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Abstract
This paper is purported to investigate a food chain reaction-diffusion predator-prey
system with nonlocal delays in a bounded domain with no flux boundary condition.
We investigate the global stability and find the sufficient conditions of global stability
of the unique positive equilibrium for this system. The derived results show that
delays often restrain stability. Using the method of linearizing this system, we see that
the zero equilibrium is unstable. Moreover, by constructing upper-lower solutions, we
find that there exist traveling wavefronts which connect the zero equilibrium and
positive equilibrium when the wave speed is large enough and the prey intrinsic
growth rate and the death rate of the predator are relatively big.
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1 Introduction
The work on dynamics of predator-prey systems is one of the dominant topics in math-
ematical ecology. Among the relationships between the species living in the same envi-
ronment, the predator-prey theory plays important role. The spatial content of the en-
vironment has often been ignored in traditional predator-prey systems. These systems
have been formulated and investigated to reveal the time evolution of uniform population
distributions in their habitats. However, the spatial distribution of the species is usually in-
homogeneous, and ecologists and mathematical ecologists employ the reaction-diffusion
predator-prey systems to model the interaction and the tendency of movement between
predator and prey which imply that the species diffuse to areas of smaller population con-
centration during the process of evolution, mainly due to resource limitation. In the past
two decades, reaction-diffusion predator-prey systems have been extensively discussed
[–], but what these models reveal is that the future state of the models is determined
only by the present, that is, it is independent of the past. For these systems, the predators
must take time to digest their food (preys) before further responses and activities take
place. Therefore, the models of species without delays are approximate at best. A realistic
model must incorporate the past history of the system, that is, it must include the delay.
Recently, some work has studied a delayed diffusive predator-prey system [–].

The theory of traveling fronts for the reaction-diffusion equations is one of the fastest
developing areas of modern mathematics and has already attracted much attention due
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to its significance in physics, chemistry, biology and epidemiology. The traveling wave
problem for reaction-diffusion systems has been studied by many authors [–] in the
past ten years. The food chain is a common phenomenon in population ecology. It is also
central to understanding of the community structure in ecology. We will explore a basic
example of a food chain, namely, a three species food chain in which a resource species
is preyed upon by an intermediate predator which in turn is preyed upon by a dominant
predator, and this model includes nonlocal delays.

Motivated by the above work, we mainly take into account the following food chain
reaction-diffusion predator-prey system with nonlocal delays:

∂u

∂t
– d�u = u(r – au – bu),

∂u

∂t
– d�u = u

(
r – bu – au + a

∫
�

∫ t

–∞
K(x, y, t – s)u(s, y) ds dy

)
,

∂u

∂t
– d�u = u

(
–α – bu + a

∫
�

∫ t

–∞
K(x, y, t – s)u(s, y) ds dy

)

in (,∞) × �,

∂u

∂ν
=

∂u

∂ν
=

∂u

∂ν
=  on (,∞) × ∂�,

ui(θ , x) = φi(θ , x) ≥  (i = , , ) in [–∞, ] × �,

(.)

where � is bounded domain in RN (N ≥  is an integer) with a smooth boundary ∂�; u

represents the densities of the prey; u is for the density of the prey, and the same for the
predator; u represents the densities of predator; the positive constants d, d, and d are
the diffusion coefficients of the corresponding species; the positive constants r, r, and α

represent the prey intrinsic growth rates and the death rate of predator, respectively. a and
a represent interaction rates, respectively; b, b, and b represent self-limitation rates,
respectively; the initial functions ui(t, x) (i = , , ) are Hölder continuous on [–∞, ]×�.

The terms
∫
�

∫ t
–∞ Ki(x, y, t – s)ui(s, y) ds dy (i = , ) represent a time delay because of

gestation, that is, predator contributes to the reproduction of predator biomass. In system
(.), we suppose that the kernels Ki(x, y, t) depend on both the temporal and the spatial
variables. The delays in these formulations are nonlocal delays. These formulations reveal
that the species drift to their present position (at time t) from all possible positions at all
previous times (see []). Here, we suppose this drift cannot be viewed as being sufficiently
small so as to be purely a local phenomenon.

In this article, we assume that

Ki(x, y, t) = Gi(x, y, t)ki(t), x, y ∈ �, ki(t) ≥ ,∫
�

Gi(x, y, t) dx =
∫

�

Gi(x, y, t) dy = , t ≥ , (.)
∫ ∞


ki(t) dt = , tki(t) ∈ L((,∞); R

)
, i = , ,

where Gi(x, y, t) are nonnegative functions which are continuous in (x, y) ∈ �×� for each
t ∈ [,∞) and measurable in t ∈ [,∞) for each pair (x, y) ∈ � × �.
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In this article, by employing the method of eigenvalue and Lyapunov function, we in-
vestigate the stability of the unique positive constant solutions and find the sufficient con-
ditions of stability which indicate that nonlocal delays often make impact on the stability
of positive constant solution, but they do not impact that of a trivial solution. This result
generalizes partially the one proved in []. By constructing upper-lower solutions, we es-
tablish the existence of the traveling wavefronts when the wave speed is large enough. The
novelty of this article is that the system (.) incorporates two nonlocal delay terms with
which are difficult to deal.

