# RESEARCH

# **Open Access**



# Necessary and sufficient conditions for the two parameter generalized Wilker-type inequalities

Hui Sun<sup>1</sup>, Zhen-Hang Yang<sup>2</sup> and Yu-Ming Chu<sup>1\*</sup>

\*Correspondence: chuyuming2005@126.com <sup>1</sup>School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

# Abstract

In the article, we provide the necessary and sufficient conditions for the parameters  $\alpha$  and  $\beta$  such that the generalized Wilker-type inequality

$$\frac{2\beta}{\alpha+2\beta}\left(\frac{\sin x}{x}\right)^{\alpha}+\frac{\alpha}{\alpha+2\beta}\left(\frac{\tan x}{x}\right)^{\beta}-1>(<)0$$

holds for all  $x \in (0, \pi/2)$ .

**MSC:** 26D05; 33B10

**Keywords:** Wilker-type inequality; sine function; tangent function; necessary and sufficient condition

# **1** Introduction

The Wilker inequality [1, 2] for sine and tangent functions states that the inequality

$$\left(\frac{\sin x}{x}\right)^2 + \frac{\tan x}{x} - 2 > 0 \tag{1.1}$$

holds for all  $x \in (0, \pi/2)$ . The generalizations and improvements for the Wilker inequality (1.1) have been the subject of intensive research in the recent years. Wu and Srivastava [3] proved that the inequality

$$\frac{\lambda}{\lambda+\mu} \left(\frac{\sin x}{x}\right)^p + \frac{\mu}{\lambda+\mu} \left(\frac{\tan x}{x}\right)^q > 1$$
(1.2)

holds for all  $x \in (0, \pi/2)$  if  $\lambda > 0$ ,  $\mu > 0$ , q > 0 or  $q \le \min\{-1, -\lambda/\mu\}$ , and  $p \le 2q\mu/\lambda$ . Baricz and Sándor [4] generalized inequality (1.2) to the Bessel functions.

In [5], Zhu proved that the inequalities

$$\left(\frac{\sin x}{x}\right)^{2p} + \left(\frac{\tan x}{x}\right)^{p} > \left(\frac{x}{\sin x}\right)^{2p} + \left(\frac{x}{\tan x}\right)^{p} > 2$$
(1.3)

hold for  $x \in (0, \pi/2)$  and  $p \ge 1$ . Matejíčka [6] presented the best possible parameter p such that the second inequality of (1.3) holds for  $x \in (0, \pi/2)$ .



© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Zhu [7] proved that the inequalities

$$(1-\lambda)\left(\frac{x}{\sin x}\right)^p + \lambda\left(\frac{x}{\tan x}\right)^p < 1 < (1-\eta)\left(\frac{x}{\sin x}\right)^p + \eta\left(\frac{x}{\tan x}\right)^p$$

are valid for all  $x \in (0, \pi/2)$  if  $(p, \lambda, \eta) \in \{(p, \lambda, \eta) | p \ge 1, \lambda \ge 1 - (2/\pi)^p, \eta \le 1/3\} \cup \{(p, \lambda, \eta) | 0 \le p \le 4/5, \lambda \ge 1/3, \eta \le 1 - (2/\pi)^p\}.$ 

In [8], Yang and Chu provided the necessary and sufficient condition for the parameter  $\mu$  such that the generalized Wilker-type inequality

$$\frac{2}{\lambda+2}\left(\frac{\sin x}{x}\right)^{\lambda\mu} + \frac{\lambda}{\lambda+2}\left(\frac{\tan x}{x}\right)^{\mu} - 1 > (<)0$$

holds for any fixed  $\lambda \ge 1$  and all  $x \in (0, \pi/2)$ .

Very recently, Chu *et al.* [9] proved that the two parameter generalized Wilker-type inequality

$$\frac{2\beta}{\alpha+2\beta} \left(\frac{\sin x}{x}\right)^{\alpha} + \frac{\alpha}{\alpha+2\beta} \left(\frac{\tan x}{x}\right)^{\beta} - 1 > 0$$
(1.4)

holds for all  $x \in (0, \pi/2)$  if  $(\alpha, \beta) \in E_0$ , and inequality (1.4) is reversed if  $(\alpha, \beta) \in E_1$ , where

