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1 Introduction
The lemniscate, also called the lemniscate of Bernoulli, is the locus of points (x,y) in the
plane satisfying the equation (x> + y*)> = 42 + 2. In polar coordinates (r,6), the equation

becomes r? = cos(26) and its arc length is given by the function
|
arcslx =/ —dt, |x] <1, (1.1)
0 V11—t

where arcsl is called the arc lemniscate sine function studied by Gauss in 1797-1798. An-
other lemniscate function investigated by Gauss is the hyperbolic arc lemniscate sine func-
tion, defined as

* 1
arcslhx = / dt, xeR. (1.2)
0 V1+t*

The functions (1.1) and (1.2) can be found (see [1], Chapter 1, [2], p. 259, and [3-11]).

Another pair of lemniscate functions, the arc lemniscate tangent arctl and the hyperbolic
arc lemniscate tangent arctlh, have been introduced in [4], (3.1)-(3.2). Therein it has been
proven that

arctlx = arcsl( xeR (1.3)

x
x/41+x4>’

and

arctlhx = arcslh( x| <1 (1.4)

x
V1-x* >’
(see [4], Proposition 3.1).
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Recently, numerous inequalities have been given for the lemniscate functions [6, 9-11].
For example, Neuman [6] proved the following inequalities:

5 V2 arcslx 4\-1/10
(3+2(1—x4)1/2> < . <(1—x) (1.5)
and
5 V2 arcslhax _1/10
1+at 1.
(3+2(1+x4)1/2> < x <( +x) (1.6)

for 0 < |x| < 1.

Shafer [12] indicated several elementary quadratic approximations of selected functions
without proof. Subsequently, Shafer [13] established these results as analytic inequalities.
For example, Shafer [13] proved that, for x > 0,

8x
3+,/25+ %xz

The inequality (1.7) can also be found in [14]. Zhu [15] developed (1.7) to produce a sym-
metric double inequality

< arctanx. 1.7)

8x 8x
<arctanx <

3+,/25 + 3042 3+,/25+ 2842
3 kg

where the constants 80/3 and 256/ 2 are the best possible. In [15], (1.8) is called a Shafer-
type inequality.

x>0, (1.8)

Mortici and Srivastava [16] presented new bounds for arctanx. Some inequalities for
trigonometric functions were refined in [17].

Very recently, Sun and Chen [18] established the following Shafer-type inequalities for
the lemniscate functions:

10 arcslx
5+\/m< P O<x<l, (1.9)
10 arctlhx
5+«/m< P 0<x<l, (1.10)
95 arcslhx
x>0, (1.11)

< ’
80 + /225 + 285x* x
and presented the following conjecture.

Conjecture 1.1 Forx >0,

arcslhx 95 + oL x12
2925 (1'12)

<
x 80 + /225 + 285x*

and

2,078,417 , 12
1210 arctlx 1210 + 280,800 X

< < .
940 + 94900 + 1210x* x 940 + 94900 + 1210x*

(1.13)
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Based on the Padé approximation method, in this paper we present new inequalities for
Gauss lemniscate functions. We also prove Conjecture 1.1.

Some computations in this paper were performed using Maple software.

2 Padé approximant
For later use, we introduce the Padé approximant (see [19-21]). Let f be a formal power

series,
f®) =co+ct+ct> +---. (2.1)

The Padé approximation of order (p, q) of the function f is the rational function, denoted
by

(p/qls(t) = (2.2)

where p > 0 and g > 1 are any given integers, the coefficients a; and b; are given by (see
(19, 21])

ap = Cop,
ay = coby + ¢y,

a) = Col’)z + Clbl + Cy,

(2.3)
ap=Coby + -+ cpabi +¢p,
0=cpi+Cpbr+ - +cpguby,
0 =Cpig + Cprg1b1 + -+ + Cpby,
and we have
[p/qls () —f () = O(#7*). (2.4)

Thus, the first p + g + 1 coefficients of the series expansion of [p/q]s are identical to those

of f. Moreover, we have (see [20])

Uy qt) 17 gn(®) - fo(0)

Cp—g+1 Cp—q+2 e Cp+1
p Cpr1 T Cpyg
(p/qls(t) = , (2.5)
t1 [ 1
Cp—q+1  Cp—q+2 " Cp+1

