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Abstract
In this paper, we obtain an extended Halanay inequality with unbounded coefficient
functions on time scales, which extends an earlier result in Wen et al. (J. Math. Anal.
Appl. 347:169-178, 2008). Two illustrative examples are also given.
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1 Introduction and preliminaries
As is well known, Halanay-type differential inequalities have been very useful in the sta-
bility analysis of time-delay systems and these have led to some interesting new stability
conditions (see [–] and the references therein).

In [], Halanay proved the following inequality.

Lemma . (Halanay’s inequality) If

x′(t) ≤ –αx(t) + β sup
s∈[t–τ ,t]

x(s), for t ≥ t, τ > , (.)

and α > β > , then there exist γ >  and K >  such that

x(t) ≤ Ke–γ (t–t), for t ≥ t. (.)

In [], Baker and Tang obtained the following Halanay-type inequality with unbounded
coefficient functions.

Lemma . (see []) Let x(t) > , t ∈ (–∞, +∞), and

dx(t)
dt

≤ –a(t)x(t) + b(t) sup
t–τ (t)≤s≤t

x(s), t > t, (.)

x(t) =
∣
∣ϕ(t)

∣
∣, t ≤ t, (.)
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where ϕ(t) is bounded and continuous for t ≤ t, and a(t) ≥ , b(t) ≥  for t ∈ [t,∞), τ (t) ≥
 and t – τ (t) → ∞ as t → ∞. If there exists σ >  such that

–a(t) + b(t) ≤ –σ <  for t ≥ t, (.)

then

(i) x(t) ≤ ‖ϕ‖(–∞,t], t ≥ t and (ii) x(t) →  as t → ∞, (.)

where ‖ϕ‖(–∞,t] = supt∈(–∞,t] |ϕ(t)| < ∞.

In [], Wen et al. obtained an extension of Lemma ..
In this paper, we extend the main results of [] to time scale. As an application, we con-

sider the stability of the following delay dynamic equation:

{

x	(t) = –a(t)xσ (t) + b(t)x(t – τ (t)) + c(t), t ∈ [t, +∞)T,
x(s) = |ϕ(s)| for s ∈ (–∞, t]T,

(.)

where ϕ(s) is bounded rd-continuous for s ∈ (–∞, t]T and τ (t), a(t), b(t), c(t) are nonneg-
ative, rd-continuous functions for t ∈ [t,∞)T and c(t) is bounded. We prove that the zero
solution of the delay difference equation

	x(n) = –(n + )x(n + ) +
n

n + 
x(n – ), n ≥ , (.)

is stable.
For completeness, we introduce the following concepts related to the notions of time

scales. We refer to [] for additional details concerning the calculus on time scales.

Definition . (see []) A function h : T → R is said to be regressive provided  +
μ(t)h(t) 
=  for all t ∈ T

κ , where μ(t) = σ (t) – t. The set of all regressive rd-continuous
functions ϕ : T → R is denoted by R while the set R+ is given by R+ = {ϕ ∈R :  +
μ(t)ϕ(t) >  for all t ∈ T}. If ϕ ∈R, the exponential function is defined by

eϕ(t, s) = exp

(∫ t

s
ξμ(r)

(

ϕ(r)
)	r

)

, for t ∈ T, s ∈ T
κ , (.)

where ξμ(s) is the cylinder transformation given by

ξμ(r)
(

ϕ(r)
)

:=

⎧

⎨

⎩


μ(r) Log( + μ(r)ϕ(r)), μ(r) > ,

ϕ(r), μ(r) = ,

and some properties of the exponential function are given in the following lemma.

Lemma . (see []) Let ϕ ∈R, Then
(i) e(s, t) ≡ , eϕ(t, t) ≡  and eϕ(σ (t), s) = ( + μ(t)ϕ(t))eϕ(t, s);

(ii) 
eϕ (t,s) = e�ϕ(t, s), where �ϕ(t) = – ϕ(t)

+μ(t)ϕ(t) ;
(iii) ( 

eϕ (t,s) )	 = – ϕ(t)
eϕ (σ (t),s) ;
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(iv) [eϕ(c, t)]
 = –ϕ(t)eϕ(c,σ (t)), where c ∈ T;
(v) ep(t, s) = 

ep(s,t) = e�p(s, t).

