RESEARCH Open Access

An extended Halanay inequality with unbounded coefficient functions on time scales

Boqun Ou¹, Quanwen Lin^{2*}, Feifei Du³ and Baoguo Jia³

*Correspondence: linquanwen@126.com 2Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming, 525000, China Full list of author information is available at the end of the article

Abstract

In this paper, we obtain an extended Halanay inequality with unbounded coefficient functions on time scales, which extends an earlier result in Wen *et al.* (J. Math. Anal. Appl. 347:169-178, 2008). Two illustrative examples are also given.

Keywords: time scales; delay dynamic equation; coefficient functions; inequality

1 Introduction and preliminaries

As is well known, Halanay-type differential inequalities have been very useful in the stability analysis of time-delay systems and these have led to some interesting new stability conditions (see [1-4] and the references therein).

In [3], Halanay proved the following inequality.

Lemma 1.1 (Halanay's inequality) *If*

$$x'(t) \le -\alpha x(t) + \beta \sup_{s \in [t-\tau, t]} x(s), \quad \text{for } t \ge t_0, \tau > 0,$$
 (1.1)

and $\alpha > \beta > 0$, then there exist $\gamma > 0$ and K > 0 such that

$$x(t) \le Ke^{-\gamma(t-t_0)}, \quad \text{for } t \ge t_0. \tag{1.2}$$

In [5], Baker and Tang obtained the following Halanay-type inequality with unbounded coefficient functions.

Lemma 1.2 (see [5]) *Let* $x(t) > 0, t \in (-\infty, +\infty)$, *and*

$$\frac{dx(t)}{dt} \le -a(t)x(t) + b(t) \sup_{t \to \tau(t) \le s \le t} x(s), \quad t > t_0, \tag{1.3}$$

$$x(t) = |\varphi(t)|, \quad t \le t_0, \tag{1.4}$$

where $\varphi(t)$ is bounded and continuous for $t \le t_0$, and $a(t) \ge 0$, $b(t) \ge 0$ for $t \in [t_0, \infty)$, $\tau(t) \ge 0$ 0 and $t - \tau(t) \to \infty$ as $t \to \infty$. If there exists $\sigma > 0$ such that

$$-a(t) + b(t) \le -\sigma < 0 \quad \text{for } t \ge t_0, \tag{1.5}$$

then

(i)
$$x(t) \le \|\varphi\|^{(-\infty,t_0]}$$
, $t \ge t_0$ and (ii) $x(t) \to 0$ as $t \to \infty$, (1.6)

where $\|\varphi\|^{(-\infty,t_0]} = \sup_{t \in (-\infty,t_0]} |\varphi(t)| < \infty$.

In [1], Wen et al. obtained an extension of Lemma 1.2.

In this paper, we extend the main results of [5] to time scale. As an application, we consider the stability of the following delay dynamic equation:

$$\begin{cases} x^{\triangle}(t) = -a(t)x^{\sigma}(t) + b(t)x(t - \tau(t)) + c(t), & t \in [t_0, +\infty)_{\mathbb{T}}, \\ x(s) = |\varphi(s)| & \text{for } s \in (-\infty, t_0]_{\mathbb{T}}, \end{cases}$$

$$(1.7)$$

where $\varphi(s)$ is bounded rd-continuous for $s \in (-\infty, t_0]_{\mathbb{T}}$ and $\tau(t)$, a(t), b(t), c(t) are nonnegative, rd-continuous functions for $t \in [t_0, \infty)_{\mathbb{T}}$ and c(t) is bounded. We prove that the zero solution of the delay difference equation

$$\Delta x(n) = -2(n+1)x(n+1) + \frac{n^2}{2n+1}x(n-2), \quad n \ge 0,$$
(1.8)

is stable.

For completeness, we introduce the following concepts related to the notions of time scales. We refer to [6] for additional details concerning the calculus on time scales.

Definition 1.1 (see [6]) A function $h: \mathbb{T} \to \mathbb{R}$ is said to be regressive provided 1 + $\mu(t)h(t) \neq 0$ for all $t \in \mathbb{T}^{\kappa}$, where $\mu(t) = \sigma(t) - t$. The set of all regressive rd-continuous functions $\varphi: \mathbb{T} \to \mathbb{R}$ is denoted by \mathfrak{R} while the set \mathfrak{R}^+ is given by $\mathfrak{R}^+ = \{ \varphi \in \mathfrak{R} : 1 + 1 \}$ $\mu(t)\varphi(t) > 0$ for all $t \in \mathbb{T}$. If $\varphi \in \mathfrak{R}$, the exponential function is defined by

$$e_{\varphi}(t,s) = \exp\left(\int_{s}^{t} \xi_{\mu(r)}(\varphi(r))\Delta r\right), \quad \text{for } t \in \mathbb{T}, s \in \mathbb{T}^{\kappa},$$
 (1.9)

where $\xi_{\mu(s)}$ is the cylinder transformation given by

$$\xi_{\mu(r)}(\varphi(r)) := \begin{cases} \frac{1}{\mu(r)} \operatorname{Log}(1 + \mu(r)\varphi(r)), & \mu(r) > 0, \\ \varphi(r), & \mu(r) = 0, \end{cases}$$

and some properties of the exponential function are given in the following lemma.