$$\begin{split} E_0 &= \left\{ (\alpha, \beta) | \alpha > 0, \beta > 0 \right\} \cup \left\{ (\alpha, \beta) | 0 < \alpha < -2\beta, \beta \ge -1 \right\} \\ &\cup \left\{ (\alpha, \beta) \left| \beta > 0, -\frac{12}{5} \le \alpha + 2\beta < 0 \right\} \right\} \\ &\cup \left\{ (\alpha, \beta) \left| \alpha \le \frac{\pi^2}{4} - 3, \beta \le -1 \right\} \\ &\cup \left\{ (\alpha, \beta) \left| \frac{\pi^2}{4} - 3 < \alpha < 0, \beta \le -\frac{37}{35}, \alpha + 2\beta + \frac{12}{5} \le 0 \right\}, \\ E_1 &= \left\{ (\alpha, \beta) | \alpha < 0, \alpha + 2\beta > 0 \right\} \cup \left\{ (\alpha, \beta) | -1 \le \beta < 0, \alpha + 2\beta > 0 \right\} \\ &\cup \left\{ (\alpha, \beta) \left| -1 \le \beta < 0, -2\beta - \frac{12}{5} \le \alpha < 0 \right\} \cup \left\{ (\alpha, \beta) \left| 0 < \alpha \le -2\beta - \frac{12}{5} \right\}. \end{split}$$

The main purpose of this paper is to provide the necessary and sufficient conditions for the parameters  $\alpha$  and  $\beta$  such that the generalized Wilker-type inequality (1.4) and its reversed inequality hold for all  $x \in (0, \pi/2)$ .

## 2 Lemmas

**Lemma 2.1** (See [10], Lemma 2.3) Let  $-\infty < \alpha < \beta < \infty$ ,  $f_1, f_2 : [\alpha, \beta] \to \mathbb{R}$  be continuous on  $[\alpha, \beta]$  and differentiable on  $(\alpha, \beta)$ , and  $f'_2(x) \neq 0$  on  $(\alpha, \beta)$ . Then the inequality

$$\frac{f_1(x) - f_1(\alpha)}{f_2(x) - f_2(\alpha)} > (<) \frac{f_1'(\alpha^+)}{f_2'(\alpha^+)}$$

holds for all  $x \in (\alpha, \beta)$  if there exists  $\eta \in (\alpha, \beta)$  such that  $f'_1(x)/f'_2(x)$  is strictly increasing (decreasing) on  $(\alpha, \eta)$  and strictly decreasing (increasing) on  $(\eta, \beta)$ , and

$$\frac{f_1(\beta) - f_1(\alpha)}{f_2(\beta) - g_2(\alpha)} \ge (\le) \frac{f_1'(\alpha^+)}{f_2'(\alpha^+)} \neq \infty.$$

**Lemma 2.2** (See [9], Lemma 2.9) Let  $\beta \in \mathbb{R}$ ,  $x \in (0, \pi/2)$ , and F(x), G(x), H(x) and g(x) be defined by

$$F(x) = \cos x (\sin x - x \cos x)^2 (x - \sin x \cos x),$$
(2.1)

$$G(x) = (x - \sin x \cos x)^{2} (\sin x - x \cos x), \qquad (2.2)$$

$$H(x) = x^3 \left(\frac{\sin^2 x}{x^2} + \frac{\tan x}{x} - 2\right) \sin^2 x \cos x,$$
(2.3)

and

$$g(x) = \frac{\beta G(x) + H(x)}{F(x)},$$
 (2.4)

respectively. Then the following statements are true:

- (1) The function g(x) is strictly increasing from  $(0, \pi/2)$  onto  $(2\beta + 12/5, 3 \pi^2/4)$  if  $\beta = -1$ .
- (2) The function g(x) is strictly increasing from  $(0, \pi/2)$  onto  $(2\beta + 12/5, \infty)$  if  $\beta > -1$ .
- (3) The function g(x) is strictly decreasing from  $(0, \pi/2)$  onto  $(-\infty, 2\beta + 12/5)$  if  $\beta \leq -37/35$ .

Let  $\alpha, \beta \in \mathbb{R}, x \in (0, \pi/2)$  and the functions  $I_{\alpha}(x), J_{\beta}(x)$  and  $Q_{\alpha,\beta}(x)$  be defined by

$$I_{\alpha}(x) = \frac{1 - (\frac{\sin x}{x})^{\alpha}}{\alpha} \quad (\alpha \neq 0), \qquad I_{0}(x) = \log x - \log(\sin x), \tag{2.5}$$
$$J_{\beta}(x) = \frac{(\frac{\tan x}{x})^{\beta} - 1}{\beta} \quad (\beta \neq 0), \qquad J_{0}(x) = \log(\tan x) - \log x, \tag{2.6}$$

and

$$\mathsf{Q}_{\alpha,\beta}(x)=\frac{\mathsf{I}_{\alpha}(x)}{\mathsf{J}_{\beta}(x)},$$

respectively.