Lemma . (see []) For a nonnegative ϕ with –ϕ ∈R+, we have the inequalities

 –
∫ t

s
ϕ(u)
u ≤ e–ϕ(t, s) ≤ exp

{

–
∫ t

s
ϕ(u)
u

}

for all t ≥ s. (.)

If ϕ is rd-continuous and nonnegative, then

 +
∫ t

s
ϕ(u)
u ≤ eϕ(t, s) ≤ exp

{∫ t

s
ϕ(u)
u

}

for all t ≥ s. (.)

Remark . If ϕ ∈ R+ and ϕ(r) >  for all r ∈ [s, t]T, then

eϕ(t, r) ≤ eϕ(t, s) and eϕ(a, b) <  for s ≤ a < b ≤ t. (.)

Proof By ϕ(r) > , ϕ ∈R+ and Lemma .(iv) we have [eϕ(c, t)]
 = –ϕ(t)eϕ(c,σ (t)) < , so

eϕ(t, r) ≤ eϕ(t, s).

Since a < b, from the above result, we have

eϕ(a, b) < eϕ(a, a) = . �

2 Main results
Throughout this paper, we assume that the following conditions hold:

(H) Let x(t) be a nonnegative right-dense function satisfying

⎧

⎪⎨

⎪⎩

x	(t) ≤ –a(t)x(t) + b(t) supt–τ (t)≤s≤t x(s) + c(t)
+ d(t)

∫ ∞
 K(t, s)x(t – s)
s, t ∈ [t,∞),

x(t) = |ϕ(t)|, t ∈ (–∞, t],

where ϕ(t) is bounded rd-continuous for t ∈ (–∞, t]T and supt≤t |ϕ(t)| = M.
(H) a(t), b(t), c(t), τ (t) are nonnegative, rd-continuous functions for t ∈ [t,∞)T and c(t)

is bounded, such that supt≥t c(t) = c, limt→∞(t – τ (t)) = +∞.
(H) There exists δ >  such that a(t) – b(t) – d(t)

∫ ∞
 K(t, s)	s > δ > , for t ∈ [t,∞)T,

where the delay kernel K(t, s) is a nonnegative, rd-continuous for (t, s) ∈ T × [,∞)
and satisfies ∀t ∈ T,

∫ ∞
 K(t, s)	s < ∞.

Theorem . Assume that (H)-(H) and –a(t) ∈R+ hold, then we have
(i)

x(t) ≤ c
δ

+ M, t ∈ [t, +∞). (.)

If we assume further that d(t) =  in (H), (H) and there exists  < κ <  such that

κa(t) – b(t) >  for t ∈ [t, +∞)T, (.)

then we have
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(ii) for any given ε > , there exists t̃ = t̃(M, ε) > t, such that

x(t) ≤ c
δ

+ ε, t ∈ [̃t,∞). (.)

Proof We now consider the following two cases successively.
Case . c > .
Proof of Theorem .(i).
For any ε > , we have from (H)

∀t ≤ t, x(t) =
∣
∣ϕ(t)

∣
∣ ≤ sup

t≤t

∣
∣ϕ(t)

∣
∣ = M <

c
δ

+ εM, (.)

from this we shall deduce that

∀t ≥ t, x(t) <
c
δ

+ εM. (.)

To prove (.), let t = sup {t|x(s) ≤ c
δ

+ εM, s ∈ [t, t]T} > t, we will show t = ∞.
Suppose t < ∞. Clearly we have x(t) ≤ c

δ
+ εM.