This paper is organized into four sections. In Section , the stability of the positive con-
stant solution and the instability of trivial solution of system (.) are studied. In Section ,
the existence of traveling waves is established by constructing the upper and lower solu-
tion. In the final section, we give a short comment and conclusion.

2 Stability of positive equilibrium
It is easy to check that (, , ) and (M, M, M) are a pair of coupled lower-upper solutions
of system (.), where

M = max

{
r

b
, sup
θ≤

∥∥φ(θ , ·)∥∥C(�,R)

}
,

M = max

{
r + aM

b
, sup
θ≤

∥∥φ(θ , ·)∥∥C(�,R)

}
, (.)

M = max

{
aM – α

b
, sup
θ≤

∥∥φ(θ , ·)∥∥C(�,R)

}
.

Hence, there exists a unique global solution (u(t, x), u(t, x), u(t, x)) satisfying  ≤ u ≤
M,  ≤ u ≤ M,  ≤ u ≤ M to system (.) (see []).

Note that (.) admits the following six equilibria: (, , ), (r/b, , ), (, r/b, ),
( br–ar

aa+bb
, ar+br

aa+bb
, ), (, rb+αa

aa+bb
, ra–αb

aa+bb
), and (k∗

 , k∗
 , k∗

 ), where

k∗
 =

(ra – αa)a + (rb – ra)b

aab + (aa + bb)b
, k∗

 =
(rb + αa)b + rab

aab + (aa + bb)b
,

k∗
 =

(ra – αa)a + (ra – αb)b

aab + (aa + bb)b
.

For the existence of a positive constant solution (k∗
 , k∗

 , k∗
 ), it is necessary to assume that

ra > αa, rb > ra, ra > αb.

Let  = μ < μ < · · · → +∞ denote the eigenvalues of –� in � under a homogeneous
Neuman boundary condition and ϕ be the set of eigenfunctions corresponding to μ.

Notation .
(i) Xij := {Cϕij : C ∈ R}, where ϕij are orthonormal basis of S(μi) for

j = , . . . , dim[S(μi)].
(ii) X := {(u, v, w) ∈ C(�) × C(�) : ∂u

∂ν
= ∂u

∂ν
= ∂w

∂ν
=  on ∂�}, so that

X =
∞⊕
i=

dim[S(μi)]⊕
j=

Xij.
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Lemma . ([, ]) Let a and b be positive constants. Suppose that ξ ,η ∈ C[a, +∞),
η ≥ , and ξ is bounded from below. If ξ ′(t) ≤ –bη(t) and η′(t) is bounded from above in
[a, +∞), then lim tt→∞η(t) = .

The following theorem is the global stability result of the positive constant solution
(k∗

 , k∗
 , k∗

 ) of (.). This result extends partially the one proved in [].

Theorem . Suppose that bb > aa, bb > aa. Then the positive constant solution
(k∗

 , k∗
 , k∗

 ) is globally stable for the system (.).

Proof We use the approach developed by [] to find the proof. Let (u(t, x), u(t, x),
u(t, x)) be positive solution of (.) and define the following Lyapunov function:

V(t) =
∑

i=

βi

∫
�

(
ui – k∗

i – k∗
i ln

ui

k∗
i

)
dx,

where β = , β and β are positive constant to be determined. By calculating the deriva-
tive of V(t) along positive solutions of system (.), we obtain

dV(t)
dt

=
∑

i=

βi

∫
�

∂ui

∂t

(
 –

k∗
i

ui

)
dx +

∫
�

∂u

∂t

(
 –

k∗


u

)
dx

= –
∑

i=

βidik∗
i

∫
�

|∇ui|
u

i
dx +

∫
�

β
(
u – k∗


)
(r – au – bu) dx

+
∫

�

β
(
u – k∗


)(

r – bu – au + a

∫
�

∫ t

–∞
K(x, y, t – s)u(s, y) ds dy

)
dx

+
∫

�

(
u – k∗


)(

–α – bu + a

∫
�

∫ t

–∞
K(x, y, t – s)u(s, y) ds dy

)
dx. (.)

