
Yang and Chu Journal of Inequalities and Applications  (2016) 2016:311 
DOI 10.1186/s13660-016-1261-3

R E S E A R C H Open Access

On approximating the error function
Zhen-Hang Yang1,2 and Yu-Ming Chu1*

*Correspondence:
chuyuming2005@126.com
1School of Mathematics and
Computation Sciences, Hunan City
University, Yiyang, 413000, China
Full list of author information is
available at the end of the article

Abstract
In the article, we present the necessary and sufficient condition for the parameter p
on the interval (7/5,∞) such that the function x → erf(x)/Bp(x) is strictly increasing
(decreasing) on (0,∞), and find the best possible parameters p, q on the interval
(7/5,∞) such that the double inequality Bp(x) < erf(x) < Bq(x) holds for all x > 0, where

erf(x) = 2
∫ x
0 e

–t2 dt/
√

π is the error function, Bp(x) =
√
1 – λ(p)e–px2 – [1 – λ(p)]e–μ(p)x2 ,

λ(p) = 16(5p – 7)/[(15p2 – 40p + 28)(45p2 – 60p – 4)] and μ(p) = 4(5p – 7)/[5(3p – 4)].
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1 Introduction
It is well known that the error function

erf(x) =
√
π

∫ x


e–t

dt =
√
π

∞∑

n=

(–)n

n!(n + 
 )

xn+

has numerous applications in probability, statistics, and partial differential equations the-
ory. Recently, the bounds for the error function have attracted the attention of many re-
searchers. In particular, many remarkable inequalities for the error function can be found
in the literature [–].

Pólya [] proved that the inequality

erf(x) <
√

 – e–x/π

holds for all x > .
In [], Chu proved that the double inequality

√
 – e–px < erf(x) <

√
 – e–qx (.)

holds for all x >  if and only if p ∈ (, ] and q ∈ [/π ,∞).
Alzer [] presented the double inequality

(
 – e–β(p)xp)/p <


�( + 

p )

∫ x


e–tp

dt <
(
 – e–α(p)xp)/p
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for x >  and p >  with p �= , where �(x) =
∫ ∞

 tx–e–t dt is the classical gamma function,
and α(p) and β(p) are, respectively, given by

α(p) =


�p( + 
p )

(p > ), α(p) =  ( < p < ),

and

β(p) =


�p( + 
p )

( < p < ), β(p) =  (p > ).

Let n ≥ , and αn, βn, α∗
n , β∗

n be, respectively, defined by

α = . . . . , αn =  (n ≥ ), βn = n – ,

α∗
n = n +  (n = k), α∗

n = n –  (n = k – ), β∗
n = .

In [, ], Alzer proved that the double inequalities

λn erf

( n∑

i=

xi

)

≤
n∑

i=

erf(xi) –
n∏

i=

erf(xi) ≤ μn erf

( n∑

i=

xi

)

, (.)

λ erf
(
y + erf(x)

)
< erf

(
x + erf(y)

)
< μ erf

(
y + erf(x)

)
,

λ∗ erf
(
y erf(x)

)
< erf

(
x erf(y)

) ≤ μ∗ erf
(
y erf(x)

)
,

hold for all xi ≥  and y ≥ x >  if and only if λn ≤ αn, μn ≥ βn, λ ≤ erf() = . . . . ,
μ ≥ /

√
π = . . . . , λ∗ ≤  and μ∗ ≥ , and inequality (.) holds for all xi ≤  if and

only if λn ≥ α∗
n and μn ≤ β∗

n .
Recently, Neuman [] proved that the double inequality

x√
π

e– x
 ≤ erf(x) ≤ x√

π

e–x + 


(.)

holds for all x > .
Let x ∈ (,∞), p ∈ (/,∞), λ(p), μ(p), and Bp(x) be, respectively, defined by

λ(p) =
(p – )

(p – p + )(p – p – )
, μ(p) =

(p – )
(p – )

, (.)

Bp(x) =
√

 – λ(p)e–px –
[
 – λ(p)

]
e–μ(p)x . (.)

The main purpose of this paper is to present the best possible parameters p and q on
the interval (/,∞) such that the double inequality

Bp(x) < erf(x) < Bq(x)

holds for all x > .
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2 Lemmas
In order to prove our main results, we need to introduce an auxiliary function at first.

Let –∞ ≤ a < b ≤ ∞, f and g be differentiable on (a, b), and g ′ �=  on (a, b). Then the
function Hf ,g [, ] is defined by

Hf ,g ≡ f ′

g ′ g – f . (.)