In fact, suppose that x(t) ≤ c
δ

+ εM fails, then we have x(t) > c
δ

+ εM.
If t is left-dense, there is {tn} satisfying: tn < t, tn → t (n → ∞), and x(tn) ≤ c

δ
+ εM, we

have x(t) = limn→∞ x(tn) ≤ c
δ

+ εM, which contradicts x(t) > c
δ

+ εM.
If t is left-scattered, ρ(t) < t and x(ρ(t)) ≤ c

δ
+ εM; x(t) > c

δ
+ εM, then we have sup

{t|x(s) < c
δ

+ εM, s ∈ [t, t]} = ρ(t) < t, which contradicts the definition of t.
Therefore we can suppose t < ∞, x(t) ≤ c

δ
+ εM. We will discuss two cases:

Case .. Suppose x(t) = c
δ

+ εM, t > t,

∀t ∈ [t, t)T, x(t) ≤ c
δ

+ εM, x(t) =
c
δ

+ εM. (.)

Clearly we have x	(t) ≥ . In fact, suppose that x	(t) ≥  fails, then we have x	(t) < .
If t is right-dense, ∀s > t, from x	(t) = lims→t+


x(t)–x(s)

t–s < , we get x(s) < x(t) = c
δ

+ εM,
which contradicts the definition of t.

If t is right-scattered, from x	(t) = x(σ (t))–x(t)
μ(t) < , we get x(σ (t)) < x(t) = c

δ
+ εM,

which contradicts the definition of t.
We have from (.), (H), and (H)

x	(t)
(H)≤ –a(t)x(t) + b(t) sup

t–τ (t)≤s≤t

x(s) + c(t) + d(t)
∫ ∞


K(t, s)x(t – s)	s

(.)= –a(t)
(

c
δ

+ εM
)

+ b(t) sup
t–τ (t)≤s≤t

x(s) + c(t) + d(t)
∫ ∞


K(t, s)x(t – s)	s

(.)≤ –
(

a(t) – b(t) + d(t)
∫ ∞


K(t, s)	s

)(
c
δ

+ εM
)

+ c

(H)
< –δ

(
c
δ

+ εM
)

+ c = –δεM < , (.)

which contradicts x	(t) ≥ .
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Case .. Suppose x(t) < c
δ

+ εM. In this case, t must be right-scattered, for otherwise if
t is right-dense, there exists ε sufficiently small so that x(t) < c

δ
+ εM, for t ∈ [t, t + ε]T.

Therefore, x(t) ≤ c
δ

+ εM, for t ∈ [t, t + ε]T. This contradicts the definition of t. Hence,
since t is right-scattered, we have

x
(

σ (t)
)

>
c
δ

+ εM and x(t) ≤ c
δ

+ εM for all t ≤ t < σ (t). (.)

We have from (.) and (H)

x(σ (t)) – x(t)
μ(t)

= x	(t)

(H)≤ –a(t)x(t) + b(t) sup
t–τ (t)≤s≤t

x(s) + c(t)

+ d(t)
∫ ∞


K(t, s)x(t – s)	s

(.)
< –a(t)x(t) +

(

b(t) + d(t)
∫ ∞


K(t, s)	s

)(
c
δ

+ εM
)

+ c. (.)

By (.), (.), (H), and  – μ(t)a(t) > , t ∈ T, we get

c
δ

+ εM < x
(

σ (t)
)

(.)
<

(

 – μ(t)a(t)
)

x(t) + μ(t)
(

b(t) + d(t)
∫ ∞


K(t, s)	s

)(
c
δ

+ εM
)

+ μ(t)c

(.)
<

(

 – μ(t)a(t) + μ(t)b(t) + μ(t)d(t)
∫ ∞


K(t, s)	s

)(
c
δ

+ εM
)

+ μ(t)c

(H)≤ (

 – δμ(t)
)
(

c
δ

+ εM
)

+ μ(t)c =
c
δ

+ εM – δεMμ(t), (.)

which leads to a contradiction.
Hence the inequality (.) must hold.
Since ε >  is arbitrary, we let ε → + and obtain

∀t ≥ t, x(t) ≤ c
δ

+ M. (.)

Proof of Theorem .(ii).
If M = , it is evident from (.) that (.) holds. Now we assume M > . Let

lim supt→∞ x(t) = α, then  ≤ α ≤ c
δ

+ M. Now we prove that α ≤ c
δ
.

Suppose this is not true, i.e. α > c
δ
, then we can choose ε >  such that α = c

δ
+ ε.

