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1 Introduction
The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x, y) in the
plane satisfying the equation (x + y) = x + y. In polar coordinates (r, θ ), the equation
becomes r = cos(θ ) and its arc length is given by the function

arcsl x =
∫ x



√
 – t

dt, |x| ≤ , (.)

where arcsl is called the arc lemniscate sine function studied by Gauss in -. An-
other lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine func-
tion, defined as

arcslh x =
∫ x



√
 + t

dt, x ∈R. (.)

The functions (.) and (.) can be found (see [], Chapter , [], p. , and [–]).
Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hyperbolic

arc lemniscate tangent arctlh, have been introduced in [], (.)-(.). Therein it has been
proven that

arctl x = arcsl

(
x

√ + x

)
, x ∈R (.)

and

arctlh x = arcslh

(
x

√ – x

)
, |x| <  (.)

(see [], Proposition .).
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Recently, numerous inequalities have been given for the lemniscate functions [, –].
For example, Neuman [] proved the following inequalities:

(


 + ( – x)/

)/

<
arcsl x

x
<

(
 – x)–/ (.)

and
(


 + ( + x)/

)/

<
arcslh x

x
<

(
 + x)–/ (.)

for  < |x| < .
Shafer [] indicated several elementary quadratic approximations of selected functions

without proof. Subsequently, Shafer [] established these results as analytic inequalities.
For example, Shafer [] proved that, for x > ,

x

 +
√

 + 
 x

< arctan x. (.)

The inequality (.) can also be found in []. Zhu [] developed (.) to produce a sym-
metric double inequality

x

 +
√

 + 
 x

< arctan x <
x

 +
√

 + 
π x

, x > , (.)

where the constants / and /π are the best possible. In [], (.) is called a Shafer-
type inequality.

Mortici and Srivastava [] presented new bounds for arctan x. Some inequalities for
trigonometric functions were refined in [].

Very recently, Sun and Chen [] established the following Shafer-type inequalities for
the lemniscate functions:


 +

√
 – x

<
arcsl x

x
,  < x < , (.)


 +

√
 – x

<
arctlh x

x
,  < x < , (.)


 +

√
 + x

<
arcslh x

x
, x > , (.)

and presented the following conjecture.

Conjecture . For x > ,

arcslh x
x

<
 + 

 x

 +
√

 + x
(.)

and


 + 

√
 + x

<
arctl x

x
<

 + ,,
, x

 + 
√

 + x
. (.)
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Based on the Padé approximation method, in this paper we present new inequalities for
Gauss lemniscate functions. We also prove Conjecture ..

Some computations in this paper were performed using Maple software.

2 Padé approximant
For later use, we introduce the Padé approximant (see [–]). Let f be a formal power
series,

f (t) = c + ct + ct + · · · . (.)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

[p/q]f (t) =
∑p

j= ajtj

 +
∑q

j= bjtj
, (.)

where p ≥  and q ≥  are any given integers, the coefficients aj and bj are given by (see
[, ])

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = c,

a = cb + c,

a = cb + cb + c,
...

ap = cbp + · · · + cp–b + cp,

 = cp+ + cpb + · · · + cp–q+bq,
...

 = cp+q + cp+q–b + · · · + cpbq,

(.)

and we have

[p/q]f (t) – f (t) = O
(
tp+q+). (.)

Thus, the first p + q +  coefficients of the series expansion of [p/q]f are identical to those
of f . Moreover, we have (see [])

[p/q]f (t) =

∣∣∣∣∣∣∣∣∣∣

tqfp–q(t) tq–fp–q+(t) · · · fp(t)
cp–q+ cp–q+ · · · cp+

...
...

. . .
...

cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

tq tq– · · · 
cp–q+ cp–q+ · · · cp+

...
...

. . .
...

cp cp+ · · · cp+q

∣∣∣∣∣∣∣∣∣∣

, (.)
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with fn(x) = c + cx + · · · + cnxn, the nth partial sum of the series f (fn is identically zero for
n < ).

Chen [] presented the following power-series expansions (for |x| < ):

arcsl x
x

=
∞∑

n=

�(n + 
 )√

π (n + ) · n!
xn, (.)

arcslh x
x

=
∞∑

n=

(–)n �(n + 
 )√

π (n + ) · n!
xn, (.)

arctl x
x

=
∞∑

n=

(–)n �(n + 
 )

�( 
 ) · (n + ) · n!

xn (.)

and

arctlh x
x

=
∞∑

n=

�(n + 
 )

�( 
 ) · (n + ) · n!

xn. (.)