It is not difficult to verify that the auxiliary function Hf ,g has the following properties:

(
f
g

)′
=

g ′

g Hf ,g (.)

if g �=  on (a, b), and

H ′
f ,g =

(
f ′

g ′

)′
g (.)

if both f and g are twice differentiable on (a, b).

Lemma . ([], Theorem ) Let –∞ ≤ a < b ≤ ∞, f and g be differentiable on (a, b)
with f (a+) = g(a+) = , g ′(x) �=  and g ′(x)Hf ,g(b–) < (>)  for all x ∈ (a, b). If there exists
λ ∈ (a, b) such that f ′/g ′ is strictly increasing (decreasing) on (a,λ) and strictly decreas-
ing (increasing) on (λ, b), then there exists μ ∈ (a, b) such that f /g is strictly increasing
(decreasing) on (a,μ) and strictly decreasing (increasing) on (μ, b).

Lemma . Let p ∈ (/,∞), p∗
 = ( + 

√
)/ = . . . . , λ(p) and μ(p) be defined

by (.), and un be defined by

un = (p – )(p – )n –
(
p – p + 

)
. (.)

Then the following statements are true:
() p > μ(p),  < λ(p) ≤ ( +

√
)/ = . . . . and  < μ(p) < / for p ∈ (/,∞),

 < μ(p) ≤  for p ∈ (/, /] and  < μ(p) < / for p ∈ (/,∞);
() un <  for all n ≥  if p ∈ (/, /];
() u ≥  and un >  for all n ≥  if p ∈ [p∗,∞);
() there exists n ≥  such that un+ ≥ , un <  for  ≤ n ≤ n and un >  for

n ≥ n +  and un >  for n > n if p ∈ (/, p∗
).

Proof For part (), from (.) we clearly see that

p > μ(p),

λ

(



)

= λ(∞) = , λ

(
 + 

√




)

=
 +

√



= . . . . , (.)

μ

(



)

= , μ(∞) =



, μ

(



)

= , (.)

λ′(p) = –
(p – )

(p – p + )(p – p – )
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×
(

p –
 – 

√




)(

p –
 + 

√




)

, (.)

μ′(p) =


(p – ) >  (.)

for p > /.
Equation (.) implies that λ(p) is strictly increasing on (/, ( + 

√
)/] and strictly

decreasing on [( + 
√

)/,∞). Therefore,  < λ(p) ≤ ( +
√

)/ for p ∈ (/,∞) as
follows from (.) and the piecewise monotonicity of λ(p) on the interval (/,∞), and the
remaining desired results for μ(p) follow easily from (.) and (.).

For parts () and (), let x ≥ , p(x) and p(x) be defined by

p(x) =
x –  –

√

√

x + x – 
(x – )

, p(x) =
x –  +

√

√

x + x – 
(x – )

.

Then simple computations lead to

p() =
 – 

√



= . . . . , p(∞) =




, (.)

p() = p∗
, p() =

 +
√




= . . . . , p(∞) =



, (.)

un = (n – )
[
p – p(n)

][
p – p(n)

]
, (.)

p′
(x) =

x –  –
√


√

x + x – √
(x – )

√
x + x – 

> , (.)

p′
(x) = –

x –  +
√


√

x + x – √
(x – )

√
x + x – 

<  (.)

for x ≥ .
It follows from (.)-(.) that

u = 
[
p – p∗


]
[

p –
 – 

√




]

, (.)

 – 
√




≤ p(n) <



,



< p(n) ≤ p∗
 (.)

for n ≥  and




< p(n) ≤  +
√




(.)

for n ≥ 
Therefore, parts () and () follow easily from (.) and (.)-(.).
For part (), if p ∈ (/, p∗

), then from (.) and (.) we clearly see that the sequence
{un}∞n= is strictly increasing and

u < , u∞ = ∞. (.)

Therefore, part () follows from (.) and the monotonicity of the sequence {un}∞n=. �
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Lemma . Let x ∈ (,∞), p ∈ (/,∞), λ(p), μ(p) and Bp(x) be defined by (.) and (.),
and Cp(x) and α(p) be defined by

Cp(x) =
pλ(p)e–px + μ(p)( – λ(p))e–μ(p)x

pλ(p) + μ(p)( – λ(p))

and

α(p) =

√


π [pλ(p) + μ(p)( – λ(p))]
=

√
p – p – 

πp(p – )
. (.)

Then the following statements are true:
() the function p → Bp(x) is strictly increasing on (/,∞);
() the function p → Cp(x) is strictly decreasing on (/,∞);
() the function p → α(p)Bp(x) is strictly decreasing on (/,∞).