Then it is not difficult to verify that

$$I_{\alpha}(0^{+}) = J_{\beta}(0^{+}) = 0,$$

$$Q_{\alpha,\beta}(x) = \frac{I_{\alpha}(x)}{J_{\beta}(x)} = \frac{I_{\alpha}(x) - I_{\alpha}(0^{+})}{J_{\beta}(x) - J_{\beta}(0^{+})},$$
(2.7)

$$Q_{\alpha,\beta}(0^+) = \frac{1}{2},\tag{2.8}$$

$$Q_{\alpha,\beta}\left(\frac{\pi}{2}\right) = \frac{\beta}{\alpha} \left[ \left(\frac{2}{\pi}\right)^{\alpha} - 1 \right] \quad (\alpha \neq 0, \beta < 0),$$
(2.9)

$$Q_{0,\beta}\left(\frac{\pi}{2}\right) = \lim_{\alpha \to 0} Q_{\alpha,\beta}\left(\frac{\pi}{2}\right) = \beta \log \frac{2}{\pi} \quad (\beta < 0).$$
(2.10)

**Lemma 2.3** (See [9], Lemma 2.10) Let  $x \in (0, \pi/2)$  and  $Q_{\alpha,\beta}(x)$  be defined by (2.7). Then the following statements are true:

- (1) If  $\alpha + 2\beta + 12/5 \ge 0$  and  $\beta \ge -1$ , then  $Q_{\alpha,\beta}(x)$  is strictly decreasing on  $(0, \pi/2)$ .
- (2) If  $\alpha \leq \pi^2/4 3$  and  $-37/35 < \beta \leq -1$ , then  $Q_{\alpha,\beta}(x)$  is strictly increasing on  $(0, \pi/2)$ .
- (3) If  $\alpha + 2\beta + 12/5 \le 0$  and  $\beta \le -37/35$ , then  $Q_{\alpha,\beta}(x)$  is strictly increasing on  $(0, \pi/2)$ .

**Lemma 2.4** Let  $x \in (0, \pi/2)$ ,  $Q_{\alpha,\beta}(x)$  be defined by (2.7) and the function  $x \to D(\alpha, \beta; x)$  be defined by

$$\mathsf{D}(\alpha,\beta;x) = \mathsf{Q}_{\alpha,\beta}(x) - \frac{1}{2}.$$
(2.11)

Then the following statements are true:

(1) If  $\alpha \in \mathbb{R}$  is fixed and  $\beta < 0$ , then there exists a unique solution  $\beta = \beta(\alpha)$  given by

$$\beta(\alpha) = \frac{\alpha}{2[(\frac{2}{\pi})^{\alpha} - 1]} \quad (\alpha \neq 0), \qquad \beta(0) = \frac{1}{2\log\frac{2}{\pi}}$$
(2.12)

satisfies the equation  $D(\alpha, \beta; \frac{\pi}{2}) = 0$  such that  $D(\alpha, \beta; \frac{\pi}{2}) > 0$  for  $\beta < \beta(\alpha)$  and  $D(\alpha, \beta; \frac{\pi}{2}) < 0$  for  $\beta > \beta(\alpha)$ .

(2) If  $\beta < 0$  is fixed, then there exists a unique solution  $\alpha = \alpha(\beta)$  satisfies the equation  $D(\alpha, \beta; \frac{\pi}{2}^{-}) = 0$  such that  $D(\alpha, \beta; \frac{\pi}{2}^{-}) > 0$  for  $\alpha < \alpha(\beta)$  and  $D(\alpha, \beta; \frac{\pi}{2}^{-}) < 0$  for  $\alpha > \alpha(\beta)$ . In particular, one has

$$\alpha_0 = \alpha(-1) = -0.44367302\cdots, \qquad \alpha_0^* = \alpha\left(-\frac{37}{35}\right) = -0.20340978\cdots.$$
 (2.13)

(3) The two functions  $\alpha \rightarrow \beta(\alpha)$  and  $\beta \rightarrow \alpha(\beta)$  are strictly decreasing.

*Proof* Part (1) follows easily from (2.9)-(2.11) and the fact that  $[(2/\pi)^{\alpha} - 1]/\alpha < 0$ . (2) It follows from (2.9) and (2.11) that

$$\lim_{\alpha \to -\infty} \mathsf{D}\left(\alpha, \beta; \frac{\pi}{2}\right) = \infty, \qquad \lim_{\alpha \to \infty} \mathsf{D}\left(\alpha, \beta; \frac{\pi}{2}\right) = -\frac{1}{2}.$$
(2.14)

Note that

$$\frac{d}{d\alpha} \left[ \frac{\left(\frac{2}{\pi}\right)^{\alpha} - 1}{\alpha} \right] = \frac{\left(\frac{2}{\pi}\right)^{\alpha}}{\alpha^2} \left[ \log\left(\frac{2}{\pi}\right)^{\alpha} + \left(\frac{2}{\pi}\right)^{-\alpha} - 1 \right] > 0$$
(2.15)

for  $\alpha \neq 0$ .