By using the inequality ab ≤ 
λa + 

λ
b, we obtain

dV(t)
dt

≤ –
∑

i=

βidik∗
i

∫
�

|∇ui|
u

i
dx – βb

∫
�

(
u – k∗


) dx

+ βa

∫
�

[


λ

(
u – k∗


) +


λ

(
u – k∗


)

]
dx – βb

∫
�

(
u – k∗


) dx

+ βa

∫
�

[


λ

(
u – k∗


) +


λ

(
u – k∗


)

]
dx – b

∫
�

(
u – k∗


) dx

+


λaβ

∫
�

∫
�

∫ t

–∞
K(x, y, t – s)

(
u(s, y) – k∗


) ds dy dx

+


λ
aβ

∫
�

∫
�

∫ t

–∞
K(x, y, t – s)
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u(t, y) – k∗


) ds dy dx

+


λa

∫
�

∫
�

∫ t

–∞
K(x, y, t – s)

(
u(s, y) – k∗


) ds dy dx

+


λ
a

∫
�

∫
�

∫ t

–∞
K(x, y, t – s)

(
u(t, y) – k∗


) ds dy dx. (.)
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Employing the property of Ki(x, y, t) (i = , ) as described in (.), we obtain

dV(t)
dt

≤ –
∑

i=

βidik∗
i

∫
�

|∇ui|
u

i
dx – β(b – aλ/)

∫
�

(
u – k∗


) dx

– (βb – βa/λ – λβa/ – aβ/λ)
∫

�

(
u – k∗


) dx

– (b – βa/λ – a/λ)
∫

�

(
u – k∗


) dx

+


λaβ

∫
�

∫
�

∫ ∞


K(x, y, r)

(
u(t – r, y) – k∗


) dr dy dx

+


λa

∫
�

∫
�

∫ ∞


K(x, y, r)

(
u(t – r, y) – k∗


) dr dy dx. (.)

Define a new Lyapunov function

V (t) = V(t) +


λaβ

∫
�

∫
�

∫ ∞



∫ t

t–r
K(x, y, r)

(
u(l, y) – k∗


) dl dr dy dx

+


λa

∫
�

∫
�

∫ ∞



∫ t

t–r
K(x, y, r)

(
u(l, y) – k∗


) dl dr dy dx. (.)

Then, combining (.) and (.), we get

dV(t)
dt

≤ –
∑

i=

βidik∗
i

∫
�

|∇ui|
u

i
dx – β(b – aλ/)

∫
�

(
u – k∗


) dx

– (βb – βa/λ – λβa/ – aβ/λ)
∫

�

(
u – k∗


) dx

– (b – βa/λ – a/λ)
∫

�

(
u – k∗


) dx

+


λaβ

∫
�

∫
�

∫ ∞


K(x, y, r)

(
u(t, y) – k∗


) dr dy dx

+


λa

∫
�

∫
�

∫ ∞


K(x, y, r)

(
u(t, y) – k∗


) dr dy dx. (.)

Since

∫
�

∫
�

∫ ∞


Ki(x, y, r)

(
ui(t, y) – k∗

i
) dr dy dx

=
∫

�

(
ui(t, y) – k∗

i
) dy (i = , ),

it follows from (.) that

dV(t)
dt

≤ –
∑

i=

βidik∗
i

∫
�

|∇ui|
u

i
dx

–
(
β(b – aλ/) – λaβ/

)∫
�

(
u – k∗


) dx
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– (βb – βa/λ – λβa/ – aβ/λ – λa/)
∫

�

(
u – k∗


) dx

– (b – βa/λ – a/λ)
∫

�

(
u – k∗


) dx. (.)

Integrating (.) over [, T] (T > ), we obtain

∑
i=

βidik∗
i

∥∥∥∥ |∇ui|
ui

∥∥∥∥


L
(�T )

+ βb
∥∥u – k∗


∥∥

L
(�T )

+ βb
∥∥u – k∗


∥∥

L
(�T )

+ b
∥∥u – k∗


∥∥

L
(�T )

≤ V () +



(βaλ + λβa)
∥∥u – k∗


∥∥

L
(�T )

+



(βa/λ + λβa + aβ/λ

+ λa)
∥∥u – k∗


∥∥

L
(�T )

+



(βa/λ + a/λ)
∥∥u – k∗


∥∥

L
(�T )

. (.)

Taking

λ = λ =
βb

aβ + a
and λ = λ =

βa + a

b
,

it is derived from (.) that

∑
i=

βidik∗
i

Mi

∥∥|∇ui|
∥∥

L
(�T )

+ βb
∥∥u – k∗


∥∥

L
(�T )

≤ V () +
(
(aβ + aβ)/βb + (aβ + a)/b

)∥∥u – k∗

∥∥

L
(�T )

. (.)

Using the conditions bb > aa, bb > aa, one can choose β,β >  such that

βb >



[
(aβ + aβ)/βb + (aβ + a)/b

]
,

because the inequalities bbββ > a
β


 + aaββ + a

β

 and bbβ > a

β

 +

aaβ + a
 hold for certain β and β.