Since τ (t) ≥ , and limt→∞(t – τ (t)) = +∞, we have lim supt→∞ supt–τ (t)≤s≤t x(s) = α.
Clearly, there exists a sufficiently large T >  and T is fixed, such that

λ := κ + ( – κ) exp(–δT) < . (.)
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Taking θ :  < θ < –λ
+λ

ε, using the properties of the superior limits we see that there
exists a sufficiently large t∗ > t, such that

⎧

⎪⎨

⎪⎩

x(t∗) > α – θ ,
x(t) < α + θ , t ∈ [t∗ – T , t∗]
supt–τ (t)≤s≤t x(s) ≤ α + θ , t ∈ [t∗ – T , t∗].

(.)

On the other hand, it follows from (H) and (H) that

x	(t)
(H)≤ –a(t)x(t) + b(t) sup

t–τ (t)≤s≤t
x(s) + c(t)

(H)≤ –a(t)x(t) + b(t) sup
t–τ (t)≤s≤t

x(s) +
a(t) – b(t)

δ
c̄

= –a(t)
(

x(t) –
c
δ

)

+ b(t) sup
t–τ (t)≤s≤t

(

x(s) –
c
δ

)

. (.)

Denote y(t) = x(t) – c
δ
, and (.) implies that

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

y(t∗) = x(t∗) – c
δ

> α – θ – c̄
δ

= ε – θ ,
y(t) = x(t) – c

δ
≤ α + θ – c

δ
= ε + θ , t ∈ [t∗ – T , t∗]

supt–τ (t)≤s≤t y(s) = supt–τ (t)≤s≤t(x(s) – c
δ
) ≤ α + θ – c

δ
= ε + θ ,

t ∈ [t∗ – T , t∗].

(.)

By (.), (.), (.), and y(t) = x(t) – c
δ
, we have

y	(t)
(.)≤ –a(t)y(t) + b(t) sup

t–τ (t)≤s≤t
y(s)

(.)≤ –a(t)y(t) + (ε + θ )b(t)

(.)
< –a(t)y(t) + κ(ε + θ )a(t), (.)

which implies

(

y(t) – κ(ε + θ )
)	 ≤ –a(t)

(

y(t) – κ(ε + θ )
)

; (.)

then we have

(
y(t) – κ(ε + θ )

e–a(t, t)

)	
=

(y(t) – κ(ε + θ ))	 + a(t)(y(t) – κ(ε + θ ))
e–a(σ (t), t)

(.)≤ , (.)

where we used the property of the exponential function: if p ∈ R+ and t ∈ T, then
ep(t, t) >  for all t ∈ T.

Integrating both sides of (.) from t∗ – T to t∗ and by (.) we obtain

( – κ)(ε + θ ) – θ = ε – θ – κ(ε + θ )

< y
(

t∗) – κ(ε + θ )
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(Lemma .(v))≤ e–a
(

t∗, t∗ – T
)[

y
(

t∗ – T
)

– κ(ε + θ )
]

(.), (.)≤ (

ε + θ – κ(ε + θ )
)

exp

(

–
∫ t∗

t∗–T
a(u)
u

)

< ( – κ)(ε + θ ) exp(–δT), (.)

where we used a(t) ≥ a(t) – b(t) ≥ δ >  in the last step.
By (.), we have

θ ≥  – [κ + ( – κ) exp(–δT)]
 + [κ + ( – κ) exp(–δT)]

ε =
 – λ

 + λ
ε.

This contradicts the choice of θ , so we get α ≤ c
δ
. From the definition of the superior limits

we obtain (.).
Case . c = .
If only we replace c in the proof of Case  by c + ε for any given ε > , then let ε → +,

we find that (.) and (.) hold.
A combination of Cases  and  completes the proof of Theorem .. �

Remark . When M = , from (.), (H) must have the form that there exists δ >  such
that

a(t) – b(t) – d(t)
∫ ∞


K(t, s)	s > δ > , for t ∈ [t,∞)T.