From (2.9), (2.11), and (2.15) we clearly see that the function  $\alpha \to D(\alpha, \beta; \frac{\pi}{2}^{-})$  is strictly decreasing. Therefore, there exists a unique solution  $\alpha = \alpha(\beta)$  that satisfies the equation  $D(\alpha, \beta; \frac{\pi}{2}^{-}) = 0$  such that  $D(\alpha, \beta; \frac{\pi}{2}^{-}) > 0$  for  $\alpha < \alpha(\beta)$  and  $D(\alpha, \beta; \frac{\pi}{2}^{-}) < 0$  for  $\alpha > \alpha(\beta)$  follows from (2.14) and the monotonicity of the function  $\alpha \to D(\alpha, \beta; \frac{\pi}{2}^{-})$ . Numerical computations show that

$$\alpha(-1) = -0.44367302\cdots$$
,  $\alpha\left(-\frac{37}{35}\right) = -0.20340978\cdots$ .

(3) The function  $\alpha \to \beta(\alpha)$  is strictly decreasing follows easily from (2.12) and (2.15). The function  $\beta \to \alpha(\beta)$  is strictly decreasing due to it is the inverse function of  $\alpha \to \beta(\alpha)$ .  $\Box$ 

**Lemma 2.5** Let  $\beta(\alpha)$  be defined by (2.12). Then

$$\alpha_1 = -0.36131140 \cdots$$
 (2.16)

is the unique solution of the equation  $\beta(\alpha) = -\alpha/2 - 6/5$  such that  $\beta(\alpha) < -\alpha/2 - 6/5$  for  $\alpha < \alpha_1$  and  $\beta(\alpha) > -\alpha/2 - 6/5$  for  $\alpha > \alpha_1$ .

*Proof* Let  $P(\alpha) = \beta(\alpha) + \alpha/2 + 6/5$ . Then from (2.12) we clearly see that

$$P(\alpha) = \frac{\left(\frac{2}{\pi}\right)^{\alpha}}{2} \frac{\alpha}{\left(\frac{2}{\pi}\right)^{\alpha} - 1} + \frac{6}{5},$$
  
$$\lim_{\alpha \to -\infty} P(\alpha) = -\infty, \qquad \lim_{\alpha \to \infty} P(\alpha) = \frac{6}{5},$$
 (2.17)

$$\frac{dP(\alpha)}{d\alpha} = -\frac{(\frac{2}{\pi})^{\alpha}}{2} \frac{\log(\frac{2}{\pi})^{\alpha} - (\frac{2}{\pi})^{\alpha} + 1}{[(\frac{2}{\pi})^{\alpha} - 1]^2} > 0$$
(2.18)

for  $\alpha \neq 0$ , where the last of (2.18) due to  $\log x - x + 1 < 0$  for all x > 0 with  $x \neq 1$ .

Inequality (2.18) implies that the function  $\alpha \to P(\alpha)$  is strictly increasing on  $(0, \infty)$ . Therefore, there exists a unique  $\alpha = \alpha_1$  that satisfies the equation  $\beta(\alpha) = -\alpha/2 - 6/5$  such that  $\beta(\alpha) < -\alpha/2 - 6/5$  for  $\alpha < \alpha_1$  and  $\beta(\alpha) > -\alpha/2 - 6/5$  for  $\alpha > \alpha_1$  follows from (2.17) and the monotonicity of the function  $\alpha \to P(\alpha)$ . Numerical computations show that  $\alpha_1 = -0.36131140\cdots$ .

**Lemma 2.6** Let  $Q_{\alpha,\beta}(x)$ ,  $\beta(\alpha)$ ,  $\alpha_0$  and  $\alpha_0^*$  be defined by (2.7), (2.12), and (2.13), respectively. Then the following statements are true:

- (1) If  $\alpha \ge -2/7 = -0.28571428 \cdots$ , then the inequality  $Q_{\alpha,\beta}(x) > 1/2$  holds for all  $x \in (0, \pi/2)$  if and only if  $\beta \le -\alpha/2 6/5$ .
- (2) If  $\alpha \ge \alpha_0^*$ , then the inequality  $Q_{\alpha,\beta}(x) < 1/2$  holds for all  $x \in (0, \pi/2)$  if and only if  $\beta \ge \beta(\alpha)$ .
- (3) If  $\alpha \leq -2/5$ , then the inequality  $Q_{\alpha,\beta}(x) < 1/2$  holds for all  $x \in (0, \pi/2)$  if and only if  $\beta \geq -\alpha/2 6/5$ .
- (4) If α ≤ α<sub>0</sub>, then the inequality Q<sub>α,β</sub>(x) > 1/2 holds for all x ∈ (0, π/2) if and only if β ≤ β(α).

