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Abstract

In this paper, we introduce the binomial sequence spaces by’ and b’ of nonabsolute
type which include the spaces ¢y and ¢, respectively. Also, we prove that the spaces
by’ and b are linearly isomorphic to the spaces ¢o and ¢, in turn, and we investigate
some inclusion relations. Moreover, we obtain the Schauder bases of those spaces
and determine their a-, 8-, and y-duals. Finally, we characterize some matrix classes
related to those spaces.
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1 The basic definitions and notations

Let w be the set of all real (or complex) valued sequences. Then w becomes a vector space
under point-wise addition and scalar multiplication. A sequence space is a vector sub-
space of w. We use the notations of £, co, ¢, and £, for the spaces of all bounded, null,
convergent, and absolutely p-summable sequences, respectively, where 1 < p < co.

A Banach sequence space is called a BK-space provided each of the maps p,, : X — C
defined by p,(x) = x,, is continuous for all n € N [1]. By taking into account the definition
above, one can say that the sequence spaces £, ¢y, and ¢ are BK-spaces with their usual
sup-norm defined by x|l = supicy |%x| and £, is a BK-space with its £,,-norm defined by

1
p

oo
loelle, = { D lsl” )
k=0

where p € [0, 00).
Let A = (a,x) be an infinite matrix with complex entries and x € w, then the A-transform
of x is defined by

(Ax)n = D dur (L)

k=0

and is assumed to be convergent for all # € N [2]. For brevity in the notation, we henceforth
prefer that the summation without limits runs from 0 to cc.
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Let X and Y be two arbitrary sequence spaces and A = (a,x) be an infinite matrix. Then
the domain of A is denoted by X4 and defined by

XAz{xz(xk)ew:AxeX}, 1.2)

which is also a sequence space and the class of all matrices A such that X C Yy is denoted
by (X : Y). Moreover, A = (a,) is called conservative if ¢ C c4. Furthermore, A = (a,)
is called m-multiplicative, if lim,,_, o, (A%), = m1lim,_, », x, for all x € ¢ and the class of all
m-multiplicative matrices is denoted by (X : Y),,. Specially, A = (a,x) is called regular, if
A = (a,) is 1-multiplicative.

The spaces of all bounded and convergent series are denoted by bs and cs and are defined
by aid of the matrix domain of the summation matrix S = (s,x) such that bs = (£)s and

¢s = cs, respectively, where S = (s,) is defined by

1, 0<k=<n,
Suk =
0, k>mn,

for all k,n € N. A matrix A = (a,) is said to be a triangle if 4,4 = 0 for k > n and a,,, # 0 for
all n, k € N. Furthermore, a triangle matrix uniquely has an inverse, which is also a triangle
matrix.

The theory of matrix transformations is of great importance in the summability which
was obtained by Cesaro, Borel, Riesz and others. Therefore, many authors have defined
new sequence spaces by using this theory. For example, ({x)n, and cy, in [3], X}, and X
in [4], ¢ and ¢y in [5], aj and 4/, in [6]. Moreover, many authors have constructed new
sequence spaces by using especially the Euler matrix. For instance, ¢ and ¢ in [7], ¢, and
el in [8] and [9], ef(A),el(A), and e/ _(A) in [10], eg(A(’”)),eZ(A(”‘)) and ego(A(”’)) in [11],
e(’)(B(”‘)),eg(B(”‘)), and ego(B(”’)) in [12], e (A, p),e.(A, p), and e/ (A, p) in [13], ef(u, p) and
e/ (u,p) in [14].

In this paper, we introduce the binomial sequence spaces by’ and b’* of nonabsolute
type which include the spaces ¢y and ¢, respectively. Also, we prove that the spaces by* and
b’* are linearly isomorphic to the spaces ¢y and ¢, in turn and investigate some inclusion
relations. Moreover, we obtain the Schauder basis of those spaces and determine their «-,
B-, and y -duals. Finally, we characterize some matrix classes related to those spaces.

2 The binomial sequence spaces of nonabsolute type
In this chapter, we introduce the binomial sequence spaces by® and b’ of nonabsolute
type and prove that the spaces b’ and b’ are linearly isomorphic to the spaces ¢y and c,
respectively. Moreover, we deal with an inclusion relation related to those spaces.