Lemma 1.3 (see [7]) *Let* $\varphi \in \Re$, *Then*

(i)
$$e_0(s,t) \equiv 1, e_{\varphi}(t,t) \equiv 1 \text{ and } e_{\varphi}(\sigma(t),s) = (1 + \mu(t)\varphi(t))e_{\varphi}(t,s);$$

(iii)
$$\left(\frac{1}{e_{\varphi}(t,s)}\right)^{\triangle} = -\frac{\varphi(t)}{e_{\varphi}(\sigma(t),s)};$$

(iv)
$$[e_{\varphi}(c,t)]^{\Delta} = -\varphi(t)e_{\varphi}(c,\sigma(t))$$
, where $c \in \mathbb{T}$;
(v) $e_p(t,s) = \frac{1}{e_n(s,t)} = e_{\ominus p}(s,t)$.

Lemma 1.4 (see [8]) *For a nonnegative* φ *with* $-\varphi \in \Re^+$, *we have the inequalities*

$$1 - \int_{s}^{t} \varphi(u) \Delta u \le e_{-\varphi}(t, s) \le \exp\left\{-\int_{s}^{t} \varphi(u) \Delta u\right\} \quad \text{for all } t \ge s. \tag{1.10}$$

If φ is rd-continuous and nonnegative, then

$$1 + \int_{s}^{t} \varphi(u) \Delta u \le e_{\varphi}(t, s) \le \exp\left\{ \int_{s}^{t} \varphi(u) \Delta u \right\} \quad \text{for all } t \ge s.$$
 (1.11)

Remark 1.1 If $\varphi \in \mathfrak{R}^+$ and $\varphi(r) > 0$ for all $r \in [s, t]_{\mathbb{T}}$, then

$$e_{\varphi}(t,r) \le e_{\varphi}(t,s)$$
 and $e_{\varphi}(a,b) < 1$ for $s \le a < b \le t$. (1.12)

Proof By $\varphi(r) > 0$, $\varphi \in \Re^+$ and Lemma 1.3(iv) we have $[e_{\varphi}(c,t)]^{\Delta} = -\varphi(t)e_{\varphi}(c,\sigma(t)) < 0$, so

$$e_{\omega}(t,r) < e_{\omega}(t,s).$$

Since a < b, from the above result, we have

$$e_{\omega}(a,b) < e_{\omega}(a,a) = 1.$$

2 Main results

Throughout this paper, we assume that the following conditions hold:

 (H_1) Let x(t) be a nonnegative right-dense function satisfying

$$\begin{cases} x^{\triangle}(t) \leq -a(t)x(t) + b(t) \sup_{t-\tau(t) \leq s \leq t} x(s) + c(t) \\ + d(t) \int_0^{\infty} K(t,s)x(t-s)\Delta s, \quad t \in [t_0,\infty), \\ x(t) = |\varphi(t)|, \quad t \in (-\infty,t_0], \end{cases}$$

where $\varphi(t)$ is bounded rd-continuous for $t \in (-\infty, t_0]_{\mathbb{T}}$ and $\sup_{t \le t_0} |\varphi(t)| = M$.

- (H₂) a(t), b(t), c(t), $\tau(t)$ are nonnegative, rd-continuous functions for $t \in [t_0, \infty)_{\mathbb{T}}$ and c(t) is bounded, such that $\sup_{t \ge t_0} c(t) = \overline{c}$, $\lim_{t \to \infty} (t \tau(t)) = +\infty$.
- (H₃) There exists $\delta > 0$ such that $a(t) b(t) d(t) \int_0^\infty K(t,s) \triangle s > \delta > 0$, for $t \in [t_0,\infty)_{\mathbb{T}}$, where the delay kernel K(t,s) is a nonnegative, rd-continuous for $(t,s) \in \mathbb{T} \times [0,\infty)$ and satisfies $\forall t \in \mathbb{T}, \int_0^\infty K(t,s) \triangle s < \infty$.

Theorem 2.1 Assume that (H_1) - (H_3) and $-a(t) \in \Re^+$ hold, then we have

(i)
$$x(t) \le \frac{\overline{c}}{\delta} + M, \quad t \in [t_0, +\infty). \tag{2.1}$$

If we assume further that d(t) = 0 in (H_1) , (H_3) and there exists $0 < \kappa < 1$ such that

$$\kappa a(t) - b(t) > 0 \quad \text{for } t \in [t_0, +\infty)_{\mathbb{T}}, \tag{2.2}$$

then we have

(ii) for any given $\epsilon > 0$, there exists $\widetilde{t} = \widetilde{t}(M, \epsilon) > t_0$, such that

$$x(t) \le \frac{\overline{c}}{\delta} + \epsilon, \quad t \in [\widetilde{t}, \infty).$$
 (2.3)

Proof We now consider the following two cases successively.