% Cp+1 "0 Cpuq
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with f,(x) = co + c1x + - - - + ¢,x”, the nth partial sum of the series f (f,, is identically zero for
n<0).
Chen [9] presented the following power-series expansions (for |x| < 1):

T(n+1)

arcslx 4
_ " 2.6
x ;ﬁ(4n+1)-n!x 26)
1h INCEE
kel Z( o LUra) 2.7)
Jr(dn+1) -1
tl T+
arctlx Z( 1);13(—4)'x4n (28)
x e () -@n+1)-n!
and
arctlhx (n+ é)
Z 3—'964”. (29)
o Z 4n+1)-n!

We now consider the Padé approximant for the function %51" at the point x = 0. Let

1 5 35
t) = =1 +—t — P Bt 2.10
f® ZC’ "94" T208" T 2176 210

with the coefficients ¢; given by

~ T(+3)
9% Jm@ir )

Let us find the (2,2) Padé approximant for the function (2.10) at the point £ = 0,

(2.11)

2 ,
Zj=0 (ljt]

Noting that

» 1 1 5 35 o12)
=L A=y 2T %78 “T e :

holds, we have, by (2.3),

ap = 1)
_ 1
a=b + 35
ay) = bz + bl +
l’)l + bg,
b1 + bz,

O_W
0_

2176 * 508
that is,

55 23,623 309 489
ﬂO:L ar=—-——=, a)=_————, b1=—, 2= S a0
68 265,200 340 3536
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We thus obtain
55 23,623 ;2
— Sl + 52aont
68° T 265,200
[2/2] () = —08 " 205200°_
309 489 .o
1350t + 3536¢

and we have, by (2.4),

1) = 2/21,0) + O(F).

That is

i~ L1 55, , 23623 .2
rg+s) . 1-22t+ t
G+3 j_ 68" T 265200° o).

;ﬁ(4j+1)~j! 1-3%8t+ 222

Replacing ¢ by x* in (2.15) yields

55.4 , 23,623 .8
arcslae 1= ggX™ + 562 550%

T 1_309,4 , 489 .8
x 1 — 350%™ + 3536%

265,200 - 214,500x* + 23,623x° ()
= + O(x™).
15(17,680 — 16,068x* + 2445x8)

+ O(xzo)

Remark 2.1 Using (2.5), we can also derive (2.13). Indeed, we have

2o th) fO | t0+50) L+ 5t+ 558

1 1 5
a 2 ¢ 10 2% 208
1 5 35
€2 a3 C4 24 208 2176
[2/2]¢(¢) = 5 = 5
t t 1 t t 1
1 1 5
a 6 & 0 24 208
1 5 3
G G G 24 208 2176
55, 23,623 ,2
1=t 3600t
T 1309 489 o °
1 -S40t + 35367
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(2.13)

(2.14)

(2.15)

(2.16)

Following the same method as used in the derivation of the formula (2.16), we find

55 4 . 23,623 .8
arcslhx L+ 585%™ + 5¢2500%

= 3094, 489 3
x L+ 350%" + 3536 %

+O0(x*°)

265,200 + 214,500x* + 23,623x® ( 20)
= +O0(x™),
15(17,680 + 16,068x* + 2445x8)

63 ,4 _ 139 8
1+ 55x™ — =%
_ 130 62407 O(x16)’

33,4
x 1+52x

79,047 .4 . 565795 8
arctle 1+ 57550%" + 5305048 0()
x  1g 186454 336105 5
18,904 1,966,016

29,490,240 + 24,662,664x* + 2,828,975x8 ( 20)
= + O(x
15(1,966,016 + 1,939,080x* + 336,105x8)

(2.17)

(2.18)

(2.19)
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and

79,047 4 , 565795
arcthha  1-5250%" + 5508 048%

= 1 186454, 336105 .8
1 - 15%504%" + 1966016

29,490,240 — 24,662,664x* + 2,828,975x8

8

20
P + O(x )

20
- +0(x*).
15(1,966,016 —1,939,080x* + 336,105x8)

In view of (2.16) and (2.17), we pose the following.
Conjecture 2.1 Let

n 4j
arcsly 1+ Z}‘:l ax”

— +0 x8n+4
x 1+ 30 bx¥ ()

and

arcslhx 1+Z;1:1 o‘/‘764/
PSS S

O(x8"+4).