Let r,s € R and  + s # 0. Then the binomial matrix B = (b'7) is defined by

1 n\ n-k .k
s _ ) (s+r)t (k)S r, 0= k =n
nk —

) k >n,

for all k,n € Ny. For sr > 0 we have the following properties of the binomial matrix B =
(b)):
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() supyexe o [y ()47 < 0,

(i) limy,— s ﬁ (Z)s”‘krk =0,

(i) Timyo0 Y7o e (D)™ 7% = 1.
Therefore, the binomial matrix B = (b7) is regular for sr > 0. Unless stated otherwise,
we assume that sr > 0.

Here, we would like to emphasize that if we take r + s = 1, we obtain the Euler matrix
E" = (e}). So the binomial matrix B™* = (b)) generalizes the Euler matrix £ = (e/,,).

By considering the definition of the binomial matrix B = (b)), we define the binomial
sequence spaces by’ and b* as follows:

1 n
by’ ={x=(x) €w: lim " Kk =0
n—oo (s +r)" Py k

and

1 " (n
b¥=1x=(x)ew: im —— s" Kk, exists b.
c { (k) n—>00(S+V)”kZ(;(k> k

The sequence spaces by’ and b7 can be redefined by using the notion of (1.2) as follows:
6’3 =(co)prs and bz’s = Cprs. (2.1)

It is clear that by® C b’*. Let x = (x;) be an arbitrary sequence. Then the B"*-transform of
x = (xx) is defined by

k
1 k y
BSx) = — E ) sk—lr/x, (22)
( )k M (s+r)k 20 <]) '

forall k e N.
Now, we want to start with the following theorem related to the theory of BK-spaces,
which is of great importance in the characterization of matrix transformations between

sequence spaces.

Theorem 2.1 The binomial sequence spaces by’ and b>* are BK-spaces with their sup-
norms defined by

Il = el = | B]., = sup(B™x), |

Proof The sequence spaces ¢y and ¢ are BK-spaces according to their sup-norms. More-
over, the binomial matrix B = (b}) is a triangle matrix and (2.1) holds. By combining
these three facts and Theorem 4.3.12 of Wilansky [2], we deduce that the binomial se-
quence spaces by’ and b’* are BK-spaces. This completes the proof. O

Let |x| = (|xx|) for all k € N. Because of ||x||b6,s # |||x|||b6,s and ||x|l,zs # [llx| ]l s for at least
one sequence in the binomial sequence spaces by* and b’*, by* and b’* are sequence spaces
of nonabsolute type.
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Theorem 2.2 The binomial sequence spaces bg® and b* are linearly isomorphic to the

sequence spaces ¢y and c, respectively.

Proof Because a repetition of similar statements is redundant, the proof of the theorem
is given for only the space b*. For this purpose, we should show the existence of a linear
bijection between the spaces b/ and c. Let us consider the transformation L defined by
L:b* — c,L(x) = B*x. Then it is obvious that, for all x € b, L(x) = B"*x € c. Moreover,
it is clear that L is a linear transformation and x = 0 whenever L(x) = 0. Because of this, L
is injective.

Let y = (yx) € ¢ be given. We define a sequence x = (x;) by

LSk, v
xk:r—kz(],)(—s) (s + 1Yy,
j=0

for all k € N. Then we obtain

7,8 _ ; . N uk k
(B x)n = Gir kXZO: (k)s X

n k

B 1 n\ .k
T (s+ )" Z (k)S ‘

k=0 j=0

(f) (s + 1Y,

for all n € N. So, B™x = y and since y € ¢, we conclude that B"*x € c¢. Hence, we deduce
that x € b and L(x) = y. On account of this L is surjective.
Moreover, we have for all x € b*

|2 = 18] o =l

So L is norm preserving. Consequently, L is a linear bijection. Then we obtain the fact that
the spaces b* and c are linearly isomorphic, that is, b)° = c. This completes the proof. [

Theorem 2.3 The inclusions ef, C by* and €, C b’* strictly hold, where e} and €, are Euler

sequence spaces of nonabsolute type.

Proof 1f r+s =1, we obtain E" = B™. So, the inclusion €} C b’ holds. Assume that 0 < r <1
and s = 4. Now, we define a sequence x = (x¢) such that x; = (—%)k for all k € N. Then it is
obvious that x = ((—%)k) ¢ ¢ and E'x = ((-2-7)) ¢ ¢. On the other hand, B™x = ((ﬁ)k) IS
co. As a consequence, x = (xx) € by’ \ €f.