*Proof* (1) If  $\alpha \ge -2/7$  and  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$ , then from (2.5)-(2.7) one has

$$\lim_{x \to 0^+} x^{-2} \left[ \mathsf{Q}_{\alpha,\beta}(x) - \frac{1}{2} \right] = \lim_{x \to 0^+} x^{-2} \left[ -\frac{5\alpha + 10\beta + 12}{120} x^2 + o(x^2) \right] = -\frac{5\alpha + 10\beta + 12}{120} \ge 0,$$

which implies that  $\beta \leq -\alpha/2 - 6/5$ .

If  $\alpha \ge -2/7$  and  $\beta \le -\alpha/2 - 6/5$ , then we clearly see

$$\alpha + 2\beta + \frac{12}{5} \le 0, \quad \beta \le -\frac{37}{35}.$$
(2.19)

Therefore,  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  follows from Lemma 2.3(3) and (2.8) together with (2.19).

(2) If  $\alpha \ge \alpha_0^*$  and  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$ , then from (2.11) and Lemma 2.4(1) we clearly see that  $D(\alpha, \beta; \frac{\pi}{2}) \le 0$  and  $\beta \ge \beta(\alpha)$ .

Next, we prove that  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$  if  $\alpha \ge \alpha_0^*$  and  $\beta \ge \beta(\alpha)$ . It follows from (2.6) and (2.7) together with the fact that

$$\frac{\partial \mathsf{J}_{\beta}(x)}{\partial \beta} = \frac{\left(\frac{\tan x}{x}\right)^{\beta}}{\beta^{2}} \left[ \log\left(\frac{\tan x}{x}\right)^{\beta} + \left(\frac{x}{\tan x}\right)^{\beta} - 1 \right] > 0$$

for  $x \in (0, \pi/2)$  and  $\beta \neq 0$  that the function  $\beta \to Q_{\alpha,\beta}(x)$  is strictly decreasing. Therefore, it suffices to prove that  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$  if  $\alpha \ge \alpha_0^*$  and  $\beta = \beta(\alpha)$ .

From (2.13) and Lemma 2.4(3) we get

$$\beta = \beta(\alpha) \le \beta\left(\alpha_0^*\right) = -\frac{37}{35}.$$
(2.20)

Let  $\alpha\beta \neq 0$ , F(x), G(x), H(x), g(x),  $I_{\alpha}(x)$  and  $J_{\beta}(x)$  be defined by (2.1)-(2.6), respectively. Then simple computations lead to

$$\left[\frac{\mathbf{l}_{\alpha}'(x)}{\mathbf{J}_{\beta}'(x)}\right]' = -\frac{\cos^{\beta} x \sin^{\alpha-\beta-1} x}{(x-\sin x \cos x)^2} \left[g(x) + \alpha\right] \mathsf{F}(x) x^{\beta-\alpha-1},\tag{2.21}$$

$$J'_{\beta}(x) = \frac{2x - \sin(2x)}{2x^2 \cos^2 x} \left(\frac{\tan x}{x}\right)^{\beta - 1} > 0$$
(2.22)

for  $x \in (0, \pi/2)$ .

Let  $\alpha_1 = -0.36131140\cdots$  be defined by (2.16). Then it follows from Lemma 2.2(3), Lemma 2.5, and (2.20) together with  $\alpha \ge \alpha_0^* = -0.20340978\cdots > \alpha_1$  that the function  $x \to g(x) + \alpha$  is strictly decreasing on  $(0, \pi/2)$  and

$$\lim_{x \to 0^+} \left[ g(x) + \alpha \right] = \alpha + 2\beta + \frac{12}{5} > 0, \qquad \lim_{x \to \frac{\pi}{2}^-} \left[ g(x) + \alpha \right] = -\infty.$$
(2.23)

From (2.21) and (2.23) together with the monotonicity of the function  $x \to g(x) + \alpha$  on the interval  $(0, \pi/2)$  we clearly see that there exists  $x_0 \in (0, \pi/2)$  such that the function  $x \to I'_{\alpha}(x)/J'_{\beta}(x)$  is strictly decreasing on  $(0, x_0)$  and strictly increasing on  $(x_0, \pi/2)$ .