Then the coefficients a; and o satisfy the following relation:
a; = (—l)jozj, j=L12,...,n,
and the coefficients b; and B; satisfy the following relation:
bi=(-1Yg, j=L2,..,n
In view of (2.19) and (2.20), we pose the following.
Conjecture 2.2 Let

arctly 1+ Z;’le;x‘*j
x 1+ PRV

O(x8n+4-)

and

n 4i

arctthx 1+ Z,'=1 rix™
- T

x L+ 0 s

+O(x¥").

Then the coefficients p; and r; satisfy the following relation:
p]z(_lyr}) j=172)"')n1

and the coefficients q; and s; satisfy the following relation:

g =(1s, j=12,...,n

Page 6 of 16

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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3 Inequalities
Equations (2.16)-(2.20) motivate us to establish the following theorems.

Theorem 3.1 ForO0<x<1,

265,200 — 214,500x* + 23,623x%  arcslx
< .
15(17,680 — 16,068x% + 2445x8) x

Proof Consider the function

x(265,200 — 214,500x* + 23,623x%)
15(17,680 — 16,068x* + 2445x8)

f(x) =arcslx — , O<x<l.

Differentiation yields

f'x)=

1
V1 —x*
312,582,400 — 411,873,280x* + 177,771,984x% — 21,634,288x'% + 3,850,549x1°
(17,680 — 16,068x% + 2445x8)2 ’

Elementary calculations reveal that

(=)

312,582,400 — 411,873,280¢ + 177,771,984¢2 — 21,634,288¢3 + 3,850,549¢* \ 2
(17,680 — 16,068¢ + 2445¢2)2

£°g(t)
= , O0<t<l,
(1-1)(17,680 — 16,068t + 2445¢2)*

where

g(t) =1,744,280,123,040,000 - 2,406,774,938,256,000¢
+1,064,272,682,007,600¢*

- 145,697,716,749,000¢° + 14,826,727,601,401¢*.

We now prove that f'(x) > 0 for 0 < x < 1. It suffices to show that g(¢£) >0 for 0 < ¢ < 1.
Differentiation yields

g'(t) = —2,406,774,938,256,000 + 2,128,545,364,015,200¢
—437,093,150,247,000%2

+ 59,306,910,405,604-153
and

g'(t) =2,128,545,364,015,200 — 874,186,300,494,000¢

+177,920,731,216,81262 >0, O<t<l1.
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We then obtain, for 0 < <1,

g'() <g'(1) = -656,015,814,082,196 <0 =

2(t) > g(1) = 270,906,877,644,001 > 0.
Hence, f'(x) > 0 for 0 < x <1, and we have
fx)>f(0)=0, O<x<l.
The proof is complete. O

Remark 3.1 There is no strict comparison between the two lower bounds in (1.5) and (3.1).

Theorem 3.2 For x>0,

arcslhx 265,200 + 214,500x* + 23,6238
< .
x 15(17,680 + 16,068x* + 24.4.5x8)

(3.2)

Proof Consider the function

%(265,200 + 214,500x* + 23,623x8)

F(x) = arcslhx —
15(17,680 + 16,068x* + 2445x8)

, x>0.

Differentiation yields

1
V1+at

312,582,400 + 411,873,280x* + 177,771,984x% + 21,634,288x'% + 3,850,549x'°
(17,680 + 16,068x* + 2445x8)2 )

F(x) =

Elementary calculations reveal that

(=)

312,582,400 + 411,873,280¢ + 177,771,984¢2 + 21,634,2883 + 3,850,549¢* \ 2
(17,680 + 16,068¢ + 2445¢2)2

~ 1G(t)
T (1+6)(17,680 +16,068¢ + 2445¢2)4’

where

G(t) =1,744,280,123,040,000 + 2,406,774,938,256,000¢ + 1,064,272,682,007,600£>

+145,697,716,749,000¢> + 14,826,727,601,401¢*.
Hence, F'(x) < 0 for x > 0, and we have
F(x)<F(0)=0, x>0.

