , β(α) = –,

=

⎧⎨
⎩

∞, β > –,

α +  – π

 > , β = –.
(.)

From (.), (.), and (.) we clearly see that there exists x∗ ∈ (,π/) such that the
function x → I′α(x)/J′

β(x) is strictly increasing on (, x∗) and strictly decreasing on (x∗,π/).
Therefore, Qα,β (x) > / for all x ∈ (,π/) follows from Lemma ., (.), (.), (.),
and the piecewise monotonicity of the function x → I′α(x)/J′

β(x) on the interval (,π/).
�

Lemma . Let Qα,β (x), α, α∗
 and α(β) be defined by (.) and Lemma ., respectively.

Then the following statements are true:
() If β ≥ –, then the inequality Qα,β(x) < / holds for all x ∈ (,π/) if and only if

α ≥ –β – /.
() If – ≤ β < , then the inequality Qα,β(x) > / holds for all x ∈ (,π/) if and only if

α ≤ α(β).
() If β ≤ –/, then the inequality Qα,β (x) > / holds for all x ∈ (,π/) if and only if

α ≤ –β – /.
() If β ≤ –/, then the inequality Qα,β (x) < / holds for all x ∈ (,π/) if and only if

α ≥ α(β).

Proof () If β ≥ – and Qα,β (x) < / for all x ∈ (,π/), then from (.)-(.) we get

lim
x→+

x–
[

Qα,β (x) –



]
= lim

x→+
x–

[
–

α + β + 


x + o
(
x)

]
= –

α + β + 


≤ ,

which implies that α ≥ –β – /.
If β ≥ – and α ≥ –β – /, then Qα,β (x) < / for all x ∈ (,π/) follows from (.)

and Lemma .().
() If – ≤ β <  and Qα,β(x) > / for all x ∈ (,π/), then (.) and Lemma .() lead

to the conclusion that D(α,β ; π


–) ≥  and α ≤ α(β).
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Next, we prove that Qα,β (x) > / for all x ∈ (,π/) if – ≤ β <  and α ≤ α(β). It follows
from – ≤ β <  and α ≤ α(β) together with Lemma .() that

α ≤ α(–) = α, β ≤ β(α). (.)

Therefore, Qα,β (x) > / for all x ∈ (,π/) follows from Lemma .() and (.).
() If β ≤ –/ and Qα,β (x) > / for all x ∈ (,π/), then from (.)-(.) we have

lim
x→+

x–
[

Qα,β (x) –



]
= lim

x→+
x–

[
–

α + β + 


x + o
(
x)

]
= –

α + β + 


≥ ,

which implies that α ≤ –β – /.
If β ≤ –/ and α ≤ –β – /, then Qα,β(x) > / for all x ∈ (,π/) follows from

(.) and Lemma .().
() If β ≤ –/ and Qα,β (x) < / for all x ∈ (,π/), then (.) and Lemma .() lead

to the conclusion that D(α,β ; π


–) ≤  and α ≥ α(β).
Next, we prove that Qα,β (x) < / for all x ∈ (,π/) if β ≤ –/ and α ≥ α(β). It fol-

lows from β ≤ –/ and α ≥ α(β) together with Lemma .() that

α ≥ α

(
–




)
= α∗

, β ≥ β(α). (.)

Therefore, the desired result follows from Lemma .() and (.). �

3 Main results
Let α,β ∈ R with αβ(α + β) 	=  and Qα,β (x) be defined by (.), then we clearly see that
the generalized Wilker-type inequality

β

α + β

(
sin x

x

)α

+
α

α + β

(
tan x

x

)β

–  >  (.)

holds for all x ∈ (,π/) if and only if Qα,β (x) < / and αβ(α + β) >  or Qα,β (x) > / and
αβ(α + β) < , while the generalized Wilker-type inequality

β

α + β

(
sin x

x

)α

+
α

α + β

(
tan x

x

)β

–  <  (.)

holds for all x ∈ (,π/) if and only if Qα,β (x) < / and αβ(α + β) <  or Qα,β (x) > / and
αβ(α + β) > .

From Lemmas . and . together with inequalities (.) and (.) we get Theorems .
and . immediately.

Theorem . Let α,β ∈ R with αβ(α + β) 	= , β(α), α and α∗
 be defined by (.) and

(.), respectively. Then the following statements are true:
() If α ≥ –/, then inequality (.) holds for all x ∈ (,π/) if and only if

(α,β) ∈ {(α,β)|β ≤ –α/ – /,αβ(α + β) < } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|β ≤ –α/ – /,αβ(α + β) > }.
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() If α ≥ α∗
 , then inequality (.) holds for all x ∈ (,π/) if and only if

(α,β) ∈ {(α,β)|β ≥ β(α),αβ(α + β) > } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|β ≥ β(α),αβ(α + β) < }.

() If α ≤ –/, then inequality (.) holds for all x ∈ (,π/) if and only if
(α,β) ∈ {(α,β)|β ≥ –α/ – /,αβ(α + β) > } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|β ≥ –α/ – /,αβ(α + β) < }.

() If α ≤ α, then inequality (.) holds for all x ∈ (,π/) if and only if
(α,β) ∈ {(α,β)|β ≤ β(α),αβ(α + β) < } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|β ≤ β(α),αβ(α + β) > }.

Theorem . Let α,β ∈R with αβ(α + β) 	= , α, α∗
, and α(β) be defined by Lemma ..

Then the following statements are true:
() If β ≥ –, then inequality (.) holds for all x ∈ (,π/) if and only if

(α,β) ∈ {(α,β)|α ≥ –β – /,αβ(α + β) > } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|α ≥ –β – /,αβ(α + β) < }.

() If – ≤ β < , then inequality (.) holds for all x ∈ (,π/) if and only if
(α,β) ∈ {(α,β)|α ≤ α(β),αβ(α + β) < } and inequality (.) holds for all
x ∈ (,π/) if and only if (α,β) ∈ {(α,β)|α ≤ α(β),αβ(α + β) > }.

() If β ≤ –/, then inequality (.) holds for all x ∈ (,π/) if and only if
(α,β) ∈ {(α,β)|α ≤ –β – /,αβ(α + β) < } ∪ {(α,β)|α ≥ α(β),αβ(α + β) > }
and inequality (.) holds for all x ∈ (,π/) if and only if
(α,β) ∈ {(α,β)|α ≤ –β – /,αβ(α + β) > } ∪ {(α,β)|α ≥ α(β),αβ(α + β) < }.
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