Case 1. $\overline{c} > 0$.

Proof of Theorem 2.1(i).

For any $\varepsilon > 1$, we have from (H_1)

$$\forall t \le t_0, \quad x(t) = \left| \varphi(t) \right| \le \sup_{t \le t_0} \left| \varphi(t) \right| = M < \frac{\overline{c}}{\delta} + \varepsilon M, \tag{2.4}$$

from this we shall deduce that

$$\forall t \ge t_0, \quad x(t) < \frac{\overline{c}}{\delta} + \varepsilon M.$$
 (2.5)

To prove (2.5), let $t_1 = \sup \{t | x(s) \le \frac{\overline{c}}{\delta} + \varepsilon M, s \in [t_0, t]_{\mathbb{T}}\} > t_0$, we will show $t_1 = \infty$.

Suppose $t_1 < \infty$. Clearly we have $x(t_1) \leq \frac{\overline{c}}{\delta} + \varepsilon M$.

In fact, suppose that $x(t_1) \leq \frac{\overline{c}}{\delta} + \varepsilon M$ fails, then we have $x(t_1) > \frac{\overline{c}}{\delta} + \varepsilon M$.

If t_1 is left-dense, there is $\{t_n\}$ satisfying: $t_n < t_1, t_n \to t_1 \ (n \to \infty)$, and $x(t_n) \le \frac{\bar{c}}{\delta} + \varepsilon M$, we have $x(t_1) = \lim_{n \to \infty} x(t_n) \le \frac{\bar{c}}{\delta} + \varepsilon M$, which contradicts $x(t_1) > \frac{\bar{c}}{\delta} + \varepsilon M$.

If t_1 is left-scattered, $\rho(t_1) < t_1$ and $x(\rho(t_1)) \le \frac{\overline{c}}{\delta} + \varepsilon M$; $x(t_1) > \frac{\overline{c}}{\delta} + \varepsilon M$, then we have sup $\{t | x(s) < \frac{\overline{c}}{\delta} + \varepsilon M, s \in [t_0, t]\} = \rho(t_1) < t_1$, which contradicts the definition of t_1 .

Therefore we can suppose $t_1 < \infty, x(t_1) \le \frac{\bar{c}}{\delta} + \varepsilon M$. We will discuss two cases:

Case 1.1. Suppose $x(t_1) = \frac{\overline{c}}{\delta} + \varepsilon M$, $t_1 > t_0$,

$$\forall t \in [t_0, t_1)_{\mathbb{T}}, \quad x(t) \leq \frac{\overline{c}}{\delta} + \varepsilon M, \qquad x(t_1) = \frac{\overline{c}}{\delta} + \varepsilon M.$$
 (2.6)

Clearly we have $x^{\triangle}(t_1) \ge 0$. In fact, suppose that $x^{\triangle}(t_1) \ge 0$ fails, then we have $x^{\triangle}(t_1) < 0$.

If t_1 is right-dense, $\forall s > t_1$, from $x^{\triangle}(t_1) = \lim_{s \to t_1^+} \frac{x(t_1) - x(s)}{t_1 - s} < 0$, we get $x(s) < x(t_1) = \frac{\overline{c}}{\delta} + \varepsilon M_s$ which contradicts the definition of t_1 .

If t_1 is right-scattered, from $x^{\triangle}(t_1) = \frac{x(\sigma(t_1)) - x(t_1)}{\mu(t_1)} < 0$, we get $x(\sigma(t_1)) < x(t_1) = \frac{\overline{c}}{\delta} + \varepsilon M$, which contradicts the definition of t_1 .

We have from (2.6), (H_1) , and (H_3)

$$x^{\triangle}(t_{1}) \stackrel{(H_{1})}{\leq} -a(t_{1})x(t_{1}) + b(t_{1}) \sup_{t_{1}-\tau(t_{1})\leq s\leq t_{1}} x(s) + c(t_{1}) + d(t_{1}) \int_{0}^{\infty} K(t_{1},s)x(t_{1}-s)\triangle s$$

$$\stackrel{(2.6)}{=} -a(t_{1}) \left(\frac{\overline{c}}{\delta} + \varepsilon M\right) + b(t_{1}) \sup_{t_{1}-\tau(t_{1})\leq s\leq t_{1}} x(s) + c(t_{1}) + d(t_{1}) \int_{0}^{\infty} K(t_{1},s)x(t_{1}-s)\triangle s$$

$$\stackrel{(2.6)}{\leq} -\left(a(t_{1}) - b(t_{1}) + d(t_{1}) \int_{0}^{\infty} K(t_{1},s)\triangle s\right) \left(\frac{\overline{c}}{\delta} + \varepsilon M\right) + \overline{c}$$

$$\stackrel{(H_{3})}{\leq} -\delta \left(\frac{\overline{c}}{\delta} + \varepsilon M\right) + \overline{c} = -\delta \varepsilon M < 0, \tag{2.7}$$

which contradicts $x^{\triangle}(t_1) \geq 0$.