Note that

$$\frac{I_{\alpha}(\frac{\pi}{2}^{-}) - I_{\alpha}(0^{+})}{J_{\beta(\alpha)}(\frac{\pi}{2}^{-}) - J_{\beta(\alpha)}(0^{+})} = Q_{\alpha,\beta(\alpha)}\left(\frac{\pi}{2}^{-}\right) = D\left(\alpha,\beta(\alpha);\frac{\pi}{2}^{-}\right) + \frac{1}{2} = \frac{1}{2}.$$
(2.24)

Therefore,  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$  follows from Lemma 2.1, (2.7), (2.22), (2.24), and the piecewise monotonicity of the function  $x \to I'_{\alpha}(x)/J'_{\beta}(x)$  on the interval  $(0, \pi/2)$ . (3) If  $\alpha \leq -2/5$  and  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$ , then from (2.5)-(2.7) we have

$$\lim_{x \to 0^+} x^{-2} \left[ \mathsf{Q}_{\alpha,\beta}(x) - \frac{1}{2} \right] = \lim_{x \to 0^+} x^{-2} \left[ -\frac{5\alpha + 10\beta + 12}{120} x^2 + o(x^2) \right] = -\frac{5\alpha + 10\beta + 12}{120} \le 0,$$

which implies that  $\beta \ge -\alpha/2 - 6/5$ .

If  $\alpha \leq -2/5$  and  $\beta \geq -\alpha/2 - 6/5$ , then we clearly see that

$$\alpha + 2\beta + \frac{12}{5} \ge 0, \quad \beta \ge -1.$$
 (2.25)

Therefore,  $Q_{\alpha,\beta}(x) < 1/2$  for  $x \in (0, \pi/2)$  follows easily from Lemma 2.3(1), (2.8), and (2.25).

(4) If  $\alpha \leq \alpha_0$  and  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$ , then (2.11) and Lemma 2.4(1) lead to the conclusion that  $D(\alpha, \beta; \frac{\pi}{2}) \geq 0$  and  $\beta \leq \beta(\alpha)$ .

Next, we prove that  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  if  $\alpha \le \alpha_0$  and  $\beta \le \beta(\alpha)$ . Since the function  $\beta \to Q_{\alpha,\beta}(x)$  is strictly decreasing which was proved in part (2), we only need to prove that  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  if  $\alpha \le \alpha_0$  and  $\beta = \beta(\alpha)$ . It follows from Lemma 2.2(1) and (2), Lemma 2.4(3), Lemma 2.5, and  $\alpha \le \alpha_0 < \alpha_1$  that  $\beta \ge \beta(\alpha_0) = -1$  and the function  $g(x) + \alpha$  is strictly increasing on  $(0, \pi/2)$  such that

$$\lim_{x \to 0^{+}} [g(x) + \alpha] = \alpha + 2\beta + \frac{12}{5} < 0,$$

$$\lim_{x \to \frac{\pi}{2}^{-}} [g(x) + \alpha] = \begin{cases} \alpha + \infty, & \beta(\alpha) > -1, \\ \alpha + 3 - \frac{\pi^{2}}{4}, & \beta(\alpha) = -1, \end{cases}$$

$$= \begin{cases} \infty, & \beta > -1, \\ \alpha_{0} + 3 - \frac{\pi^{2}}{4} > 0, & \beta = -1. \end{cases}$$
(2.26)
(2.26)
(2.26)
(2.26)
(2.26)
(2.27)

From (2.21), (2.26), and (2.27) we clearly see that there exists  $x^* \in (0, \pi/2)$  such that the function  $x \to I'_{\alpha}(x)/J'_{\beta}(x)$  is strictly increasing on  $(0, x^*)$  and strictly decreasing on  $(x^*, \pi/2)$ . Therefore,  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  follows from Lemma 2.1, (2.7), (2.22), (2.24), and the piecewise monotonicity of the function  $x \to I'_{\alpha}(x)/J'_{\beta}(x)$  on the interval  $(0, \pi/2)$ .

**Lemma 2.7** Let  $Q_{\alpha,\beta}(x)$ ,  $\alpha_0$ ,  $\alpha_0^*$  and  $\alpha(\beta)$  be defined by (2.7) and Lemma 2.4, respectively. *Then the following statements are true:* 

- If β ≥ −1, then the inequality Q<sub>α,β</sub>(x) < 1/2 holds for all x ∈ (0, π/2) if and only if α ≥ −2β − 12/5.
- (2) If -1 ≤ β < 0, then the inequality Q<sub>α,β</sub>(x) > 1/2 holds for all x ∈ (0, π/2) if and only if α ≤ α(β).
- (3) If  $\beta \leq -37/35$ , then the inequality  $Q_{\alpha,\beta}(x) > 1/2$  holds for all  $x \in (0, \pi/2)$  if and only if  $\alpha \leq -2\beta 12/5$ .
- (4) If  $\beta \leq -37/35$ , then the inequality  $Q_{\alpha,\beta}(x) < 1/2$  holds for all  $x \in (0, \pi/2)$  if and only if  $\alpha \geq \alpha(\beta)$ .