The proof is complete. O
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Remark 3.2 For 0 <t <1, we find

L) L _ ((265:200+214.500¢ + 23,623¢2\ "
T 1+t \15(17,680 +16,068¢ + 2445¢2)
B £*Pio(t)
~ 576,650,390,625(1 + £)(17,680 + 16,068 + 2445¢2)10
with

Pio(t) = Prg(t) + £ Pa(2),

where

Pis(t) = 3,309,224,024,069,080,418,989,754,522,912,085,339,870,997,824,000£°

+ ..

+229,442,535,851,108,636,620,015,850,036,920,320,000,000,000,000,000,000
is a polynomial of the 16th degree, having all coefficients positive, and

P,(t) =77,541,624,086,159,498,428,020,328,992,837,339,887,447,064,000
-565,686,157,207,722,134,655,870,693,904,642,976,763,301,024¢
- 54,119,091,759,561,776,058,592,767,712,571,305,215,681,6 49> > 0

for 0 <t<1.So0,I(t) >0 for 0 < t < 1. We then see that the inequality (3.2) is sharper than
the right side of (1.6).

Theorem 3.3 Forx >0,

L+ Zat— 2245 arctlx 29,490,240 + 24,662,664x" + 2,828,975x°

< .
1+ %le x 15(1,966,016 +1,939,080x* + 336,105x8)

(3.3)

Proof Consider the function

x(1+ﬁx4_ 139 8)

x

A(x) = arctlx — L 46240

1+ Ex

Differentiation yields

V) 1 x3(48,672 + 14,456x* + 4587x%)

x) = +
(1 +x%)3/4 30(52 + 33x%)2

We then obtain

Alx)>A(0)=0, x>0.

Hence the first inequality in (3.3) holds for x > 0.
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Consider the function

%(29,490,240 + 24,662,664x* + 2,828,975x%)

T(x) = arctlx —
15(1,966,016 + 1,939,080x* + 336,105x8)

, x>0.

Differentiation yields

1 a Pig(x)
(1+x%)34 (1,966,016 +1,939,080x* + 336,105x8)2’

T'(x) =
where

Pis(x) = 3,865,218,912,256 + 4,725,610,426,368x* +1,899,763,315,008x°

+170,687,344,256x'% + 63,388,842,825x°.

Elementary calculations reveal that

1 Pis(x) *
(T+x4)3  \ (1,966,016 + 1,939,080x* + 336,105x%)?
B %% Psg (x)
- (1 +x%)3(1,966,016 + 1,939,080x% + 336,105x8)8

where

Ps6(x) =13,193,567,461,486,862,074,082,196,527,146,063,235,598,765,785,088
+75,159,817,580,420,162,914,879,309,165,363,929,497,102,849,146,880x*
+190,493,075,741,254,897,950,338,074,805,626,536,902,462,936,186,880x°
+283,233,781,637,227,052,608,425,496,608,925,420,321,925,549,260,800x"
+274,381,791,750,085,496,947,276,941,731,670,794,946,132,888,780,80 01
+182,271,787,590,701,615,339,301,540,193,194,594,557,235,390,578,688x°
+85,570,287,614,566,775,085,144,063,641,805,696,286,360,924,323,84.0x**
+29,163,131,006,055,200,534,183,374,987,447,946,919,333,657,968,640x
+7,481,144,367,677,341,229,619,045,201,182,337,247,982,930,534,400x
+1,502,545,339,351,309,468,552,186,115,563,901,082,330,882,201,6 00>
+238,495,639,577,137,257,561,813,891,822,862,592,696,929,928,896x*°
+29,999,531,147,567,967,753,948,099,263,441,234,315,939,560,800x**
+3,208,050,013,558,968,652,633,219,730,412,159,840,683,611,875x*
+222,336,558,000,169,152,230,844,556,985,454,831,178,171,875x>2
+16,145,492,412,888,980,411,169,048,998,579,532,875,390,625x°°.

Hence, T'(x) < 0 for x > 0, and we have
Tx)<T(0)=0, x>0.

Hence, the second inequality in (3.3) holds for x > 0. The proof is complete. g
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Theorem 3.4 ForO<x<1,

29,490,240 — 24,662,664x* + 2,828,975x%  arctlhx
< .
15(1,966,016 — 1,939,080x% + 336,105x8) x

Proof Consider the function

%(29,490,240 — 24,662,664x* + 2,828,975x%)

H(x) = arctlhx —
15(1,966,016 — 1,939,080x* + 336,105x8)

, O<x<l.