Proof For part (), it suffices to show that ∂B
p(x)/∂p >  for x ∈ (,∞) and p ∈ (/,∞).

Let t = (p – μ(p))x and

F(t) = –
(
p – μ(p)

)
λ′(p) + λ(p)t +

(
p – μ(p)

)
λ′(p)et + μ′(p)

(
 – λ(p)

)
tet . (.)

Then it follows from (.), (.), (.), and Lemma .() that

∂B
p(x)
∂p

=
e–px

p – μ(p)
F(t), (.)

p – μ(p) > , t > , (.)

F() = , (.)

F ′
(t) = λ(p) +

(
p – μ(p)

)
λ′(p)et + μ′(p)

(
 – λ(p)

)
et + μ′(p)

(
 – λ(p)

)
tet ,

F ′
() =

(p – p + )
(p – p – ) > , (.)

F ′′
 (t) =

(p – )(p – )
(p – p – ) et +

p(p – )
(p – p + )(p – p – )

tet >  (.)

for p ∈ (/,∞) and t > .
From (.)-(.) we clearly see that

F(t) >  (.)

for p ∈ (/,∞) and t > .
Therefore, part () follows from (.), (.), and (.).
For part (), it is enough to prove that ∂Cp(x)/∂p <  for x ∈ (,∞) and p ∈ (/,∞). Let

t = (p – μ(p))x and

F(t) = –
p – p + 

p – μ(p)
t – (p – ) +

[

–
p – p + 

p – μ(p)
t + (p – )

]

et .
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Then elaborated computations lead to

Cp(x) =



[
e–px

p – p + 
+

(p – )e–μ(p)x

p – p + 

]

,

∂Cp(x)
∂p

= –



[
x

p – p + 
+

(p – )
(p – p + )

]

e–px

+



[

–
x

p – p + 
+

(p – )
(p – p + )

]

e–μ(p)x

=
e–px

(p – p + ) F(t), (.)

F(t) = –(p – )t – (p – ) +
[
–(p – )t + (p – )

]
et

= –(p – )
[
(t + ) + (t – )et]

= –(p – )
∞∑

n=

(n – )
n!

tn <  (.)

for p ∈ (/,∞) and t > .
Therefore, part () follows from (.), (.), and (.).
For part (), let Gp(x) be defined by

Gp(x) =
π


α(p)B

p(x) =
 – λ(p)e–px – ( – λ(p))e–μ(p)x

pλ(p) + μ(p)( – λ(p))
. (.)

Then elaborated computations lead to

∂Gp(x)
∂x

=
x[pλ(p)e–px + μ(p)( – λ(p))e–μ(p)x ]

pλ(p) + μ(p)( – λ(p))
= xCp(x). (.)

It follows from Lemma .() and (.) that

∂

∂x

(
∂Gp(x)

∂p

)

=
∂

∂p

(
∂Gp(x)

∂x

)

= x
∂Cp(x)

∂p
<  (.)

for x >  and p ∈ (/,∞).
Inequality (.) implies that the function x → ∂Gp(x)/∂p is strictly decreasing on (,∞)

and

∂Gp(x)
∂p

<
∂Gp(x)

∂p

∣
∣
∣
∣
x=

=
[

–
 – λ(p)e–px – ( – λ(p))e–μ(p)x

(pλ(p) + μ(p)( – λ(p)))
d(pλ(p) + μ(p)( – λ(p)))

dp

]

x=

+
[

–λ′(p)e–px + λ(p)xe–px + λ′(p)e–μ(p)x + μ′(p)x( – λ(p))e–μ(p)x

pλ(p) + μ(p)( – λ(p))

]

x=

=  (.)

for x >  and p ∈ (/,∞).
Therefore, part () follows from (.) and (.). �
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Lemma . Let p ∈ (/,∞), x ∈ (,∞), λ(p), μ(p), Bp(x) and Hf ,g(x) be, respectively, de-
fined by (.), (.) and (.), and f(x), g(x), f(x) and g(x) be, respectively, defined by

f(x) = B
p(x) =  – λ(p)e–px

–
(
 – λ(p)

)
e–μ(p)x

, g(x) = erf(x), (.)

f(x) =
[
pλ(p)e(–p)x

+ μ(p)
(
 – λ(p)

)
e(–μ(p))x]

x, g(x) =
√
π

erf(x). (.)

Then

Hf,g (∞) = lim
x→∞

(
f ′
(x)

g ′
(x)

g(x) – f(x)
)

=

⎧
⎨

⎩

∞, p ∈ ( 
 , 

 ],

–∞, p ∈ ( 
 ,∞),

(.)