Therefore, we obtain

∥∥|∇ui|
∥∥

L
(�T )

≤ C,
∥∥u – k∗


∥∥

L
(�T )

≤ C, (.)

where C is constant independent of T . In a similar way, by taking

λ = λ =
βa + aβ

βb
and λ = λ =

βb

aβ + a
,

it is derived from (.) that

∑
i=

βidik∗
i

Mi

∥∥|∇ui|
∥∥

L
(�T )

+ βb
∥∥u – k∗


∥∥

L
(�T )

+ b
∥∥u – k∗


∥∥

L
(�T )

≤ V () +
(
(βa + aβ)/βb

)∥∥u – k∗

∥∥

L
(�T )

+
(
(βa + a)/βb

)∥∥u – k∗

∥∥

L
(�T )

. (.)
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Using the conditions bb > aa, bb > aa, one can choose β,β >  again such that

βb >
(aβ + aβ)

βb
and b >

(aβ + a)

βb
.

Therefore, we see that

∥∥u – k∗

∥∥

L
(�T )

≤ C and
∥∥u – k∗


∥∥

L
(�T )

≤ C, (.)

where C is constant independent of T .
Choosing

λ = λ =
βa + aβ

βb
+ ε, λ = λ =

βb

aβ + a
,

where ε is sufficiently small positive constant. Using the conditions of Theorem . and
(.), one can easily verify that there exists a positive constant δ (δ > ) such that

dV
dt

≤ –δ

∫
�

[(
u – k∗


) +

(
u – k∗


) +

(
u – k∗


)]dx,

dV
dt

≤ , (u, u, u) 
= (
k∗

 , k∗
 , k∗


)
.

(.)

Using integration by parts, the Hölder inequality, (.), and (.), one can easily check that
d
dt

∫
�

[(u – k∗
 ) + (u – k∗

 ) + (u – k∗
 )] dx is bounded from above. Then, using Lemma .,

(.), and (.), we see that

∥∥u(t, ·) – k∗

∥∥

L
(�)

→ ,

∥∥u(t, ·) – k∗

∥∥

L
(�)

→ , (.)

∥∥u(t, ·) – k∗

∥∥

L
(�)

→ .

Obviously,

∥∥u(t, x)
∥∥

L∞
(�)

≤ C‖u‖ 

W 


‖u‖L(�). (.)

It follows from (.), (.), (.), (.), and (.) that

∥∥u(t, ·) – k∗

∥∥

L∞
(�)

→ ,

∥∥u(t, ·) – k∗

∥∥

L∞
(�)

→ ,

∥∥u(t, ·) – k∗

∥∥

L∞
(�)

→ .

Namely, (u, u, u) converges uniformly to (k∗
 , k∗

 , k∗
 ). Using the fact that V (u, u, u)

is decreasing for t, one can derive that (k∗
 , k∗

 , k∗
 ) is globally stable. This completes the

proof. �
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Theorem . The trivial equilibrium (, , ) is unstable for the system (.).

Proof The linearized problem of (.) at (, , ) can be expressed by

wt =
(
D� + Fw(, , )

)
w,

where w = (u(t, x), u(t, x), u(t, x))T , and F = (u(r – au – bu), u(r – bu – au +
a

∫
�

∫ t
–∞ K(x, y, t – s)u(s, y) ds dy), u(–α – bu + a

∫
�

∫ t
–∞ K(x, y, t – s)u(s, y) ds dy)). By

direct calculations, we obtain

D =

⎛
⎜⎝

d  
 d 
  d

⎞
⎟⎠ , Fw(, , ) =

⎛
⎜⎝

r  
 r 
  α

⎞
⎟⎠ .

Consider the following eigenvalue problem:

(
D� + Fw(w∗)

)
⎛
⎜⎝

φ

ϕ

ψ

⎞
⎟⎠ = λ̃

⎛
⎜⎝

φ

ϕ

ψ

⎞
⎟⎠ ,

where w∗ is constant solution of (.). Using the eigenfunction expansions (.) in [] for
φ, ϕ and ψ , λ̃ is an eigenvalue of D�+ Fw(w∗) if and only if λ̃ is an eigenvalue of the matrix
–μkD + Fw(, , ) for each k ≥ . Therefore, to study the local stability at (, , ), it is
necessary to investigate the characteristic equation

det
(
λ̃I + μkD – Fw(, , )

)
= (λ̃ + μkd – r)(λ̃ + μkd – r)(λ̃ + μkd + α) = .

If i = , then μk = . Therefore, there exist two positive characteristic roots, which, in view
of Theorem . in [], yields the desired result. �

3 The existence of traveling waves
In this section, we assume that � ⊂ R. Denote f(u, u, u) = u(r – au – bu),
f(u, u, u) = u(r – bu – au + a

∫
�

∫ t
–∞ K(x, y, t – s)u(s, y) ds dy), f(u, u, u) =

u(–α – bu + a
∫
�

∫ t
–∞ K(x, y, t – s)u(s, y) ds dy). Let (u(t, x), u(t, x), u(t, x)) = (φ(x +

ct),ϕ(x + ct),ψ(x + ct)) be a traveling wave solution of (.), where φ,ϕ,ψ ∈ C(R, R) and
c >  is a constant accounting for the wave speed, and denote the traveling wave coordinate
x + ct still by t. Then the system (.) can be rewritten in the form

dφ
′′(t) – cφ′(t) + fc(φt ,ϕt ,ψt) = ,

dϕ
′′(t) – cϕ′(t) + fc(φt ,ϕt ,ψt) = , (.)