Differentiation yields

1 Qx*)

H'(x) = - :
()= T=x1P7 ~ (1.966,016 — 1,939,080+ + 336,10555)°

where

Q(t) = 3,865,218,912,256 — 4,725,610,426,368t + 1,899,763,315,008¢*

—170,687,344,2561> + 63,388,842,825t*, 0<t<1.

Elementary calculations reveal that

1 Q(t) ¢
1-¢)3 (1,966,016 —1,939,080¢ + 336,105¢2)2

~ £°R(t)
- (1-1)3(1,966,016 —1,939,080¢ + 336,105¢2)8 ’

where

R(¢) =301,748,693,573,399,407,094,173,717,482,883,533,487,653,121
+9,932,615,535,811,554,413,076,061,553,884,665,646,471,005,365(1 — t)
+151,766,449,766,787,034,704,161,483,173,419,604,277,111,004,855(1 — £)*
+680,433,563,535,649,162,659,902,808,405,182,093,255,793,778,810(1 — £)°
+1856,390,570,444,186,005,047,799,006,039,729,435,155,242,856,245(1 — t)*
+3,124,371,679,128,783,209,196,299,976,215,123,075,149,799,026,971(1 — t)°
+3,542,098,875,374,455,780,446,672,503,755,643,630,859,189,032,595(1 — £)°
+2,471,319,403,553,122,128,066,406,333,619,269,039,662,418,255,020(1 — t)’
+1,090,939,975,419,395,315,836,646,390,524,713,606,873,688,710,195(1 — £)8
+188,439,516,872,719,220,883,777,738,283,311,857,263,725,003,515(1 — t)°
+72,805,480,166,035,035,195,735,976,881,949,595,398,022,003,221(1 — £)1°
+2,968,223,270,581,948,926,689,804,107,877,843,092,991,437,050(1 — £)"*

+ (1,786,914,569,129,666,891,048,623,948,471,984,527,027,924,375
-3,700,335,780,276,573,525,522,128,994,658,629,077,296,875(1 — t))(l -0

+16,145,492,412,888,980,411,169,048,998,579,532,875,390,625(1 — £)**.

Page 11 of 16

(3.4)
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Since R(¢) > 0 for 0 < ¢ <1, we have H'(x) > 0 for 0 < x < 1. We then obtain
H(x)>H(0)=0, O<x<l.

The proof is complete. O

4 Proof of Conjecture 1.1

Proof of (1.12) It suffices to show by (3.2) that

265,200 + 214,500x* + 23,6234° 95 + zoral?

< )
15(17,680 + 16,068x* + 2445x8) ~ 80 + /225 + 285x%

x>0,

95 + 931 x12

2925 —80>+/225+285x%, x>0. (4.1)

265,200+214,500x%+23,623x8
15(17,680+16,068x% +2445x8)

Elementary calculations show that

95 + 3L x12 2
( 2925 - 80) — (v/225 + 285x%)”

265,200+214,500x4+23,623x8
15(17,680+16,068x% +2445x8)

%10 Pyy ()
(265,200 + 214,500x% + 23,623x%)2"

where

Pyy(x) = 2,214,994,396,680,000 + 2,167,794,625,751,625x*
+771,850,648,332,4004°
+100,410,388,038,870x'% + 15,721,941,655,056x'° + 3,584,399,789,880x%°

+272,711,522,475x%%.

We see from Py4(x) > 0 that (4.1) holds. The proof is complete. O

Proof of (1.13) First of all, we prove the second inequality in (1.13). It suffices to show by
the right-hand side of (3.3) that
29,490,240 + 24,662,664x* + 2,828,975x8 1210 + 337847 x12
< )
15(1,966,016 +1,939,080x* + 336,1054%) 940 + 94/900 + 1210x*

x>0,

1210 + 2,078,4]7x12

280800 - 940 > 9900 + 1210x%, x> 0. (4-2)

29,490,240+24,662,664x% +2,828,975x8
15(1,966,016+1,939,080x% +336,105x8)
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Elementary calculations show that

1210 + Y840 12 ’  (ovse e
. -940) - (9v900 +1210x*)
29,490,240+24,662,664x%+2,828,975x8