This shows that the inclusion e, C by" strictly holds. Another part of the theorem can

be proved in a similar way. This completes the proof. O

Theorem 2.4 The inclusions co C by and c C b’* strictly hold. But the sequence spaces
by’ and L do not include each other.

Proof If we consider regularity of the binomial matrix B"*, we can easily conclude that
B"$x € ¢y whenever x € ¢g. This means that x € by’ for all x € ¢y, namely ¢y C by*. Now
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we define a sequence u = (i) such that u; = (~1)X for all k € N. Then we obtain B"*x =
((%)k ) € ¢o. As a consequence, u is in by’ but not in ¢o. So, the inclusion ¢y C by is strict.
By using a similar way, one can show that the inclusion ¢ C b} is strict.

To prove the second part of the theorem, we consider the sequences e = (1,1,1,...) and
v = (v) defined by vy = (—f)k for all k € N, where |7| > 1. Then we obtain B"’e = e and
B*v=(1,0,0,...). Hence, eis in £ but not in by* and v is in by° but not in £,. This shows
that the sequence spaces bj* and ¢, overlap but these spaces do not include each other.

This completes the proof. O

Definition 2.1 (see [2]) An infinite matrix A = (a,) is called coregular, if A = (a,x) is

conservative and x (A) = limy— 00 D j @uk — Yz liMy—s 00 dui 7 0.

By taking into account the regularity of the binomial matrix B = (b7), we obtain
x(B¥) =1#0. So, the binomial matrix B"* = (b]}) is coregular.

Definition 2.2 (see [15]) Let A = (a,) be an infinite matrix with bounded columns. Then
A is defined to be of type M if A = 0 implies ¢ = O for every ¢ € £.

Definition 2.3 (see [2]) For a conservative triangle A = (a,x), ¢ C ca. Its closure ¢ in ¢4 is

called the perfect part of c4. If c is dense, A = (a,) is called perfect.
Now we give the following two theorems, which are needed.

Theorem 2.5 (see [15]) A regular triangle A = (aux) is of type M if there exists a (z;) € Lo
with z; #z; (i #]) and ||(z;)|lo < 1 such that

n
Vie No, Ik € ooy YneN:z! = Z“nkxkr
k=0

Theorem 2.6 (see [2]) A coregular triangle is perfect if and only if it is of type M.
Theorem 2.7 Each regular binomial matrix B = (b)) is perfect.

Proof We know that the regular binomial matrix B™* = (b)) is coregular. So, for the proof,
we should show that B = (b7) is of type M.
Let D™ = (d;7) be the inverse of B"* = (b)7). Then we have for every z € C

k

Lk
ur(z) = Zd,’;fzv = rl—k Z (V>(—s)k"(s +1)'z"
v=0

v=0

= rik((s +71)z— s)k.

One can easily verify that sup; . sup{|ux(2)| : |(s + r)z—s| < |r|} <1 and that

n n k
7,8 _ 7,8 S,V _ i
E brup(z) = E by E d,z =2
k=0 k=0 v=0
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for all z € C. Therefore, if we choose a sequence (z;) with z; # z; (i #j), [1(zi)llc <1 and
[(s + r)z; — s| < |r| (i € Np), then xy, = ux(z;) (i,k € Ny) fit Theorem 2.7. Thus, the regular
binomial matrix B = (b)) is perfect. This completes the proof. O

3 The Schauder basis and «-, 8-, y - and continuous duals
In this chapter, we construct the Schauder basis and designate the -, 8-, -, and contin-
uous duals of the binomial sequence spaces by* and b*.

Given a normed space (X, || - |x), a set {xx : xx € X, k € N} is called a Schauder basis for
X if for all x € X there exist unique scalars A, k € N, such that x = Y, Ay i.e.,

— 0

n
X — Z MKk
k=0

X

as n — oo [1].

Theorem 3.1 Let puy = {Bx}x for all k € N and | = limy_, o ptx. We define a sequence
g®(r,s) = {g,(,k)(r, $)}nen as follows:

0, 0<n<k,

®(r )
8, (r,s) =
a()E) s+, n=k

for all fixed k € N. Then the following statements hold.
(a) The sequence {g®(r,s)}ren is a Schauder basis for the binomial sequence space by’
and every x € by’ has a unique representation of the form

x=Y " wgh(r,s).
k

(b) The set {e,g9(r,s),gV(r,s),...} is a Schauder basis for the binomial sequence space
b*, and any x € b* has a unique representation of the form

x=le+y [ —1NgPrs).
k

Proof (a) Obviously we have
B”sg(k)(r,s) =e®ecy, keN,

where e is a sequence with 1 in the kth place and zeros elsewhere. So, the inclusion
{g®(r,s)} C by’ holds.
Given a sequence x = (x;) € by’ and m € N, we define

m
A= ).
k=0

Then, if we apply the binomial matrix B™* = (%) to x"), we have

m

m
Br,sx[m] _ Z MkBr,sg(k) (7‘, S) _ Z (Br,sx)ke(k)
k=0 k=0
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and

{B"S(x—x[”’])} _ 0, 0<n<m,

" Bx),, n>m,

for all m,n e N.
Now, let € > 0 be arbitrarily given. Then we may choose a 1, € N such that

€
(5), | <&
for all m > mg. Therefore,
=] = sup (%), | < sup (B, | < & <
0 n>m n=>my 2

for all m > my. This shows that
x = Z ukg(k)(r, s).
k

To complete the proof of part (a), we should show the uniqueness of this representation.
We assume that there exists a representation

x= Z 1ig® (r,5).
k

Due to the transformation, L defined in the proof of Theorem 2.2 is continuous; we can

write
(Br,sx)n _ Z)&k{Br'sg(k)(V’ S)}n — Z)‘kegzk) =y
k k

for all n € N, which contradicts the fact that (B"x),, = u,, for all n € N. Hence, every x € by*
has a unique representation, as desired.

(b) We know that {g®(r,s)} C by’ and B™¥e = e € c. So, the inclusion {e,g®(r,s)) C b
trivially holds.

For a given arbitrary sequence x = (x¢) € b*, we define a sequence y = (yx) such that
y =x — le, where [ = limy_, o t. Then it is obvious that y = (yx) € bg’. By considering the
part (a), one can say that y = (yx) has a unique representation. This implies that x = (xy)
has a unique representation, as desired in part (b). This completes the proof. O

By taking into account the results of Theorems 2.1 and 3.1, we give the following result.
Corollary 3.2 The binomial sequence spaces by* and b'* are separable.

Let X and Y be two arbitrary sequence spaces. The multiplier space of X and Y is sym-
bolized with M(X,Y) and defined by

MX,Y)= {y: (yx) e wexy = (xyx) € Y for all x = (xy) eX}.
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By considering the definition of M(X,Y), the -, 8-, and y -duals of a sequence space X
are defined by

X% = M(X, 1), X? =M(X,cs) and X" = M(X,bs),

respectively.

By X*, we denote the space of all bounded linear functionals on X. X* is called the con-
tinuous dual of a normed space X.

Let us give some properties to use in the next lemma:

)2
sup Z Zank < 00, (3.1)
KeF ™, kekK

sup Y |au < oo, (3.2)
neN P

lim a,x = o foreachkeN, (3.3)
n— 00

nlggo Xk:ank =q, (3.4)

where F is the collection of all finite subsets of N and 1 < p < co.

Lemma 3.3 (see [16]) Let A = (a,x) be an infinite matrix. Then the following statements
hold:
(i) A=(anw) € (co:€)=_(c:£1)< (3.1) holds withp =1,
(ii) A =(aw) € (co:c) < (3.2) and (3.3) hold,
(i) A= (ax) € (c:c) < (3.2), (3.3) and (3.4) hold,;
(iv) A =(am) € (co:Ls) = (c: o) < (3.2) holds;
V) A=(aw) € (c:L,) & (3.1) holds with1 < p < 0o.

Theorem 3.4 The a-dual of the binomial sequence spaces by’ and b’* is

v’ = {a = (ax) e w: sup Z Z (Z)(—s)”kr"(r +5)a,| < oo}.
keK

KeF ™,
Proof Let us consider the sequence x = (x,,) that is defined in the proof of Theorem 2.2.