dψ
′′(t) – cψ ′(t) + fc(φt ,ϕt ,ψt) = ,

where fci (i = , , ) are defined by

fci(φ,ϕ,ψ) = fi
(
φc,ϕc,ψ c), φc(s) = φ(cs), ϕc(s) = ϕ(cs),

ψ c(s) = ψ(cs), s ∈ (–∞, ], i = , , .
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If (.) has a solution satisfying the following asymptotic boundary conditions:

lim
t→–∞φ(t) = φ–, lim

t→–∞ϕ(t) = ϕ–, lim
t→–∞ψ(t) = ψ–,

lim
t→+∞φ(t) = φ+, lim

t→+∞ϕ(t) = ϕ+, lim
t→+∞ψ(t) = ψ+,

then system (.) has a traveling wave solution (see [, ]). Without loss of generality, we
assume that (φ–,ϕ–,ψ–) = (, , ) and (φ+,ϕ+,ψ+) = (k∗

 , k∗
 , k∗

 ).
According to basic theory of the existence of traveling wave solutions (see [, ]), we

mainly need to check that the system (.) satisfies partial quasi-monotonicity conditions,
that is, there exist three positive constants ρ,ρ,ρ >  such that

f(φ,ϕ,ψ) – f(φ,ϕ,ψ) + ρ
[
φ() – φ()

] ≥ ,

f(φ,ϕ,ψ) – f(φ,ϕ,ψ) ≤ ,

f(φ,ϕ,ψ) – f(φ,ϕ,ψ) + ρ
[
ϕ() – ϕ()

] ≥ , (.)

f(φ,ϕ,ψ) – f(φ,ϕ,ψ) ≤ ,

f(φ,ϕ,ψ) – f(φ,ϕ,ψ) + ρ
[
ψ() – ψ()

] ≥ ,

with  ≤ φ(s) ≤ φ(s) ≤ M,  ≤ ϕ(s) ≤ ϕ(s) ≤ M,  ≤ ψ(s) ≤ ψ(s) ≤ M, and we also
need to check that a pair of continuous functions (φ,ϕ,ψ) and (φ,ϕ,ψ) is a pair of upper-
lower solution of system (.), that is,

dφ
′′(t) – cφ′(t) + fc(φt ,ϕt ,ψ t) ≤ ,

dϕ
′′(t) – cϕ′(t) + fc(ϕt ,ϕt ,ψ t) ≤ , (.)

dψ
′′(t) – cψ ′(t) + fc(ψ t ,ϕt ,ψ t) ≤ 

and

dφ
′′(t) – cφ′(t) + fc(φt ,ϕt ,ψ t) ≥ ,

dϕ
′′(t) – cϕ′(t) + fc(ϕt ,ϕt ,ψ t) ≥ , (.)

dψ
′′(t) – cψ ′(t) + fc(ψ t ,ϕt ,ψ t) ≥ ,

where (, , ) ≤ (φ,ϕ,ψ) ≤ (φ,ϕ,ψ) ≤ (M, M, M), t ∈ R.

Lemma . fc(φt ,ϕt ,ψt), fc(φt ,ϕt ,ψt), and fc(φt ,ϕt ,ψt) of system (.) satisfy (.).

Proof Let φ(s), φ(s), ϕ(s), ϕ(s), ψ(s), ψ(s) satisfy  ≤ φ(s) ≤ φ(s) ≤ M,  ≤ ϕ(s) ≤
ϕ(s) ≤ M,  ≤ ψ(s) ≤ ψ(s) ≤ M, s ∈ (–∞, ].

For any φi,ϕi,ψi ∈ ((–∞, ], R), i = , , we have

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt)

= φ()
(
r – aϕ() – bφ()

)
– φ()

(
r – aϕ() – bφ()

)
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≥ r
(
φ() – φ()

)
– aϕ()

(
φ() – φ()

)
– bM

(
φ() – φ()

)
≥ (–aM – bM)

(
φ() – φ()

)
. (.)

Let ρ = aM + bM > , then it is easy to see that

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt) + ρ
(
φ() – φ()

) ≥ ,

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt)

= φ()
(
r – aϕ() – bφ()

)
– φ()

(
r – aϕ() – bφ()

)
= –aφ()

(
ϕ() – ϕ()

) ≤ .

(.)

For fc(φt ,ϕt ,ψt), we have

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt)

= ϕ()
(
r – bϕ() – aψ() + aφ()

)
– ϕ()

(
r – bϕ()

– aψ() + aφ()
)

≥ r
(
ϕ() – ϕ()

)
– bM

(
ϕ() – ϕ()

)
– aM

(
ϕ() – ϕ()

)
+ aφ()

(
ϕ() – ϕ()

)
≥ (–aM – bM)

(
ϕ() – ϕ()

)
. (.)