Case 1.2. Suppose $x(t_1) < \frac{\overline{c}}{\delta} + \varepsilon M$. In this case, t_1 must be right-scattered, for otherwise if t_1 is right-dense, there exists ϵ_1 sufficiently small so that $x(t) < \frac{\overline{c}}{\delta} + \varepsilon M$, for $t \in [t_1, t_1 + \epsilon_1]_{\mathbb{T}}$. Therefore, $x(t) \leq \frac{\overline{c}}{\delta} + \varepsilon M$, for $t \in [t_0, t_1 + \epsilon_1]_{\mathbb{T}}$. This contradicts the definition of t_1 . Hence, since t_1 is right-scattered, we have

$$x(\sigma(t_1)) > \frac{\overline{c}}{\delta} + \varepsilon M$$
 and $x(t) \le \frac{\overline{c}}{\delta} + \varepsilon M$ for all $t \le t_1 < \sigma(t_1)$. (2.8)

We have from (2.8) and (H_1)

$$\frac{x(\sigma(t_{1})) - x(t_{1})}{\mu(t_{1})} = x^{\triangle}(t_{1})$$

$$\stackrel{(H_{1})}{\leq} -a(t_{1})x(t_{1}) + b(t_{1}) \sup_{t_{1} - \tau(t_{1}) \leq s \leq t_{1}} x(s) + c(t_{1})$$

$$+ d(t_{1}) \int_{0}^{\infty} K(t_{1}, s)x(t_{1} - s) \triangle s$$

$$\stackrel{(2.8)}{<} -a(t_{1})x(t_{1}) + \left(b(t_{1}) + d(t_{1}) \int_{0}^{\infty} K(t_{1}, s) \triangle s\right) \left(\frac{\overline{c}}{\delta} + \varepsilon M\right) + \overline{c}. \tag{2.9}$$

By (2.8), (2.9), (H₃), and $1 - \mu(t)a(t) > 0$, $t \in \mathbb{T}$, we get

$$\frac{\overline{c}}{\delta} + \varepsilon M < x \left(\sigma(t_{1})\right)$$

$$\stackrel{(2.9)}{<} \left(1 - \mu(t_{1})a(t_{1})\right)x(t_{1}) + \mu(t_{1})\left(b(t_{1}) + d(t_{1})\int_{0}^{\infty} K(t_{1}, s)\triangle s\right)\left(\frac{\overline{c}}{\delta} + \varepsilon M\right)$$

$$+ \mu(t_{1})\overline{c}$$

$$\stackrel{(2.8)}{<} \left(1 - \mu(t_{1})a(t_{1}) + \mu(t_{1})b(t_{1}) + \mu(t_{1})d(t_{1})\int_{0}^{\infty} K(t_{1}, s)\triangle s\right)\left(\frac{\overline{c}}{\delta} + \varepsilon M\right)$$

$$+ \mu(t_{1})\overline{c}$$

$$\stackrel{(H_{3})}{\leq} \left(1 - \delta\mu(t_{1})\right)\left(\frac{\overline{c}}{\delta} + \varepsilon M\right) + \mu(t_{1})\overline{c} = \frac{\overline{c}}{\delta} + \varepsilon M - \delta\varepsilon M\mu(t_{1}), \tag{2.10}$$

which leads to a contradiction.

Hence the inequality (2.5) must hold.

Since $\varepsilon > 1$ is arbitrary, we let $\varepsilon \to 1^+$ and obtain

$$\forall t \ge t_0, \quad x(t) \le \frac{\overline{c}}{\delta} + M.$$
 (2.11)

Proof of Theorem 2.1(ii).

If M=0, it is evident from (2.1) that (2.3) holds. Now we assume M>0. Let $\limsup_{t\to\infty} x(t)=\alpha$, then $0\leq\alpha\leq\frac{\overline{c}}{\delta}+M$. Now we prove that $\alpha\leq\frac{\overline{c}}{\delta}$.

Suppose this is not true, *i.e.* $\alpha > \frac{\overline{c}}{\delta}$, then we can choose $\varepsilon_2 > 0$ such that $\alpha = \frac{\overline{c}}{\delta} + \varepsilon_2$.

Since $\tau(t) \ge 0$, and $\lim_{t\to\infty} (t-\tau(t)) = +\infty$, we have $\limsup_{t\to\infty} \sup_{t-\tau(t)\le s\le t} x(s) = \alpha$.