When M > , (H) may have the form that there exists δ >  such that

a(t) – b(t) – d(t)
∫ ∞


K(t, s)	s ≥ δ > , for t ∈ [t,∞)T.

Similarly, in [] when G = , (.) must have the form that

α(t) + β(t) < –σ <  for t ≥ t;

when G > , (.) may have the form that

α(t) + β(t) ≤ –σ <  for t ≥ t.

Theorem . can be regarded as the extension of the main theorem of [], Theorem .
of [].

3 Applications and examples
Consider the delay dynamic equation

⎧

⎪⎨

⎪⎩

x	(t) = –a(t)xσ (t) + b(t)x(t – τ (t)) + c(t) + d(t)
∫ ∞

 K(t, s)x(t – s)	s,
t ∈ [t, +∞)T,

x(t) = |ϕ(t)| for t ∈ (–∞, t]T,
(.)
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where ϕ(t) is bounded rd-continuous for s ∈ (–∞, t]T and τ (t), a(t), b(t), c(t), d(t) are
nonnegative, rd-continuous functions for t ∈ [t,∞)T and c(t) is bounded,

sup
t≤t

∣
∣ϕ(t)

∣
∣ = M, sup

t≥t
c(t) = c, lim

t→∞
(

t – τ (t)
)

= +∞.

Assume there exists δ >  such that

a(t) – b(t) – d(t)
∫ ∞


K(t, s)	s > δ >  for t ∈ [t,∞)T, (.)

where the delay kernel K(t, s) is a nonnegative, rd-continuous for (t, s) ∈ [,∞)T× [,∞)T.
From (.), we have

x(t) = x(t)e�a(t, t)

+
∫ t

t

e�a(t, s)
[

b(s)x
(

s – τ (s)
)

+ c(s) + d(s)
∫ ∞


K(s, v)x(s – v)	v

]

	s. (.)

Let the functions y(t) be defined as follows: y(t) = |x(t)| for t ∈ (–∞, t]T, and

y(t) =
∣
∣x(t)

∣
∣e�a(t, t)

+
∫ t

t

e�a(t, s)
[

b(s)
∣
∣x

(

s – τ (s)
)∣
∣ + c(s) + d(s)

∫ ∞


K(s, v)

∣
∣x(s – v)

∣
∣	v

]

	s,

for t > t. Then we have |x(t)| ≤ y(t), for all t ∈ (–∞, +∞)T.
By [], Theorem ., we get

y	(t) = � a(t)
{
∣
∣x(t)

∣
∣e�a(t, t) +

∫ t

t

e�a(t, s)
[

b(s)
∣
∣x

(

s – τ (s)
)∣
∣ + c(s)

+ d(s)
∫ ∞


K(s, v)

∣
∣x(s – v)

∣
∣	v

]

	s
}

+ e�a
(

σ (t), t
)
{

b(t)
∣
∣x

(

t – τ (t)
)∣
∣ + c(t) + d(t)

∫ ∞


K(t, v)

∣
∣x(t – v)

∣
∣	v

}

≤ 
 + μ(t)a(t)

{

–a(t)y(t) + b(t) sup
t–τ (t)≤θ≤t

y(θ ) + c(t)

+ d(t)
∫ ∞


K(t, v)y(t – v)	v

}

, t ∈ [t,∞)T. (.)

Example  Let T = R
+, then system (H) is expressed as

⎧

⎪⎨

⎪⎩

x′(t) ≤ –a(t)x(t) + b(t) supt–τ (t)≤s≤t x(s) + c(t)
+ d(t)

∫ ∞
 K(t, s)x(t – s) ds, t ≥ ,

x(t) = |ϕ(t)|, t ≤ ,
(.)

where ϕ(t) is bounded continuous for t ∈ (–∞, ] and supt≤ |ϕ(t)| = M.
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We choose some explicit nonnegative, continuous functions for a(t), b(t), c(t), d(t), τ (t),
K(t, s). Let

a(t) =
(t + )

t + 
, b(t) =

t + t
e(t + )

, c(t) =
(

t + 
t + 

)t

, d(t) =
t

e( – e–t )
√

π
,

K(t, s) = ( – cos ts)e–s
, (t, s) ∈ [,∞) × [,∞), τ (t) < t and lim

t→∞
(

t – τ (t)
)

= +∞.