Hf,g (∞) = lim
x→∞

(
f ′
 (x)

g ′
(x)

g(x) – f(x)
)

=

⎧
⎨

⎩

∞, p ∈ ( 
 , 

 ],

–, p ∈ ( 
 ,∞).

(.)

Proof Let t = (p – μ(p))x and

h(t) = pλ(p)
(
p – μ(p)

)
– pλ(p)(p – )t

+ μ(p)
(
p – μ(p)

)(
 – λ(p)

)
et – μ(p)

(
μ(p) – 

)(
 – λ(p)

)
tet . (.)

Then (.) and (.) lead to

f(x) =
√

t
√

p – μ(p)
(
pλ(p)e

–p
p–μ(p) t + μ(p)

(
 – λ(p)

)
e

–μ(p)
p–μ(p) t), (.)

f ′
(x)

g ′
(x)

=
π

(p – μ(p))
e

–p
p–μ(p) th(t),

Hf,g (x) =
f ′
(x)

g ′
(x)

g(x) – f(x)

=
√

π

(p – μ(p))
erf(x)e

–p
p–μ(p) th(t)

–
√

t
√

p – μ(p)
(
pλ(p)e

–p
p–μ(p) t + μ(p)

(
 – λ(p)

)
e

–μ(p)
p–μ(p) t). (.)

If p ∈ (/,∞), then Lemma .(), (.), and (.) lead to

p > μ(p),  < λ(p) < ,  < μ(p) <



, (.)

f(∞) = , (.)

lim
t→∞

h(t)
tet = –μ(p)

(
μ(p) – 

)(
 – λ(p)

)
< ,

lim
t→∞ e

–p
p–μ(p) th(t) = lim

t→∞ te
–μ(p)
p–μ(p) t lim

t→∞
h(t)
tet = –∞. (.)

Therefore, Hf,g (∞) = –∞ for p ∈ (/,∞) follows from (.), (.), and (.).
If p ∈ (/, /], then it follows from Lemma .() and (.) together with (.) that

p > μ(p),  < λ(p) < ,  < μ(p) ≤ , (.)
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lim
t→∞

f(x)

te
–μ(p)
p–μ(p) t

= lim
t→∞

pλ(p)e–t + μ(p)( – λ(p))
√

(p – μ(p))t
= , (.)

lim
t→∞

h(t)

te
–μ(p)
p–μ(p) t

= lim
t→∞

[
pλ(p)(p – μ(p))

t
e

μ(p)–
p–μ(p) t – pλ(p)(p – )e

μ(p)–
p–μ(p) t

]

+ lim
t→∞

[
μ(p)( – λ(p))(p – μ(p))

t
e

p–
p–μ(p) t + μ(p)

(
 – λ(p)

)(
 – μ(p)

)
e

p–
p–μ(p) t

]

= ∞. (.)

Therefore,

Hf,g (∞) = lim
t→∞ te

–μ(p)
p–μ(p) t

[ √
πe

–p
p–μ(p) t

(p – μ(p))
erf(x)

h(t)

te
–μ(p)
p–μ(p) t

–
f(x)

te
–μ(p)
p–μ(p) t

]

= ∞

for p ∈ (/, /] as follows from (.) and (.)-(.).
Similarly, from (.) and (.) we have

Hf,g (x) =
√

π


x erf(x)

[
pλ(p)e(–p)x

+ μ(p)
(
 – λ(p)

)
e(–μ(p))x]

–
[
 – λ(p)e–px –

(
 – λ(p)

)
e–μ(p)x]. (.)

If p ∈ (/, /], then Lemma .() gives

 < λ(p) < ,  < μ(p) ≤ . (.)

Therefore, Hf,g (∞) = ∞ for p ∈ (/, /] as follows from (.) and (.).
If p ∈ (/,∞), then Lemma .() leads to

 < λ(p) < ,  < μ(p) ≤ 


. (.)

Therefore, Hf,g (∞) = – for p ∈ (/,∞) as follows from (.) and (.). �

Lemma . Let p ∈ (/,∞), p∗
 = ( + 

√
)/ = . . . . , x ∈ (,∞), λ(p), μ(p),

Bp(x), Hf ,g(x), f(x), g(x), f(x) and g(x) be, respectively, defined by (.), (.), (.), (.)
and (.). Then the following statements are true:

() if f(x)/g(x) is strictly increasing on (,∞), then p ∈ (/, /];
() if f(x)/g(x) is strictly decreasing on (,∞), then p ∈ [p∗

,∞).