Let ρ = aM + bM > , then it is easy to see that

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt) + ρ
(
ϕ() – ϕ()

) ≥ ,

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt)

= ϕ()
(
r – bϕ() – aψ() + aφ()

)
– ϕ()

(
r – bϕ() (.)

– aψ() + aφ()
)

= –aϕ()
(
ψ() – ψ()

)
.

For fc(φt ,ϕt ,ψt), we have

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt)

= ψ()
(
–α – bψ() + aϕ()

)
– ψ()

(
–α – bψ() + aϕ()

)
≥ –α

(
ψ() – ψ()

)
– bM

(
ψ() – ψ()

)
= (–α – bM)

(
ψ() – ψ()

)
. (.)

Let ρ = bM + α > , then it is easy to see that

fc(φt ,ϕt ,ψt) – fc(φt ,ϕt ,ψt) + ρ
(
ψ() – ψ()

) ≥ .

This completes the proof of Lemma .. �
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We assume that c > c∗ � max{dr, d(r + aM), d(α + aM)}, c∗ > . Using this
assumption, one can see that there exist ηi >  (i = , , ) such that

dη

 – cη + r = ,

dη

 – cη + r + aM = , (.)

dη

 – cη + α + aM = .

Assume that r > max{ak∗
 , ak∗

 } and α > bbk∗


a
, then one can choose positive constants

ε and ε such that

a
(
ε – k∗


)

> bk∗
 , a

(
ε – k∗


)

> bk∗
 , α > b

(
ε – k∗


)
,

rb > aa
(
ε – k∗


)
, r + b

(
ε – k∗


)

> ak∗
 ,

(.)

and

(
k∗

 + ε
)(

r – a
(
k∗

 – ε
)

– b
(
k∗

 + ε
))

< ,
(
k∗

 + ε
)(

r – b
(
k∗

 + ε
)

– a
(
k∗

 – ε
)

+ aM
)

< ,
(
k∗

 + ε
)(

–α – b
(
k∗

 + ε
)

+ aM
)

< ,
(
k∗

 – ε
)[

r – a
(
k∗

 + ε
)

– b
(
k∗

 – ε
)]

> ,
(
k∗

 – ε
)[

r – b
(
k∗

 – ε
)

– a
(
k∗

 + ε
)]

> ,
(
k∗

 – ε
)(

–α – b
(
k∗

 – ε
))

> ,

(.)

for εi (i = , , ) being relatively big.
For the above constants and suitable constants t̃i >  (i = , , , , , ) satisfying t̃ <

min{t̃, t̃}, t̃ > max{t̃, t̃}, we define the continuous functions �(t) = (φ(t),ϕ(t),ψ(t)) and
�(t) = (φ(t),ϕ(t),ψ(t)) as follows:

φ(t) =

{
k∗

 eηt , t ≤ t̃,
k∗

 + εe–ηt , t > t̃,
ϕ(t) =

{
k∗

 eηt , t ≤ t̃,
k∗

 + εe–ηt , t > t̃,

ψ(t) =

{
k∗

 eηt , t ≤ t̃,
k∗

 + εe–ηt , t > t̃,
φ(t) =

{
, t ≤ t̃,
k∗

 – εe–ηt , t > t̃,

ϕ(t) =

{
, t ≤ t̃,
k∗

 – εe–ηt , t > t̃,
ψ(t) =

{
, t ≤ t̃,
k∗

 – εe–ηt , t > t̃,

where

t̃ =

η

ln
r

ak∗


, t̃ =

η

ln
a(ε – k∗

 )
bk∗


,

t̃ = max

{

η

ln
a(ε – k∗

 )
bk∗


,


η

ln
r + b(ε – k∗

 )
ak∗



}
.

(.)

Lemma . Assume that r > max{ak∗
 , ak∗

 } and α > bbk∗


a
, then (φ,ϕ,ψ) is an upper

solution of system (.).
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Proof If t ≤ t̃ < t̃, then φ(t) = k∗
 eηt , and ϕ(t) = . Therefore, we have

dφ
′′(t) – cφ′(t) + φ

(
r – aϕ(t) – bφ(t)

)
≤ (

dη

 – cη + r

)
k∗

 eηt = . (.)

If t > t̃ and t ≤ t̃, then φ(t) = k∗
 eηt and ϕ(t) = k∗

 – εe–ηt . Therefore, we obtain

dφ
′′(t) – cφ′(t) + φ(t)

(
r – aϕ(t) – bφ(t)

)
= I(η), (.)

where I(η) = k∗
 eηt[a(εe–ηt – k∗

 ) – bk∗
 eηt], I() = k∗

 eηt[a(ε – k∗
 ) – bk∗

 eηt] <  when
t > t̃. Therefore, there exists η∗

 >  such that dφ
′′(t)–cφ′(t)+φ(t)(r –aϕ(t)–bφ(t)) ≤ 

for all η ∈ (,η∗
 ).