*Proof* (1) If  $\beta \ge -1$  and  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$ , then from (2.5)-(2.7) we get

$$\lim_{x \to 0^+} x^{-2} \left[ \mathsf{Q}_{\alpha,\beta}(x) - \frac{1}{2} \right] = \lim_{x \to 0^+} x^{-2} \left[ -\frac{5\alpha + 10\beta + 12}{120} x^2 + o(x^2) \right] = -\frac{5\alpha + 10\beta + 12}{120} \le 0,$$

which implies that  $\alpha \geq -2\beta - 12/5$ .

If  $\beta \ge -1$  and  $\alpha \ge -2\beta - 12/5$ , then  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$  follows from (2.8) and Lemma 2.3(1).

(2) If  $-1 \le \beta < 0$  and  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$ , then (2.11) and Lemma 2.4(2) lead to the conclusion that  $D(\alpha, \beta; \frac{\pi}{2}) \ge 0$  and  $\alpha \le \alpha(\beta)$ .

Next, we prove that  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  if  $-1 \le \beta < 0$  and  $\alpha \le \alpha(\beta)$ . It follows from  $-1 \le \beta < 0$  and  $\alpha \le \alpha(\beta)$  together with Lemma 2.4(3) that

$$\alpha \le \alpha(-1) = \alpha_0, \quad \beta \le \beta(\alpha). \tag{2.28}$$

Therefore,  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  follows from Lemma 2.6(4) and (2.28). (3) If  $\beta \le -37/35$  and  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$ , then from (2.5)-(2.7) we have

$$\lim_{x \to 0^+} x^{-2} \left[ \mathsf{Q}_{\alpha,\beta}(x) - \frac{1}{2} \right] = \lim_{x \to 0^+} x^{-2} \left[ -\frac{5\alpha + 10\beta + 12}{120} x^2 + o(x^2) \right] = -\frac{5\alpha + 10\beta + 12}{120} \ge 0,$$

which implies that  $\alpha \leq -2\beta - 12/5$ .

If  $\beta \le -37/35$  and  $\alpha \le -2\beta - 12/5$ , then  $Q_{\alpha,\beta}(x) > 1/2$  for all  $x \in (0, \pi/2)$  follows from (2.8) and Lemma 2.3(3).

(4) If  $\beta \leq -37/35$  and  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$ , then (2.11) and Lemma 2.4(2) lead to the conclusion that  $D(\alpha, \beta; \frac{\pi}{2}) \leq 0$  and  $\alpha \geq \alpha(\beta)$ .

Next, we prove that  $Q_{\alpha,\beta}(x) < 1/2$  for all  $x \in (0, \pi/2)$  if  $\beta \le -37/35$  and  $\alpha \ge \alpha(\beta)$ . It follows from  $\beta \le -37/35$  and  $\alpha \ge \alpha(\beta)$  together with Lemma 2.4(3) that

$$\alpha \ge \alpha \left( -\frac{37}{35} \right) = \alpha_0^*, \quad \beta \ge \beta(\alpha).$$
(2.29)

Therefore, the desired result follows from Lemma 2.6(2) and (2.29).

## 3 Main results

Let  $\alpha, \beta \in \mathbb{R}$  with  $\alpha\beta(\alpha + 2\beta) \neq 0$  and  $Q_{\alpha,\beta}(x)$  be defined by (2.7), then we clearly see that the generalized Wilker-type inequality

$$\frac{2\beta}{\alpha+2\beta}\left(\frac{\sin x}{x}\right)^{\alpha} + \frac{\alpha}{\alpha+2\beta}\left(\frac{\tan x}{x}\right)^{\beta} - 1 > 0$$
(3.1)

holds for all  $x \in (0, \pi/2)$  if and only if  $Q_{\alpha,\beta}(x) < 1/2$  and  $\alpha\beta(\alpha + 2\beta) > 0$  or  $Q_{\alpha,\beta}(x) > 1/2$  and  $\alpha\beta(\alpha + 2\beta) < 0$ , while the generalized Wilker-type inequality

$$\frac{2\beta}{\alpha+2\beta} \left(\frac{\sin x}{x}\right)^{\alpha} + \frac{\alpha}{\alpha+2\beta} \left(\frac{\tan x}{x}\right)^{\beta} - 1 < 0$$
(3.2)

holds for all  $x \in (0, \pi/2)$  if and only if  $Q_{\alpha,\beta}(x) < 1/2$  and  $\alpha\beta(\alpha + 2\beta) < 0$  or  $Q_{\alpha,\beta}(x) > 1/2$  and  $\alpha\beta(\alpha + 2\beta) > 0$ .

From Lemmas 2.6 and 2.7 together with inequalities (3.1) and (3.2) we get Theorems 3.1 and 3.2 immediately.