Proof () It follows from (.) and (.) that

lim
x→∞ ex

(
f(x)
g(x)

)′
= lim

x→∞ ex g ′
(x)

g
 (x)

Hf,g (x) =
√
π

lim
x→∞ Hf,g (x). (.)

If f(x)/g(x) is strictly increasing on (,∞), then (.) leads to

lim
x→∞ Hf,g (x) ≥  (.)
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and we assert that p ∈ (/, /]. Otherwise, p > / and (.) lead to the conclusion
Hf,g (∞) = –, which contradicts with (.).

() Let t = (p – μ(p))x, un and h(t) be, respectively, defined by (.) and (.), and
h(t) and vn be, respectively, defined by

h(t) = μ(p)
(
 – λ(p)

)(
μ(p) – 

)(
μ(p) – 

)
tet – μ(p)

(
 – λ(p)

)(
μ(p) – 

)

× (
p – μ(p)

)
et + pλ(p)(p – )(p – )t

– pλ(p)(p – )
(
p – μ(p)

)
, (.)

vn = –
μ(p)( – λ(p))

(p – ) un. (.)

Then from (.)-(.), (.), (.), (.), and (.) we have

(
f ′
(x)

g ′
(x)

)′
=

π

(p – μ(p))
d
dt

[
e

–p
p–μ(p) th(t)

] dt
dx

=
πx

(p – μ(p))
e

–p
p–μ(p) th(t), (.)

h(t) = μ(p)
(
 – λ(p)

)(
μ(p) – 

)(
μ(p) – 

) ∞∑

n=

tn

(n – )!

– μ(p)
(
 – λ(p)

)(
μ(p) – 

)(
p – μ(p)

) ∞∑

n=

tn

n!

+ pλ(p)(p – )(p – )t – pλ(p)(p – )
(
p – μ(p)

)

= –
(
p – μ(p)

)[(
p – μ(p)

)(
p + μ(p) – 

)
λ(p) + μ(p)

(
μ(p) – 

)]

+
(
p – μ(p)

)(
p + μ(p) + pμ(p) – p – μ(p) + 

)
λ(p)

+ μ(p)
(
p – pμ(p) + μ(p) – μ(p) + 

)
+

∞∑

n=

vntn

n!

=
∞∑

n=

vntn

n!
, (.)

(
f ′
 (x)

g ′
(x)

)′
=

g ′
(x)

g
 (x)

[
f ′
 (x)

g ′
(x)

g(x) – f(x)
]

=
g ′

(x)
g

 (x)
Hf,g (x),

H ′
f,g (x) =

(
f ′
 (x)

g ′
(x)

)′
g(x) =

(
f(x)
g(x)

)′
g(x) =

g ′
(x)

g
 (x)

Hf,g (x)g(x),

H ′
f,g (x) =

(
f ′
(x)

g ′
(x)

)′
g(x) =

πx
(p – μ(p))

e
–p

p–μ(p) th(t)g(x),

g ′
(x)

g
 (x)

=
√
π

e–x

erf(x)
∼ π

x ,
g ′

(x)
g

 (x)
g(x) = e–x ∼ 

(
x → +)

,

g(x) =
√
π

erf(x) ∼ x
π

, h(t) ∼ v


t =

(p – μ(p))


vx (

x → +)
,

(
f(x)
g(x)

)′
∼ π

x Hf,g (x)
(
x → +)

,
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H ′
f,g (x) ∼ Hf,g (x),

H ′
f,g (x) ∼ (

p – μ(p)
)
vx (

x → +)
.

Note that Hf,g (+) = Hf,g (+) = . Making use of the L’Hôspital rule we get

lim
x→+

x–
(

f(x)
g(x)

)′

=
π


lim

x→+

Hf,g(x)(x)
x =

π


lim

x→+

Hf,g(x)(x)
x

=
π


lim

x→+

H ′
f,g(x)(x)

x =
π (p – μ(p))


v

= –
πμ(p)(p – μ(p))( – λ(p))


(
p – p + 

)
. (.)