If t > t̃ > t̃, then φ(t) = k∗
 + εe–ηt and ϕ(t) = k∗

 – εe–ηt . Therefore, we have

dφ
′′(t) – cφ′(t) + φ(t)

(
r – aϕ(t) – bφ(t)

)
= I(η), (.)

where I(η) = (dεη
 +cεη)e–ηt +(k∗

 +εe–ηt)(r –a(k∗
 –εe–ηt)–b(k∗

 +εe–ηt)). It follows
from (.) that I() = (k∗

 + ε)(r – a(k∗
 – ε) – b(k∗

 + ε)) < . Therefore, there exists
η∗

 >  such that dφ
′′(t) – cφ′(t) + φ(t)(r – aϕ(t) – bφ(t)) ≤  for all η ∈ (,η∗

).
If t ≤ t̃ < t̃, then ϕ(t) = k∗

 eηt , and ψ(t) = . It follows that

dϕ
′′(t) – cϕ′(t) + fc

(
φ(t),ϕ(t),ψ(t)

)
≤ (

dη

 – cη + r

)
k∗

 eηt + k∗
 eηt(–bk∗

 eηt + aM
)

≤ (
dη


 – cη + r + aM

)
k∗

 eηt = . (.)

If t > t̃ and t ≤ t̃, then ϕ(t) = k∗
 eηt and ψ = k∗

 – εe–ηt . By calculating, we have

dϕ
′′(t) – cϕ′(t) + fc

(
φ(t),ϕ(t),ψ(t)

) ≤ I(η), (.)

where I(η) = k∗
 eηt(a(εe–ηt – k∗

 ) – bk∗
 eηt). Thus, I() = k∗

 eηt(a(ε – k∗
 ) – bk∗

 eηt) <
 when t > t̃. Hence, there exists η∗

 >  such that dϕ
′′(t) – cϕ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≤ 

for all η ∈ (,η∗
).

If t > t̃, then ϕ(t) = k∗
 + εe–ηt and ψ(t) = k∗

 – εe–ηt . By calculating, we have

dϕ
′′(t) – cϕ′(t) + fc

(
φ(t),ϕ(t),ψ(t)

) ≤ I(η), (.)

where I(η) = (dεη
 + cεη)e–ηt + (k∗

 +εe–ηt)(r + aM – b(k∗
 +εe–ηt) – a(k∗

 –εe–ηt)).
It follows from (.) that I() = (k∗

 + ε)(r + aM – b(k∗
 + ε) – a(k∗

 – ε)) < . Hence,
there exists η∗

 >  such that dϕ
′′(t) – cϕ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≤  for all η ∈ (,η∗

).
If t ≤ t̃, then ψ(t) = k∗

 eηt . By calculating, we have

dψ
′′(t) – cψ ′(t) + fc

(
φ(t),ϕ(t),ψ(t)

)
≤ (

dη

 – cη

)
k∗

 eηt + k∗
 eηt(–α – bk∗

 eηt + aM
)

≤ (
dη


 – cη – α + aM

)
k∗

 eηt = . (.)
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If t > t̃, then ψ(t) = k∗
 + εe–ηt . By calculating, we get

dψ
′′(t) – cψ ′(t) + fc

(
φ(t),ϕ(t),ψ(t)

) ≤ I(η), (.)

where I(η) = (dεη
 +cεη)e–ηt +(k∗

 +εe–ηt)(–α –b(k∗
 +εe–ηt)+aM). It follows from

(.) that I() = (k∗
 + ε)(–α – b(k∗

 + ε) + aM) < . Hence, there exists η∗
 >  such

that dψ
′′(t) – cψ ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≤  for all η ∈ (,η∗

).
Finally, for any η ∈ (, min{η∗

 ,η∗
,η∗

,η∗
,η∗

}), we see that (.) holds. This completes the
proof. �

Lemma . Assume that r > max{ak∗
 , ak∗

 } and α > bbk∗


a
, then (φ(t),ϕ(t),ψ(t)) is a

pair of lower solution of system (.).

Proof If t ≤ t̃, then φ(t) = . We have dφ
′′(t) – cφ′(t) + φ(t)(r – aϕ(t) – bφ(t)) = .

If t̃ < t ≤ t̃, then φ(t) = k∗
 – εe–ηt , ϕ = k∗

 eηt . We have

dφ
′′(t) – cφ′(t) + φ(t)

(
r – aϕ(t) – bφ(t)

)
= (–dη – c)εηe–ηt +

(
k∗

 – εe–ηt)(r – ak∗
 eηt – b

(
k∗

 – εe–ηt))
� I(η). (.)

Using (.), we see that I() = (k∗
 – ε)(r – ak∗

 eηt – b(k∗
 – ε)) >  when t̃ < t ≤ t̃.