Obviously, a(t), b(t), d(t) are unbounded for t ≥  and supt≥ c(t) = c = e.
() ∀t ∈ [,∞), g(t) :=

∫ ∞
 K(t, s) ds =

∫ ∞
 ( – cos ts)e–s ds, then since ∀(t, s) ∈ [,∞) ×

[,∞),

∣
∣K(t, s)

∣
∣ ≤ e–s

and
∣
∣
∣
∣

∂K(t, s)
∂t

∣
∣
∣
∣

=
∣
∣se–s

sin ts
∣
∣ ≤ se–s

,

∫ ∞


e–s

ds =
√

π


= g() and

∫ ∞


se–s

ds = ,

we have g(t) =
∫ ∞

 K(t, s) ds is convergent for t ∈ [,∞) and
∫ ∞

 Kt(t, s) ds is uniformly con-
vergent for t ∈ [,∞).

So

g ′(t) =
∫ ∞


Kt(t, s) ds =

∫ ∞


se–s

sin ts ds = –tg(t) + 
√

π t.

Rearrange terms and obtain

(g(t) –
√

π )′

g(t) –
√

π
= –t. (.)

Solving (.) for g(t), we have

g(t) =
∫ ∞


K(t, s) ds =

√
π


(

 – e–t)
<

√
π .

() There exists δ = 
 > , such that

a(t) – b(t) =
(t + )

t + 
–

t + t
e(t + )

≥ 


= δ > , t ∈ [,∞).

By (i) of Theorem ., we have |x(t)| ≤ c
δ

+ M = e + M, t ≥ .
Take κ = 

 ∈ (, ), it is easy to see that

κa(t) – b(t) =

e

· (t + )

t + 
≥ 


> , t ∈ [,∞).

By (ii) of Theorem ., for any given ε > , there exists t̃ = t̃(M, ε) > , such that |x(t)| ≤
c
δ

+ ε = e + ε, t ≥ t̃ > .
Taking c(t) ≡ , we have |x(t)| ≤ ε, t ≥ t̃ > . So the zero solution of the system (.) is

stable.
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Example  Consider the delay dynamic equation

{

x	(t) = –a(t)xσ (t) + b(t)x(t – τ (t)) + c(t), t ∈ [t, +∞)T,
x(t) = |ϕ(t)| for t ∈ (–∞, t]T,

(.)

where ϕ(t) is bounded, rd-continuous for t ≤ t and supt≤t |ϕ(t)| = M, a(t), b(t), c(t), τ (t)
are nonnegative, rd-continuous functions for t ∈ [t,∞)T and supt≥t c(t) = c.

If there exists δ >  such that

a(t) – b(t) ≥ δ >  for t ≥ t. (.)

Similar to Example , we get

y	(t) ≤ 
 + μ(t)a(t)

{

–a(t)y(t) + b(t) sup
t–τ (t)≤s≤t

y(s) + c(t)
}

, t ∈ [t, +∞)T.

In particular, we take T = N, (.) reduces to

	x(n) = –a(n)x(n + ) + b(n)x(n – ) + c(n), n ≥ .

Let a(n) = (n + ), b(n) = n

n+ , c(n) = n
n√n! , τ (n) = .

Obviously, a(n), b(n) are unbounded for n ∈N and supn∈N c(n) = limn→∞ n
n√n! = c = e.

() ∀n ≥ , a(n)–b(n)
+a(t) = (n+)– n

n+
n+ = n+n+

(n+)(n+) ≥ 
 = δ.

() Take κ = . ∈ (, ), it is easy to see that

κa(n) – b(n)
 + a(n)

> .

By (ii) of Theorem ., for any given ε > , there exists t̃ = t̃(M, ε) > , such that |x(t)| ≤
c
δ

+ ε = e
 + ε, t ≥ t̃ > .

Taking c(n) ≡ , we have |x(t)| ≤ ε, t ≥ t̃ > . So the zero solution of the system (.) is
stable.
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