We now consider the Padé approximant for the function arcsl x
x at the point x = . Let

f (t) =
∞∑
j=

cjtj =  +



t +




t +



t +




t + · · · , (.)

with the coefficients cj given by

cj =
�(j + 

 )√
π (j + ) · j!

. (.)

Let us find the (, ) Padé approximant for the function (.) at the point t = ,

[/]f (t) =
∑

j= ajtj

 +
∑

j= bjtj
.

Noting that

c = , c =



, c =




, c =



, c =




, (.)

holds, we have, by (.),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = ,

a = b + 
 ,

a = b + 
 b + 

 ,

 = 
 + 

 b + 
 b,

 = 
 + 

 b + 
 b,

that is,

a = , a = –



, a =
,

,
, b =




, b =



.
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We thus obtain

[/]f (t) =
 – 

 t + ,
, t

 – 
 t + 

 t
, (.)

and we have, by (.),

f (t) = [/]f (t) + O
(
t). (.)

That is

∞∑
j=

�(j + 
 )√

π (j + ) · j!
tj =

 – 
 t + ,

, t

 – 
 t + 

 t
+ O

(
t). (.)

Replacing t by x in (.) yields

arcsl x
x

=
 – 

 x + ,
, x

 – 
 x + 

 x
+ O

(
x)

=
, – ,x + ,x

(, – ,x + x)
+ O

(
x). (.)

Remark . Using (.), we can also derive (.). Indeed, we have

[/]f (t) =

∣∣∣∣∣∣∣
tf(t) tf(t) f(t)

c c c

c c c

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t t 
c c c

c c c

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
t t( + 

 t)  + 
 t + 

 t



















∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t t 



















∣∣∣∣∣∣∣

=
 – 

 t + ,
, t

 – 
 t + 

 t
.

Following the same method as used in the derivation of the formula (.), we find

arcslh x
x

=
 + 

 x + ,
, x

 + 
 x + 

 x
+ O

(
x)

=
, + ,x + ,x

(, + ,x + x)
+ O

(
x), (.)

arctl x
x

=
 + 

 x – 
 x

 + 
 x

+ O
(
x), (.)

arctl x
x

=
 + ,

, x + ,
,, x

 + ,
, x + ,

,, x
+ O

(
x)

=
,, + ,,x + ,,x

(,, + ,,x + ,x)
+ O

(
x) (.)
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and

arctlh x
x

=
 – ,

, x + ,
,, x

 – ,
, x + ,

,, x
+ O

(
x)

=
,, – ,,x + ,,x

(,, – ,,x + ,x)
+ O

(
x). (.)

In view of (.) and (.), we pose the following.

Conjecture . Let

arcsl x
x

=
 +

∑n
j= ajxj

 +
∑n

j= bjxj + O
(
xn+) (.)

and

arcslh x
x

=
 +

∑n
j= αjxj

 +
∑n

j= βjxj + O
(
xn+). (.)

Then the coefficients aj and αj satisfy the following relation:

aj = (–)jαj, j = , , . . . , n, (.)

and the coefficients bj and βj satisfy the following relation:

bj = (–)jβj, j = , , . . . , n. (.)

In view of (.) and (.), we pose the following.

Conjecture . Let

arctl x
x

=
 +

∑n
j= pjxj

 +
∑n

j= qjxj + O
(
xn+) (.)

and

arctlh x
x

=
 +

∑n
j= rjxj

 +
∑n

j= sjxj + O
(
xn+). (.)

Then the coefficients pj and rj satisfy the following relation:

pj = (–)jrj, j = , , . . . , n, (.)

and the coefficients qj and sj satisfy the following relation:

qj = (–)jsj, j = , , . . . , n. (.)



Liu and Chen Journal of Inequalities and Applications  (2016) 2016:320 Page 7 of 16

3 Inequalities
Equations (.)-(.) motivate us to establish the following theorems.

Theorem . For  < x < ,

, – ,x + ,x

(, – ,x + x)
<

arcsl x
x

. (.)

Proof Consider the function

f (x) = arcsl x –
x(, – ,x + ,x)

(, – ,x + x)
,  < x < .

Differentiation yields

f ′(x) =
√

 – x

–
,, – ,,x + ,,x – ,,x + ,,x

(, – ,x + x) .

Elementary calculations reveal that

(
√

 – t

)

–
(

,, – ,,t + ,,t – ,,t + ,,t

(, – ,t + t)

)

=
tg(t)

( – t)(, – ,t + t) ,  < t < ,

where

g(t) = ,,,,, – ,,,,,t

+ ,,,,,t

– ,,,,t + ,,,,t.