Therefore, there exists η∗
 such that dφ

′′(t) – cφ′(t) + φ(t)(r – aϕ(t) – bφ(t)) ≥  for
η ∈ (,η∗

).
If t > t̃, then φ(t) = k∗

 – εe–ηt , ϕ = k∗
 + εe–ηt . We have

dφ
′′(t) – cφ′(t) + φ(t)

(
r – aϕ(t) – bφ(t)

)
≥ (–dη – c)εηe–ηt +

(
k∗

 – εe–ηt)(r – a
(
k∗

 + εe–ηt) – b
(
k∗

 – εe–ηt))
� I(η). (.)

Using (.), we see that I() = (k∗
 – ε)(r – a(k∗

 + ε) – b(k∗
 – ε)) > . Therefore, there

exists η∗
 such that dφ

′′(t) – cφ′(t) + φ(t)(r – aϕ(t) – bφ(t)) ≥  for η ∈ (,η∗
).

If t ≤ t̃, then ϕ = . Therefore we have dϕ
′′(t) – cϕ′ + fc(φ(t),ϕ(t),ψ(t)) = .

If t̃ < t ≤ t̃, then ϕ(t) = k∗
 – εe–ηt , ψ = k∗

 eηt . We get

dϕ
′′(t) – cϕ′ + fc

(
φ(t),ϕ(t),ψ(t)

)
= (–dη – c)εηe–ηt +

(
k∗

 – εe–ηt)(r – b
(
k∗

 – εe–ηt) – ak∗
 eηt)

� I(η). (.)

Using (.), we see that I() = (k∗
 – ε)(r – b(k∗

 – ε) – ak∗
 eηt) >  when t > t̃. Hence,

there exists η∗
 such that dϕ

′′(t) – cϕ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≥  for all η ∈ (,η∗
).

If t > t̃, then ϕ(t) = k∗
 – εe–ηt . We get

dϕ
′′(t) – cϕ′ + fc

(
φ(t),ϕ(t),ψ(t)

)
≥ (–dη – c)εηe–ηt +

(
k∗

 – εe–ηt)(r – b
(
k∗

 – εe–ηt) – a
(
k∗

 + εe–ηt))
� I(η). (.)
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Using (.), we see that I() = (k∗
 – ε)(r – b(k∗

 – ε) – a(k∗
 + ε)) > . Hence, there

exists η∗
 such that dϕ

′′(t) – cϕ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≥  for all η ∈ (,η∗
).

If t ≤ t̃, then ψ = . Therefore, we have dψ
′′(t) – cψ ′ + fc(φ(t),ϕ(t),ψ(t)) = .

If t > t̃, then ψ(t) = k∗
 – εe–ηt . Hence, we get

dψ
′′(t) – cψ ′ + fc

(
φ(t),ϕ(t),ψ(t)

)
≥ (–dη – c)εηe–ηt +

(
k∗

 – εe–ηt)(–α – b
(
k∗

 – εe–ηt))
� I(η). (.)

Using (.), we see that I() = (k∗
 –ε)(–α – b(k∗

 –ε)) > . Hence, there exists η∗
 such

that dψ
′′(t) – cψ ′(t) + fc(φ(t),ϕ(t),ψ(t)) ≥  for all η ∈ (,η∗

).
Finally, for any η ∈ (, min{η∗

,η∗
,η∗

,η∗
,η∗

}), we see that (.) holds. This completes the
proof. �

By using Lemmas .-., we have the following conclusion.

Theorem . Assume that r > max{ak∗
 , ak∗

 } and α > bbk∗


a
, then, for any c > c∗ > ,

system (.) always has a traveling wave solution with speed c connecting the trivial steady
state (, ) and the positive steady state (k∗

 , k∗
 , k∗

 ).

4 Results and discussion
In this article, we investigate a food chain reaction-diffusion predator-prey systems with
nonlocal delay in a bounded domain with no flux boundary condition incorporating delay
respecting gestation of the predators. By using the methods of the Lyapunov function, we
prove global stability of positive equilibrium of the system (.). If the nonlocal delay terms
are replaced by the general terms without delay, one can easily verify that the positive
constant solution of (.) is globally stable without any condition when a positive constant
equilibrium exists.

The above result shows that if the intra-specific competitions of the predators and preys
dominate their inter-specific interaction, then the unique positive equilibrium is globally
stable if it exists, which implies that predators and preys are permanent from biologic view.
If the nonlocal delay terms are replaced by a general term without delay, without any con-
dition the positive equilibrium is globally stable when it exists. This implies that nonlocal
delays often impact the global stability of a positive constant solution. By using the method
of the upper-lower solutions, we also see that there exists a traveling wavefront connecting
the zero solution to the positive equilibrium of the system when the wave speed is large
enough and the prey intrinsic growth rate and the death rate of predator are relatively big.

In modern mathematics, the theory and methods of traveling waves solutions develop
quickly and they have attracted much attention due to their significance in the real word.
We would like to extend this theory and these methods to the integral equation, and we
refer to [–], but this question is still an open problem.
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