Clearly, there exists a sufficiently large T > 0 and T is fixed, such that

$$\lambda := \kappa + (1 - \kappa) \exp(-\delta T) < 1. \tag{2.12}$$

Taking $\theta: 0 < \theta < \frac{1-\lambda}{1+\lambda}\varepsilon_2$, using the properties of the superior limits we see that there exists a sufficiently large $t^* > t_0$, such that

$$\begin{cases} x(t^*) > \alpha - \theta, \\ x(t) < \alpha + \theta, \quad t \in [t^* - T, t^*] \\ \sup_{t \to \tau(t) \le s \le t} x(s) \le \alpha + \theta, \quad t \in [t^* - T, t^*]. \end{cases}$$
(2.13)

On the other hand, it follows from (H₁) and (H₃) that

$$x^{\triangle}(t) \stackrel{(H_{1})}{\leq} -a(t)x(t) + b(t) \sup_{t-\tau(t)\leq s\leq t} x(s) + c(t)$$

$$\stackrel{(H_{3})}{\leq} -a(t)x(t) + b(t) \sup_{t-\tau(t)\leq s\leq t} x(s) + \frac{a(t)-b(t)}{\delta} \overline{c}$$

$$= -a(t)\left(x(t) - \frac{\overline{c}}{\delta}\right) + b(t) \sup_{t-\tau(t)\leq s\leq t} \left(x(s) - \frac{\overline{c}}{\delta}\right). \tag{2.14}$$

Denote $y(t) = x(t) - \frac{\overline{c}}{\delta}$, and (2.13) implies that

$$\begin{cases} y(t^*) = x(t^*) - \frac{\overline{c}}{\delta} > \alpha - \theta - \frac{\overline{c}}{\delta} = \varepsilon_2 - \theta, \\ y(t) = x(t) - \frac{\overline{c}}{\delta} \le \alpha + \theta - \frac{\overline{c}}{\delta} = \varepsilon_2 + \theta, \quad t \in [t^* - T, t^*] \\ \sup_{t = \tau(t) \le s \le t} y(s) = \sup_{t = \tau(t) \le s \le t} (x(s) - \frac{\overline{c}}{\delta}) \le \alpha + \theta - \frac{\overline{c}}{\delta} = \varepsilon_2 + \theta, \\ t \in [t^* - T, t^*]. \end{cases}$$

$$(2.15)$$

By (2.2), (2.14), (2.15), and $y(t) = x(t) - \frac{\overline{c}}{\delta}$, we have

$$y^{\triangle}(t) \stackrel{(2.14)}{\leq} -a(t)y(t) + b(t) \sup_{t-\tau(t)\leq s\leq t} y(s)$$

$$\stackrel{(2.15)}{\leq} -a(t)y(t) + (\varepsilon_2 + \theta)b(t)$$

$$\stackrel{(2.2)}{<} -a(t)y(t) + \kappa(\varepsilon_2 + \theta)a(t), \tag{2.16}$$

which implies

$$(y(t) - \kappa(\varepsilon_2 + \theta))^{\triangle} \le -a(t)(y(t) - \kappa(\varepsilon_2 + \theta));$$
 (2.17)

then we have

$$\left(\frac{y(t) - \kappa(\varepsilon_2 + \theta)}{e_{-a}(t, t_0)}\right)^{\triangle} = \frac{(y(t) - \kappa(\varepsilon_2 + \theta))^{\triangle} + a(t)(y(t) - \kappa(\varepsilon_2 + \theta))}{e_{-a}(\sigma(t), t_0)} \stackrel{(2.17)}{\leq} 0, \tag{2.18}$$

where we used the property of the exponential function: if $p \in \mathfrak{R}^+$ and $t_0 \in \mathbb{T}$, then $e_p(t,t_0) > 0$ for all $t \in \mathbb{T}$.

Integrating both sides of (2.18) from $t^* - T$ to t^* and by (1.11) we obtain

$$(1 - \kappa)(\varepsilon_2 + \theta) - 2\theta = \varepsilon_2 - \theta - \kappa(\varepsilon_2 + \theta)$$
$$< \gamma(t^*) - \kappa(\varepsilon_2 + \theta)$$

$$\stackrel{\text{(Lemma 1.3(v))}}{\leq} e_{-a}(t^*, t^* - T) \left[y(t^* - T) - \kappa(\varepsilon_2 + \theta) \right] \\
\stackrel{\text{(1.11), (2.15)}}{\leq} \left(\varepsilon_2 + \theta - \kappa(\varepsilon_2 + \theta) \right) \exp \left(- \int_{t^* - T}^{t^*} a(u) \Delta u \right) \\
< (1 - \kappa)(\varepsilon_2 + \theta) \exp(-\delta T), \tag{2.19}$$

where we used $a(t) \ge a(t) - b(t) \ge \delta > 0$ in the last step.