**Theorem 3.1** Let  $\alpha, \beta \in \mathbb{R}$  with  $\alpha\beta(\alpha + 2\beta) \neq 0$ ,  $\beta(\alpha)$ ,  $\alpha_0$  and  $\alpha_0^*$  be defined by (2.12) and (2.13), respectively. Then the following statements are true:

(1) If  $\alpha \ge -2/7$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta \le -\alpha/2 - 6/5, \alpha\beta(\alpha + 2\beta) < 0\}$  and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta \le -\alpha/2 - 6/5, \alpha\beta(\alpha + 2\beta) > 0\}$ .

- (2) If  $\alpha \ge \alpha_0^*$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta \ge \beta(\alpha), \alpha\beta(\alpha + 2\beta) > 0\}$  and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta \ge \beta(\alpha), \alpha\beta(\alpha + 2\beta) < 0\}$ .
- (3) If  $\alpha \leq -2/5$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta \geq -\alpha/2 - 6/5, \alpha\beta(\alpha + 2\beta) > 0\}$  and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \beta > -\alpha/2 - 6/5, \alpha\beta(\alpha + 2\beta) < 0\}$ .
- (4) If α ≤ α<sub>0</sub>, then inequality (3.1) holds for all x ∈ (0, π/2) if and only if
  (α, β) ∈ {(α, β)|β ≤ β(α), αβ(α + 2β) < 0} and inequality (3.2) holds for all x ∈ (0, π/2) if and only if (α, β) ∈ {(α, β)|β ≤ β(α), αβ(α + 2β) > 0}.

**Theorem 3.2** Let  $\alpha, \beta \in \mathbb{R}$  with  $\alpha\beta(\alpha + 2\beta) \neq 0$ ,  $\alpha_0, \alpha_0^*$ , and  $\alpha(\beta)$  be defined by Lemma 2.4. *Then the following statements are true:* 

- (1) If  $\beta \ge -1$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha \ge -2\beta - 12/5, \alpha\beta(\alpha + 2\beta) > 0\}$  and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha > -2\beta - 12/5, \alpha\beta(\alpha + 2\beta) < 0\}$ .
- (2) If  $-1 \le \beta < 0$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha \le \alpha(\beta), \alpha\beta(\alpha + 2\beta) < 0\}$  and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha \le \alpha(\beta), \alpha\beta(\alpha + 2\beta) > 0\}$ .
- (3) If  $\beta \leq -37/35$ , then inequality (3.1) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha \leq -2\beta - 12/5, \alpha\beta(\alpha + 2\beta) < 0\} \cup \{(\alpha, \beta) | \alpha \geq \alpha(\beta), \alpha\beta(\alpha + 2\beta) > 0\}$ and inequality (3.2) holds for all  $x \in (0, \pi/2)$  if and only if  $(\alpha, \beta) \in \{(\alpha, \beta) | \alpha \leq -2\beta - 12/5, \alpha\beta(\alpha + 2\beta) > 0\} \cup \{(\alpha, \beta) | \alpha \geq \alpha(\beta), \alpha\beta(\alpha + 2\beta) < 0\}.$

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### Author details

<sup>1</sup>School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China. <sup>2</sup>Department of Science and Technology, State Grid Zhejiang Electric Power Research Institute, Hangzhou, 310009, China.

#### Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 11371125, 61374086, and 11401191.

#### Received: 26 September 2016 Accepted: 2 December 2016 Published online: 13 December 2016

#### References

- 1. Wilker, JB: Problem E3306. Am. Math. Mon. 96(1), 55 (1989)
- 2. Sumner, JS, Jagers, AA, Vowe, M, Anglesio, J: Inequalities involving trigonometric functions. Am. Math. Mon. 98(3), 264-267 (1991)
- Wu, S-H, Srivastava, H-M: A weighted and exponential generalization of Wilker's inequality and its applications. Integral Transforms Spec. Funct. 18(7-8), 529-535 (2007)
- Baricz, Á, Sándor, J: Extensions of the generalized Wilker inequality to Bessel functions. J. Math. Inequal. 2(3), 397-406 (2008)
- Zhu, L: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, Article ID 485842 (2009)
- 6. Matejíčka, L: Note on two Wilker-type inequalities. Int. J. Open Probl. Comput. Sci. Math. 4(1), 79-85 (2011)
- 7. Zhu, L: A source of inequalities for circular functions. Comput. Math. Appl. 58(10), 1998-2004 (2009)
- Yang, Z-H, Chu, Y-M: Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, Article ID 166 (2014)
   Chu, H-H, Yang, Z-H, Chu, Y-M, Zhang, W: Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl.
- 2016, Article ID 187 (2016)
  10. Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Cusa type inequalities with two parameters and their applications. Appl.
- Yang, Z-H, Chu, Y-M, Zhang, X-H: Sharp Cusa type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177-1198 (2015)