If p ∈ (/,∞) and f(x)/g(x) is strictly decreasing on (,∞), then it follows from
Lemma .() and (.) that

p – p +  ≥ ,

which leads to p ≥ ( + 
√

)/ = p∗
. �

3 Main results
Theorem . Let p ∈ (/,∞), x > , p∗

 = ( + 
√

)/, λ(p), μ(p), Bp(x) and α(p) be,
respectively, defined by (.), (.), and (.), x be the unique solution of the equation

d
dx

( B
p(x)

erf(x)

)

= 

on the interval (,∞) and β(p) = erf(x)/Bp(x). Then the following statements are true:
() the function x → Qp(x) = erf(x)/Bp(x) is strictly decreasing on (,∞) if and only if

p ∈ (/, /], and the double inequality

 <
erf(x)
Bp(x)

< α(p) (.)

holds for all x >  with the best possible parameters  and α(p) if p ∈ (/, /];
() the function x → Qp(x) = erf(x)/Bp(x) is strictly increasing on (,∞) if and only if

p ∈ [p∗
,∞), and the double inequality

α(p) <
erf(x)
Bp(x)

<  (.)

holds for all x >  with the best possible parameters  and α(p) if p ∈ [p∗
,∞);

() if p ∈ (/, p∗
), then Qp(x) is strictly decreasing on (, x] and strictly increasing on

[x,∞), and the double inequality

β(p) ≤ erf(x)
Bp(x)

< max
{

,α(p)
}

(.)

for all x > .
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Proof Let t = (p – μ(p))x, f(x), g(x), f(x), g(x), un, vn, and h(t) be defined by (.) and
(.), (.), (.), and (.). Then

Q–
p (x) =

f(x)
g(x)

,

f
(
+)

= g
(
+)

= , g ′
(x) > , (.)

f
(
+)

= g
(
+)

= , g ′
(x) > , (.)

f ′
 (x)

g ′
(x)

=
f(x)
g(x)

. (.)

() If Qp(x) = erf(x)/Bp(x) is strictly decreasing on (,∞), then f(x)/g(x) is strictly in-
creasing on (,∞) and p ∈ (/, /] by Lemma .().

If p ∈ (/, /], then it follows from Lemma .() and () together with (.)-(.)
that the function f ′

(x)/g ′
(x) is strictly increasing on (,∞). Then from the monotone

form of L’Hôpital’s rule [], Theorem ., and (.) together with (.) we know that the
function f ′

 (x)/g ′
(x) is strictly increasing on (,∞). Therefore, Qp(x) is strictly decreas-

ing or f(x)/g(x) is strictly increasing on (,∞) as follows from the monotone form of
L’Hôpital’s rule [], Theorem ., and (.) together with the monotonicity of the func-
tion f ′

 (x)/g ′
(x) on the interval (,∞).

Note that

lim
x→+

f(x)
g(x)

=
π


[
pλ(p) + μ(p)

(
 – λ(p)

)]
=


α(p)

, lim
x→∞

f(x)
g(x)

= . (.)

Therefore, the double inequality (.) holds for all x >  and p ∈ (/, /] with the best
possible parameters  and α(p) as follows from (.) and the monotonicity of f(x)/g(x)
on the interval (,∞).

() If Qp(x) = erf(x)/Bp(x) is strictly increasing on (,∞), then f(x)/g(x) is strictly de-
creasing on (,∞) and p ∈ [p∗

,∞) by Lemma .().
If p ∈ [p∗

,∞), then it follows from Lemma .() and () together with (.)-(.) that
the function f ′

(x)/g ′
(x) is strictly decreasing on (,∞). Therefore, Qp(x) is strictly increas-

ing or f(x)/g(x) is strictly decreasing on (,∞) as follows from the monotone form of
L’Hôpital’s rule and (.)-(.) together with the monotonicity of the function f ′

(x)/g ′
(x)

on the interval (,∞), and the double inequality (.) holds for all x >  and p ∈ [p∗
,∞)

with the best possible parameters  and α(p) as follows from (.) and the monotonicity
of f(x)/g(x) on the interval (,∞).

() If p ∈ (/, p∗
), then it follows from [], Lemma ., or [], Lemma , Lemma .()

and (), (.), (.), and (.)-(.) that there exists x ∈ (,∞) such that f ′
(x)/g ′

(x) is
strictly increasing on (, x) and strictly decreasing on (x,∞), and

Hf,g (∞) = –, (.)

Hf,g (∞) = –∞. (.)

From Lemma ., (.), (.), (.) and the piecewise monotonicity of f ′
(x)/g ′

(x) on the
interval (,∞) we known that there exists x ∈ (,∞) such that f ′

 (x)/g ′
(x) is strictly in-

creasing on (, x) and strictly decreasing on (x,∞). Then (.), (.) and Lemma .
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lead to the conclusion that there exists x ∈ (,∞) such that the function f(x)/g(x) =
B

p(x)/ erf(x) is strictly increasing on (, x) and strictly decreasing on (x,∞). We clearly
see that x is the unique solution of the equation

d
dx

( B
p(x)

erf(x)

)

= 

on the interval (,∞). Therefore, Qp(x) = erf(x)/Bp(x) = (f(x)/g(x))–/ is strictly decreas-
ing on (, x] and strictly increasing on [x,∞), and inequality (.) holds for all x >  as
follows easily from (.). �

Let p ∈ (/,∞) and α(p) =
√

(p – p – )/[pπ (p – )] = , then p = p = (π –
 +

√

√

π – π + )/[(π – )] = . . . . ∈ (/, p∗
). Numerical computa-

tions show that x = . . . . is the unique solution of the equation

d
dx

( B
p (x)

erf(x)

)

=  (.)

on the interval (,∞), β(p) = erf(x)/Bp (x) = . . . . . Therefore, Theorem .()
leads to Corollary . immediately.