We now prove that f ′(x) >  for  < x < . It suffices to show that g(t) >  for  < t < .
Differentiation yields

g ′(t) = – ,,,,, + ,,,,,t

– ,,,,t

+ ,,,,t

and

g ′′(t) = ,,,,, – ,,,,t

+ ,,,,t > ,  < t < .
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We then obtain, for  < t < ,

g ′(t) < g ′() = –,,,, <  �⇒
g(t) > g() = ,,,, > .

Hence, f ′(x) >  for  < x < , and we have

f (x) > f () = ,  < x < .

The proof is complete. �

Remark . There is no strict comparison between the two lower bounds in (.) and (.).

Theorem . For x > ,

arcslh x
x

<
, + ,x + ,x

(, + ,x + x)
. (.)

Proof Consider the function

F(x) = arcslh x –
x(, + ,x + ,x)

(, + ,x + x)
, x > .

Differentiation yields

F ′(x) =
√

 + x

–
,, + ,,x + ,,x + ,,x + ,,x

(, + ,x + x) .

Elementary calculations reveal that

(
√

 + t

)

–
(

,, + ,,t + ,,t + ,,t + ,,t

(, + ,t + t)

)

= –
tG(t)

( + t)(, + ,t + t) ,

where

G(t) = ,,,,, + ,,,,,t + ,,,,,t

+ ,,,,t + ,,,,t.

Hence, F ′(x) <  for x > , and we have

F(x) < F() = , x > .

The proof is complete. �
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Remark . For  < t < , we find

I(t) :=


 + t
–

(
, + ,t + ,t

(, + ,t + t)

)

=
tP(t)

,,,( + t)(, + ,t + t)

with

P(t) = P(t) + tP(t),

where

P(t) = ,,,,,,,,,,,,,,,,t

+ · · ·
+ ,,,,,,,,,,,,,,,,,

is a polynomial of the th degree, having all coefficients positive, and

P(t) = ,,,,,,,,,,,,,,,

– ,,,,,,,,,,,,,,t

– ,,,,,,,,,,,,,,t > 

for  < t < . So, I(t) >  for  < t < . We then see that the inequality (.) is sharper than
the right side of (.).

Theorem . For x > ,

 + 
 x – 

 x

 + 
 x

<
arctl x

x
<

,, + ,,x + ,,x

(,, + ,,x + ,x)
. (.)

Proof Consider the function

λ(x) = arctl x –
x( + 

 x – 
 x)

 + 
 x

.

Differentiation yields

λ′(x) =


( + x)/ +
x(, + ,x + x)

( + x) > .

We then obtain

λ(x) > λ() = , x > .

Hence the first inequality in (.) holds for x > .
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Consider the function

T(x) = arctl x –
x(,, + ,,x + ,,x)

(,, + ,,x + ,x)
, x > .

Differentiation yields

T ′(x) =


( + x)/ –
P(x)

(,, + ,,x + ,x) ,

where

P(x) = ,,,, + ,,,,x + ,,,,x

+ ,,,x + ,,,x.

Elementary calculations reveal that


( + x) –

(
P(x)

(,, + ,,x + ,x)

)

= –
xP(x)

( + x)(,, + ,,x + ,x) ,

where

P(x) = ,,,,,,,,,,,,,,,,

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,x

+ ,,,,,,,,,,,,,,x.

Hence, T ′(x) <  for x > , and we have

T(x) < T() = , x > .

Hence, the second inequality in (.) holds for x > . The proof is complete. �
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Theorem . For  < x < ,

,, – ,,x + ,,x

(,, – ,,x + ,x)
<

arctlh x
x

. (.)

Proof Consider the function

H(x) = arctlh x –
x(,, – ,,x + ,,x)

(,, – ,,x + ,x)
,  < x < .

Differentiation yields

H ′(x) =


( – x)/ –
Q(x)

(,, – ,,x + ,x) ,

where

Q(t) = ,,,, – ,,,,t + ,,,,t

– ,,,t + ,,,t,  < t < .

Elementary calculations reveal that


( – t) –

(
Q(t)

(,, – ,,t + ,t)

)

=
tR(t)

( – t)(,, – ,,t + ,t) ,

where

R(t) = ,,,,,,,,,,,,,,

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+ ,,,,,,,,,,,,,,,( – t)

+
(
,,,,,,,,,,,,,,,

– ,,,,,,,,,,,,,,( – t)
)
( – t)

+ ,,,,,,,,,,,,,,( – t).
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Since R(t) >  for  < t < , we have H ′(x) >  for  < x < . We then obtain

H(x) > H() = ,  < x < .