15(1,966,016+1,939,080x% +336,105x8)

_ Pyo(x)
350,438,400(29,490,240 + 24,662,664x* + 2,828,975x8)2 ’

where

Pyo(x) = 423,992,204,507,234,653,175,808,000,000
+813,161,362,018,201,812,231,782,400,000x*
+516,869,957,972,853,387,975,720,960,000x°
+125,747,707,439,033,797,403,639,808,000x"
+18,812,522,309,950,882,139,627,520,000x°
+6,902,175,873,182,801,970,021,120,000x2°
+1,857,663,393,190,652,946,224,195,584x**
+192,485,925,752,231,924,989,587,840x%8
+21,951,612,856,626,590,316,104,640x>>
+5,630,747,696,194,377,041,485,200x>¢

+487,994,939,463,408,187,266,225x*C.

We see from Pyo(x) > 0 that (4.2) holds. Hence, the second inequality in (1.13) holds.
Second, we prove the first inequality in (1.13). We consider two cases.
Casel.0<x<1.

It suffices to show by the left-hand side of (3.3) that

1210 1+ Byt 13948

< 130 = 6240 , O<x< 1’

940 +94/900 + 1210x* L+ mat

ie.,

1210

94900 +1210x* > T 632 139 .8 940, O<x<l. (4.3)

1+ 3p% - &q0%

1+%x4

Elementary calculations show that

, 1210 ?
(9v900 +1210x%)" — | —g——555— — 940
b et~ gy

121042(128,621,376 — 81,039,502x* + 1,565,001x%)
= >
(6240 +3024x* — 13948)2

0, O<x<l,

which shows that (4.3) holds.
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Case2.x>1.
Consider the function U(x) defined by

1210x
U(x) = arctlx — .
940 + 94900 +1210x*
Differentiation yields
, 1 12,100(1089x* — 944/900 + 1210x* — 810)
U'(x) =

+ .
1 +x4)3% (940 + 94900 + 1210x4)24/900 + 1210x*

Noting that
1089x* — 94+/900 + 121044 - 810 >0, x> 2,

holds, we obtain
Ux)>0, x>2.

We now show that U’(x) > 0 is also valid for 1 < x < 2. It suffices to show that

yx)>0, 1<x<2,

where
y(x) = y1(x) + y2(x),

with

(940 +9+/900 +1210x%)%v/900 + 1210x*

4
12,100(1 + x%)3/4 +1089x* — 810

y1(x)
and
Yo (x) = =94+4/900 + 1210x*.

Differentiation yields

3
940 + 9+/900 + 121042
() = TO40 + 12108955 (%) | 35 59643,

1210(1 + x4)744/900 + 1210x*

where

y3(%) = 41044/900 + 1210x% + 3267x*+/900 + 1210x* — 113,740x* — 26,320
> 4104+/1210x* + 3267x*v/1210x* — 113,740x" — 26,320
= 81,0814/10 — 140,060 + (305,910+/10 — 454,960)(x — 1)
+(584,199+/10 — 682,440)(x — 1) + (718,740~/10 — 454,960)(x — 1)°

Page 14 of 16

(4.4)
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+(539,055+/10 — 113,74.0)(x — 1)* + 215,6224/10(x — 1)° + 35,9374/10(x — 1)°

>0 forl<x<2.

Hence, we have yj(x) >0 for 1 <x < 2.
Let1 <r <x <s<2.Since y(x) is increasing and y,(x) is decreasing for 1 <x <2, we

obtain

Y®) = y1(r) + y2(s) =: 01(r, 9).

We divide the interval [1,2] into 100 subintervals:

» k k+1
1,2] =U[1+ — 1+ —] >0 fork=0,1,2,...,99.
L 100 100

By direct computation we get

k k+1
o1+ —,1+—1]>0 fork=0,12,...,99.
100 100

Hence,

k k+1
y(x)>0 forxe 1+—,1+L and k=0,1,2,...,99.
100 100

This proves U'(x) >0 for 1 <x < 2.
We then obtain U’(x) > 0 for all x > 1, and we have

U(x)>U(1)=0.00154438...>0 forx>1,

which shows the first inequality in (1.13) holds for x > 1. Thus, the first inequality in (1.13)
holds for all x > 0. The proof is complete. d
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