By (2.19), we have

$$\theta \geq \frac{1 - [\kappa + (1 - \kappa) \exp(-\delta T)]}{1 + [\kappa + (1 - \kappa) \exp(-\delta T)]} \varepsilon_2 = \frac{1 - \lambda}{1 + \lambda} \varepsilon_2.$$

This contradicts the choice of θ , so we get $\alpha \leq \frac{\overline{c}}{\delta}$. From the definition of the superior limits we obtain (2.3).

Case 2.
$$\overline{c} = 0$$
.

If only we replace \overline{c} in the proof of Case 1 by $\overline{c} + \epsilon_3$ for any given $\epsilon_3 > 0$, then let $\epsilon_3 \to 0^+$, we find that (2.1) and (2.3) hold.

A combination of Cases 1 and 2 completes the proof of Theorem 2.1. \Box

Remark 2.1 When M = 0, from (2.7), (H₃) must have the form that there exists $\delta > 0$ such that

$$a(t) - b(t) - d(t) \int_0^\infty K(t, s) \Delta s > \delta > 0, \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}}.$$

When M > 0, (H_3) may have the form that there exists $\delta > 0$ such that

$$a(t) - b(t) - d(t) \int_0^\infty K(t, s) \Delta s \ge \delta > 0$$
, for $t \in [t_0, \infty)_{\mathbb{T}}$.

Similarly, in [1] when G = 0, (2.10) must have the form that

$$\alpha(t) + \beta(t) < -\sigma < 0$$
 for $t \ge t_0$;

when G > 0, (2.10) may have the form that

$$\alpha(t) + \beta(t) \le -\sigma < 0$$
 for $t \ge t_0$.

Theorem 2.1 can be regarded as the extension of the main theorem of [5], Theorem 2.3 of [1].

3 Applications and examples

Consider the delay dynamic equation

$$\begin{cases} x^{\triangle}(t) = -a(t)x^{\sigma}(t) + b(t)x(t - \tau(t)) + c(t) + d(t) \int_{0}^{\infty} K(t,s)x(t - s)\Delta s, \\ t \in [t_{0}, +\infty)_{\mathbb{T}}, \\ x(t) = |\varphi(t)| \quad \text{for } t \in (-\infty, t_{0}]_{\mathbb{T}}, \end{cases}$$

$$(3.1)$$

where $\varphi(t)$ is bounded rd-continuous for $s \in (-\infty, t_0]_{\mathbb{T}}$ and $\tau(t)$, a(t), b(t), c(t), d(t) are nonnegative, rd-continuous functions for $t \in [t_0, \infty)_{\mathbb{T}}$ and c(t) is bounded,

$$\sup_{t \le t_0} |\varphi(t)| = M, \qquad \sup_{t \ge t_0} c(t) = \overline{c}, \qquad \lim_{t \to \infty} (t - \tau(t)) = +\infty.$$

Assume there exists $\delta > 0$ such that

$$a(t) - b(t) - d(t) \int_0^\infty K(t, s) \Delta s > \delta > 0 \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}}, \tag{3.2}$$

where the delay kernel K(t,s) is a nonnegative, rd-continuous for $(t,s) \in [0,\infty)_{\mathbb{T}} \times [0,\infty)_{\mathbb{T}}$. From (3.1), we have

$$x(t) = x(t_0)e_{\ominus a}(t, t_0)$$

$$+ \int_{t_0}^t e_{\ominus a}(t, s) \left[b(s)x(s - \tau(s)) + c(s) + d(s) \int_0^\infty K(s, \nu)x(s - \nu) \triangle \nu \right] \triangle s.$$
(3.3)

Let the functions y(t) be defined as follows: y(t) = |x(t)| for $t \in (-\infty, t_0]_T$, and

$$y(t) = |x(t_0)| e_{\ominus a}(t, t_0)$$

$$+ \int_{t_0}^t e_{\ominus a}(t, s) \left[b(s) |x(s - \tau(s))| + c(s) + d(s) \int_0^\infty K(s, \nu) |x(s - \nu)| \triangle \nu \right] \triangle s,$$

for $t > t_0$. Then we have $|x(t)| \le y(t)$, for all $t \in (-\infty, +\infty)_{\mathbb{T}}$.

By [9], Theorem 5.37, we get

$$y^{\triangle}(t) = \bigoplus a(t) \left\{ \left| x(t_0) \right| e_{\bigoplus a}(t, t_0) + \int_{t_0}^t e_{\bigoplus a}(t, s) \left[b(s) \middle| x(s - \tau(s)) \middle| + c(s) \right] \right.$$

$$\left. + d(s) \int_0^\infty K(s, \nu) \middle| x(s - \nu) \middle| \triangle \nu \right] \triangle s \right\}$$

$$\left. + e_{\bigoplus a} \left(\sigma(t), t \right) \left\{ b(t) \middle| x(t - \tau(t)) \middle| + c(t) + d(t) \int_0^\infty K(t, \nu) \middle| x(t - \nu) \middle| \triangle \nu \right\}$$

$$\leq \frac{1}{1 + \mu(t)a(t)} \left\{ -a(t)y(t) + b(t) \sup_{t - \tau(t) \leq \theta \leq t} y(\theta) + c(t) \right.$$

$$\left. + d(t) \int_0^\infty K(t, \nu)y(t - \nu) \triangle \nu \right\}, \quad t \in [t_0, \infty)_{\mathbb{T}}. \tag{3.4}$$