Corollary . Let p = (π –  +
√


√

π – π + )/[(π – )], Bp(x) be de-
fined by (.) and x = . . . . be the unique solution of equation (.) on the interval
(,∞). Then the double inequality

. <
erf(x)
Bp (x)

≤ erf(x)
Bp (x)

<  (.)

holds for all x > .

Theorem . Let p = (π –  +
√


√

π – π + )/[(π – )], p ∈ (/,∞),
x > , λ(p), μ(p) and Bp(x) be, respectively, defined by (.) and (.). Then the inequality

erf(x) > Bp(x) (.)

holds for all x >  if and only if p ∈ (/, /], and inequality (.) is reversed if and only
if p ∈ [p,∞).

Proof Making use of the L’Hôspital rule and Lemma .() we have

lim
x→∞

erf(x) – B
p(x)

e–μ(p)x

= lim
x→∞

[

–
 erf(x)√
πμ(p)

e(μ(p)–)x

x
+

pλ(p)
μ(p)

e–(p–μ(p))x
+  – λ(p)

]

, (.)

p > μ(p),  < λ(p) ≤  +
√




= . . . . , (.)

 < μ(p) ≤  (/ < p ≤ /), (.)
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 < μ(p) <



(/ < p < ∞). (.)

It follows from (.)-(.) that

lim
x→∞

erf(x) – B
p(x)

e–μ(p)x =

⎧
⎨

⎩

 – λ(p) > , p ∈ ( 
 , 

 ],

–∞, p ∈ ( 
 ,∞).

(.)

If inequality (.) holds for all x > , then

lim
x→∞

erf(x) – B
p(x)

e–μ(p)x ≥ , (.)

and p ∈ (/, /] as follows easily from (.) and (.).
If p ∈ (/, /], then inequality (.) holds for all x >  as follows directly from Theo-

rem .().
If erf(x) < Bp(x) for all x > , then p ≥ p as follows easily from

lim
x→+

erf(x)
Bp(x)

= α(p) =

√
p – p – 

πp(p – )
≤ .

If p ∈ [p,∞), then we divide the proof into two cases.
Case . p ∈ [p∗

,∞). Then erf(x) < Bp(x) for all x >  as follows from Theorem .().
Case . p ∈ [p, p∗

). Then

α(p) =

√
p – p – 

πp(p – )
≤ α(p) = , (.)

and erf(x) < Bp(x) for all x >  as follows from Theorem .() and (.). �

Remark . Let p∗
 = ( + 

√
)/, and f(x) and g(x) be defined by (.). Then from

(.) and the proof of Theorem . we know that the function f(x)/g(x) is strictly increas-
ing on (,∞) if p ∈ (/, /] and strictly decreasing on (,∞) if p ∈ [p∗

,∞). Therefore,
we have

π


[
pλ(p) + μ(p)

(
 – λ(p)

)]
= lim

x→+

f(x)
g(x)

<
f(x)
g(x)

< lim
x→∞

f(x)
g(x)

= ∞

for all x ∈ (,∞) and p ∈ (/, /], and

 = lim
x→∞

f(x)
g(x)

<
f(x)
g(x)

< lim
x→+

f(x)
g(x)

=
π


[
pλ(p) + μ(p)

(
 – λ(p)

)]

for all x ∈ (,∞) and p ∈ [p∗
,∞).

Remark . can be restated as Theorem ..

Theorem . Let p∗
 = ( + 

√
)/ and Cp(x) be defined by Lemma .. Then the in-

equality

erf(x) <
xex

√
π

Cp(x) (.)
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holds for all x >  if p ∈ (/, /], and inequality (.) is reversed for all x >  if p ∈
[p∗

,∞).

Remark . Let p = (π –  +
√


√

π – π + )/[(π – )], p, q ∈ (/,∞),
x > , λ(p), μ(p) and Bp(x) be, respectively, defined by (.) and (.). Then it follows from
Lemma .() and Theorem . that the double inequality

√
 – λ(p)e–px –

[
 – λ(p)

]
e–μ(p)x

= Bp(x) < erf(x) < Bq(x) =
√

 – λ(q)e–qx –
[
 – λ(q)

]
e–μ(q)x

holds for all x >  with the best possible parameters p = / and q = p.