The proof is complete. �

4 Proof of Conjecture 1.1

Proof of (.) It suffices to show by (.) that

, + ,x + ,x

(, + ,x + x)
<

 + 
 x

 +
√

 + x
, x > ,

i.e.,

 + 
 x

,+,x+,x

(,+,x+x)

–  >
√

 + x, x > . (.)

Elementary calculations show that

(  + 
 x

,+,x+,x

(,+,x+x)

– 
)

–
(√

 + x
)

=
xP(x)

(, + ,x + ,x) ,

where

P(x) = ,,,,, + ,,,,,x

+ ,,,,x

+ ,,,,x + ,,,,x + ,,,,x

+ ,,,x.

We see from P(x) >  that (.) holds. The proof is complete. �

Proof of (.) First of all, we prove the second inequality in (.). It suffices to show by
the right-hand side of (.) that

,, + ,,x + ,,x

(,, + ,,x + ,x)
<

 + ,,
, x

 + 
√

 + x
, x > ,

i.e.,

 + ,,
, x

,,+,,x+,,x

(,,+,,x+,x)

–  > 
√

 + x, x > . (.)
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Elementary calculations show that

(  + ,,
, x

,,+,,x+,,x

(,,+,,x+,x)

– 
)

–
(

√

 + x
)

=
P(x)

,,(,, + ,,x + ,,x) ,

where

P(x) = ,,,,,,,,,

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,,x

+ ,,,,,,,,x

+ ,,,,,,,,x

+ ,,,,,,,,x

+ ,,,,,,,x.

We see from P(x) >  that (.) holds. Hence, the second inequality in (.) holds.
Second, we prove the first inequality in (.). We consider two cases.
Case .  < x < .
It suffices to show by the left-hand side of (.) that


 + 

√
 + x

<
 + 

 x – 
 x

 + 
 x

,  < x < ,

i.e.,


√

 + x >


+ 
 x– 

 x

+ 
 x

– ,  < x < . (.)

Elementary calculations show that

(

√

 + x
) –

(


+ 
 x– 

 x

+ 
 x

– 
)

=
x(,, – ,,x + ,,x)

( + x – x) > ,  < x < ,

which shows that (.) holds.
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Case . x ≥ .
Consider the function U(x) defined by

U(x) = arctl x –
x

 + 
√

 + x
.

Differentiation yields

U ′(x) =


( + x)/ +
,(x – 

√
 + x – )

( + 
√

 + x)
√

 + x
. (.)

Noting that

x – 
√

 + x –  > , x ≥ ,

holds, we obtain

U ′(x) > , x ≥ .

We now show that U ′(x) >  is also valid for  ≤ x < . It suffices to show that

y(x) > ,  ≤ x < ,

where

y(x) = y(x) + y(x),

with

y(x) =
( + 

√
 + x)

√
 + x

,( + x)/ + x – 

and

y(x) = –
√

 + x.

Differentiation yields

y′
(x) =

x( + 
√

 + x)y(x)
( + x)/

√
 + x

+ ,x,

where

y(x) = 
√

 + x + x
√

 + x – ,x – ,

> 
√

x + x
√

x – ,x – ,

= ,
√

 – , + (,
√

 – ,)(x – )

+ (,
√

 – ,)(x – ) + (,
√

 – ,)(x – )
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+ (,
√

 – ,)(x – ) + ,
√

(x – ) + ,
√

(x – )

>  for  ≤ x < .

Hence, we have y′
(x) >  for  ≤ x < .

Let  ≤ r ≤ x ≤ s ≤ . Since y(x) is increasing and y(x) is decreasing for  ≤ x ≤ , we
obtain

y(x) ≥ y(r) + y(s) =: σ(r, s).

We divide the interval [, ] into  subintervals:

[, ] =
⋃

k=

[
 +

k


,  +
k + 


]
>  for k = , , , . . . , .

By direct computation we get

σ

(
 +

k


,  +
k + 


)
>  for k = , , , . . . , .

Hence,

y(x) >  for x ∈
[

 +
k


,  +

k + 


]
and k = , , , . . . , .

This proves U ′(x) >  for  ≤ x < .
We then obtain U ′(x) >  for all x ≥ , and we have

U(x) > U() = . . . . >  for x ≥ ,

which shows the first inequality in (.) holds for x ≥ . Thus, the first inequality in (.)
holds for all x > . The proof is complete. �
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