Example 1 Let $\mathbb{T} = \mathbb{R}^+$, then system (H_1) is expressed as

$$\begin{cases} x'(t) \le -a(t)x(t) + b(t) \sup_{t \to \tau(t) \le s \le t} x(s) + c(t) \\ + d(t) \int_0^\infty K(t, s) x(t - s) \, ds, \quad t \ge 0, \\ x(t) = |\varphi(t)|, \quad t \le 0, \end{cases}$$
(3.5)

where $\varphi(t)$ is bounded continuous for $t \in (-\infty, 0]$ and $\sup_{t \le 0} |\varphi(t)| = M$.

We choose some explicit nonnegative, continuous functions for a(t), b(t), c(t), d(t), $\tau(t)$, K(t,s). Let

$$a(t) = \frac{(t+1)^2}{t+2}, \qquad b(t) = \frac{t^2+t}{2e(t+2)}, \qquad c(t) = \left(\frac{t+2}{t+1}\right)^t, \qquad d(t) = \frac{t}{e(2-e^{-t^2})\sqrt{\pi}},$$

$$K(t,s) = (2-\cos 2ts)e^{-s^2}, \quad (t,s) \in [0,\infty) \times [0,\infty), \tau(t) < t \text{ and } \lim_{t \to \infty} (t-\tau(t)) = +\infty.$$

Obviously, a(t), b(t), d(t) are unbounded for $t \ge 0$ and $\sup_{t \ge 0} c(t) = \overline{c} = e$.

(1) $\forall t \in [0, \infty), g(t) := \int_0^\infty K(t, s) \, ds = \int_0^\infty (2 - \cos 2ts) e^{-s^2} \, ds$, then since $\forall (t, s) \in [0, \infty) \times [0, \infty)$,

$$\left|K(t,s)\right| \le 3e^{-s^2}$$
 and $\left|\frac{\partial K(t,s)}{\partial t}\right| = \left|2se^{-s^2}\sin 2ts\right| \le 2se^{-s^2},$

$$\int_0^\infty e^{-s^2} ds = \frac{\sqrt{\pi}}{2} = g(0) \text{ and } \int_0^\infty 2se^{-s^2} ds = 1,$$

we have $g(t) = \int_0^\infty K(t,s) \, ds$ is convergent for $t \in [0,\infty)$ and $\int_0^\infty K_t(t,s) \, ds$ is uniformly convergent for $t \in [0,\infty)$.

So

$$g'(t) = \int_0^\infty K_t(t,s) \, ds = \int_0^\infty 2s e^{-s^2} \sin 2ts \, ds = -2tg(t) + 2\sqrt{\pi}t.$$

Rearrange terms and obtain

$$\frac{(g(t) - \sqrt{\pi})'}{g(t) - \sqrt{\pi}} = -2t. \tag{3.6}$$

Solving (3.6) for g(t), we have

$$g(t) = \int_0^\infty K(t,s) \, ds = \frac{\sqrt{\pi}}{2} (2 - e^{-t^2}) < \sqrt{\pi}.$$

(2) There exists $\delta = \frac{1}{2} > 0$, such that

$$a(t) - b(t) = \frac{(t+1)^2}{t+2} - \frac{t^2+t}{2e(t+2)} \ge \frac{1}{2} = \delta > 0, \quad t \in [0,\infty).$$

By (i) of Theorem 2.1, we have $|x(t)| \leq \frac{\overline{c}}{\delta} + M = 2e + M, t \geq 0$. Take $\kappa = \frac{1}{2} \in (0,1)$, it is easy to see that

$$\kappa a(t) - b(t) = \frac{1}{e} \cdot \frac{(t+1)^2}{t+2} \ge \frac{1}{4} > 0, \quad t \in [0, \infty).$$

By (ii) of Theorem 2.1, for any given $\epsilon > 0$, there exists $\widetilde{t} = \widetilde{t}(M, \epsilon) > 0$, such that $|x(t)| \le \frac{\overline{c}}{\delta} + \epsilon = 2e + \epsilon, t \ge \widetilde{t} > 0$.

Taking $c(t) \equiv 0$, we have $|x(t)| \le \epsilon$, $t \ge \tilde{t} > 0$. So the zero solution of the system (3.1) is stable.