Corollary . Let p = (π –  +
√


√

π – π + )/[(π – )], and λ(p) and
μ(p) be defined by (.). Then the inequalities

√
 – e–x <

√

 –



e–x/ –



e–x < erf(x)

<
√

 – λ(p)e–px –
[
 – λ(p)

]
e–μ(p)x <

√
 – ex/π

hold for all x > .

Proof From (.) one has

λ

(



)

=



, μ

(



)

= . (.)

Note that p satisfies the identity

p
 – p – 

p(p – )
= π . (.)

It follows from Remark . and (.) that

√

 –



e–x/ –



e–x < erf(x) <
√

 – λ(p)e–px –
[
 – λ(p)

]
e–μ(p)x

for all x > . Therefore, it suffices to prove that




e–x/ +



e–x
< e–x

, (.)

λ(p)e–px +
[
 – λ(p)

]
e–μ(p)x > e–x/π (.)

for all x > .
Inequality (.) follows easily from




e–x/ +



e–x
– e–x

=



e–x/( – ex/).
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Making use of (.) and (.) together with the arithmetic-geometric mean inequality
one has

λ(p)e–px
+

[
 – λ(p)

]
e–μ(p)x

> e–[pλ(p)+μ(p)(–λ(p))]x

= e
– p(p–)

p
–p–

x

= e–x/π

for all x > . �

Remark . We clearly see that the results given in Theorem ., Remark ., and Corol-
lary . are improvements and refinements of inequality (.).

Let p∗
 = ( + 

√
)/ and α(p) be defined by (.). Then

α

(



)

=
√


π

= . . . . , α

(



)

=
√


π

= . . . . , (.)

α(∞) =
√


π

= . . . . , α() =
√


π

= . . . . ,

α
(
p∗


)

=
√


π

= . . . . . (.)

Corollary . Let p = /, / in Theorem .() and p = p∗
, ,∞ in Theorem .(). Then

Lemma .() and () together with (.) and (.) leads to

√

 –



e–x/ –



e–x/

<
√

 –



e–x/ –



e–x < erf(x)

<
√


π

√

 –



e–x/ –



e–x

<
√


π

√

 –



e–x/ –



e–x/, (.)

√

π

√
 – e–x/

<
√


π

√

 –



e–x –




e–x/

<
√


π

√

 –
 – 

√



e–(+

√
)x/ –

 + 
√




e–(–
√

)x/

< erf(x) <

√

 –
 – 

√



e–(+

√
)x/ –

 + 
√




e–(–
√

)x/

<
√

 –



e–x –




e–x/

<
√

 – e–x/. (.)
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Remark . From inequality (.) we clearly see that the double inequalities

 <
erf(x) – B/(x)

erf(x)
<

√

π

–  = . . . . ,

 <
erf(x) – B/(x)

erf(x)
<

√

π

–  = . . . . ,

hold for all x > .

Remark . Let p = (π –  +
√


√

π – π + )/[(π – )], p∗
 = ( +


√

)/, Bp(x) be defined by (.) and x = . . . . be the unique solution of equation
(.) on the interval (,∞), β(p) = erf(x)/Bp (x) = . . . . . Then Corollary . and
(.) lead to

–. . . . =  –


β(p)
<

erf(x) – Bp (x)
erf(x)

≤ ,

–. . . . =  –
√

π


<
erf(x) – Bp∗


(x)

erf(x)
< ,

–. . . . =  –
√

π


<

erf(x) – B(x)
erf(x)

< ,

–. . . . =  –
√

π


<

erf(x) –
√

 – e–x/

erf(x)
< 

for all x > .

Corollary . Let p = (/)+, /, / and p = ,∞ in Theorem .. Then it follows from
Lemma .() that the inequalities

x√
π

e–x/ <
x√
π

e–x + e–x/


< erf(x) <

x√
π

e–x/ + 


<
x√
π

e–x/ + ex/


<

x√
π

e–x/ + ex



hold for all x > .

Remark . From the identities

e–x + e–x/


– e–x/

=



e–x(
ex/ – 

)(ex/ + ex/ + ex/ + ex/ + 
)

and

e–x/ + 


–
e–x + 



= –
e–x


(
ex/ – 

)(ex/ + ex/ + ex/ + 
)
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we know that the results given in Theorem . or Corollary . are better than that
in (.).
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