Example 2 Consider the delay dynamic equation

$$\begin{cases} x^{\triangle}(t) = -a(t)x^{\sigma}(t) + b(t)x(t - \tau(t)) + c(t), & t \in [t_0, +\infty)_{\mathbb{T}}, \\ x(t) = |\varphi(t)| & \text{for } t \in (-\infty, t_0]_{\mathbb{T}}, \end{cases}$$
(3.7)

where $\varphi(t)$ is bounded, rd-continuous for $t \le t_0$ and $\sup_{t \le t_0} |\varphi(t)| = M$, a(t), b(t), c(t), $\tau(t)$ are nonnegative, rd-continuous functions for $t \in [t_0, \infty)_{\mathbb{T}}$ and $\sup_{t \ge t_0} c(t) = \overline{c}$.

If there exists $\delta > 0$ such that

$$a(t) - b(t) \ge \delta > 0 \quad \text{for } t \ge t_0. \tag{3.8}$$

Similar to Example 1, we get

$$y^{\triangle}(t) \leq \frac{1}{1+\mu(t)a(t)} \Big\{ -a(t)y(t) + b(t) \sup_{t-\tau(t) \leq s \leq t} y(s) + c(t) \Big\}, \quad t \in [t_0, +\infty)_{\mathbb{T}}.$$

In particular, we take $\mathbb{T} = \mathbb{N}$, (3.7) reduces to

$$\triangle x(n) = -a(n)x(n+1) + b(n)x(n-2) + c(n), \quad n \ge 2.$$

Let
$$a(n) = 2(n+1)$$
, $b(n) = \frac{n^2}{2n+1}$, $c(n) = \frac{5n}{\frac{n!}{(n)}}$, $\tau(n) = 2$.

Let a(n)=2(n+1), $b(n)=\frac{n^2}{2n+1}$, $c(n)=\frac{5n}{\sqrt[n]{n!}}$, $\tau(n)=2$. Obviously, a(n), b(n) are unbounded for $n\in\mathbb{N}$ and $\sup_{n\in\mathbb{N}}c(n)=\lim_{n\to\infty}\frac{5n}{\sqrt[n]{n!}}=\overline{c}=5e$.

(1)
$$\forall n \ge 2$$
, $\frac{a(n)-b(n)}{1+a(t)} = \frac{2(n+1)-\frac{n^2}{2n+1}}{2n+3} = \frac{3n^2+6n+2}{(2n+1)(2n+3)} \ge \frac{2}{3} = \delta$.

(2) Take $\kappa = 0.9 \in (0,1)$, it is easy to see that

$$\frac{\kappa a(n) - b(n)}{1 + a(n)} > 0.$$

By (ii) of Theorem 2.1, for any given $\epsilon > 0$, there exists $\widetilde{t} = \widetilde{t}(M, \epsilon) > 0$, such that $|x(t)| \le 1$ $\frac{\overline{c}}{\delta} + \epsilon = \frac{15e}{2} + \epsilon, t \ge \widetilde{t} > 0.$

Taking $c(n) \equiv 0$, we have $|x(t)| \le \epsilon$, $t \ge \tilde{t} > 0$. So the zero solution of the system (3.7) is stable.

Competing interests

The authors declare that they have no competing interests.

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details

¹School of Mathematics and Computation Science, Lingnan Normal University, Zhanjiang, 524048, China. ²Department of Mathematics, Guangdong University of Petrochemical Technology, Maoming, 525000, China. ³School of Mathematics, Sun Yat-Sen University, Guangzhou, 510275, China.

Acknowledgements

The fourth author was supported by the National Natural Science Foundation of China (No. 11271380) and the Guangdong Province Key Laboratory of Computational Science.

Received: 29 July 2016 Accepted: 22 November 2016 Published online: 01 December 2016

1. Wen, L, Yu, Y, Wang, W: Generalized Halanay inequalities for dissipativity of Volterra functional differential equations. J. Math. Anal. Appl. 347, 169-178 (2008)

- 2. Humphries, AR, Stuart, AM: Runge-Kutta methods for dissipative and gradient dynamical systems. SIAM J. Numer. Anal 31 1452-1485 (1994)
- 3. Halanay, A: Differential Equations: Stability, Oscillations, Time Lags. Academic Press, New York (1966)
- 4. Temam, R: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Springer Appl. Math. Sci. Ser., vol. 68. Springer, Berlin (1988)
- 5. Baker, CTH, Tang, A: Generalized Halanay inequalities for Volterra functional differential equations and discretized versions, Invited plenary talk. In: Volterra Centennial Meeting, UTA Arlington, June (1996)
- 6. Adivar, M, Bohner, EA: Halanay type inequalities on time scales with applications. Nonlinear Anal. **74**, 7519-7531 (2011)
- 7. Bohner, M, Peterson, A: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
- 8. Bohner, M: Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 18, 289-304 (2005)
- 9. Bohner, M, Peterson, AC (eds.): Advances in Dynamic Equations on Time Scales. Birkhäuser, Boston (2003)

Submit your manuscript to a SpringerOpen journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Immediate publication on acceptance
- ▶ Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com