Then, for given a = (a,) € w, we obtain

Ay = Z <Z>(—s)”"‘r‘”(r + s)ku,,yk = (L[”Sy)n

k=0

for all # € N. By considering the equality above, we deduce that ax = (a,x,) € ¢; whenever
x = (xx) € by’ or b if and only if U™y € £; whenever y = (yx) € ¢o or ¢. This shows that
a = (a,) € {by*}* = {b7*}* if and only if U™ € (co : £1) = (¢ : 7). If we combine this and
Lemma 3.3(i), we obtain

= (an) e {b5°}" = {b*}"
el elF =) o )

Z (Z) (=) K" (r + 5)¥a,,| < cc.

n 'kekK

Therefore, {by°}* = {b*}* = v{*. This completes the proof. |
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Theorem 3.5 Define the sets vy*, vy*, and vy’ by

n

Z <]k> (=Y *r7(r + s)*a;

=k

<OO},

vi={a=(a) ew: Z <2> (=sY K17 (r + s)*a; exists for each k € N},
j=k

n
vy'=1a=(a) € w:supZ
neN k=0

v ={a=(a) ew: lim Z Z (2) (=Y *r7(r + s)ka; exists}.

k=0 j=k

Then the following statements hold.
(D) (5"} = vy Ny,
1) (Y = v nvye,
(D) {bg’} = (b} = v5.

Proof Let a = (a,) € w. If we bear in mind the sequence x = (xy) that is defined in proof of
Theorem 2.2, we have

" " K /i , ,
Z axe = Z [% Z <;> (=) (r + s)’yj:| 3
k=0 0

k= j=0

=> [Z <i) (=Y (r + S)k“/:|yk

k=0 L j=k

= (H"y),

for all # € N, where the matrix H"™ = (1}

nk

) is defined by

s ik )=y r(r+s)a;, 0<k<n,
& 0, k> n,

for all k,n € N. Then:
(I) ax = (axxx) € cs whenever x = (x¢) € by’ if and only if H™y € ¢ whenever y = (yx) €
co- This shows that a = (ax) € {b}°} if and only if H™ € (o : c). If we combine this and

Lemma 3.3(ii), we conclude that

sup Y |/ | < oo, (3.5)
neN k=0

lim /2, exists for each k € N. (3.6)
n— 00

These results show that {b*}f = v5* Nv5°.
(II) In a similar way, we obtain a = (ax) € {6!*}” if and only if H"* € (c: c). If we combine
this and Lemma 3.3(iii), we deduce that (3.5), (3.6) hold and

n
nli)nolo Zh;,s( exists, (3.7)
k=0

which shows that {b7*}# = v Nvy* Ny,
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(III) ax = (axxk) € bs whenever x = (xx) € by® or b* if and only if H™y € £, whenever
¥ = () € ¢o or c. This means that a = (ax) € {b;°} = {b*}" if and only if H™ € (co : €oo) =
(c:€x). By combining this and Lemma 3.3(iv), we deduce that (3.5) holds. Hence, {b;'}" =
{b*} = vy*. This completes the proof. d
Theorem 3.6 {by’}* and {b'*}* are equivalent to (.

Proof To avoid a repetition of similar statements, the proof of the theorem is given for
only the binomial sequence space b°. For the proof, the existence of a linear surjective
norm preserving mapping L : {b]*}* —> £; should be shown.

Suppose that f € {6°}*. Now from Theorem 3.1(b) we know that {e,g0(r,s),gV(r,s),...}
is a basis for b*, and each x € b has a unique representation of the form

x=le+ Y [ue—1gP(rs).
k

By the linearity and continuity of f, we get

@) =ife)+ Y [k —1f(gP(r) (3.8)
k
for all x € b7*. Now define a sequence x = (x) € b* such that ||x||,7s =1 as follows:

rk Z] 0 (]1() S)k_j(r + s)jsgnf(g(/)(r, s)), 0<k<n,
% Lo (/1() (=) (r + s)sgnf (¢ (r,5)), Kk >n,

for all k,n € N. Hence,

f )| = Zlf O(r,9))| < I (3.9)

since |f(x)| < |f]l - %]l on b.*. It follows from (3.9) that

> 1 (e®r9)| = supZLf '(r,9)| < If1l.
k
Now we write (3.8) as
f@)=al+) ayu,
k

where

a=fle)-Y f(g¥rs),  a=f(E¥,9)

k

and the series Y, f(g¥)(r,5)) is absolutely convergent.
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By taking into account | lim— oo (B™*x)k| < |lx[l;ps = 1, we get

[fx)] < ||x||b;,s(|a| £y |ak|>
k

whence

@] <lal+_ lal (3.10)
k

and |f(x)| < ||f]l, so we define for all # > 0,

23 o () (=) (r + sYsgna, 0<k<n,

J
* 2o (’;)(—s)k’f(r +sYsgna; + % Z]];”H (f)(—s)k’/(r +8Ysgna, k>n.

Xk =

Then x € by*, ||x|l s = 1, limg— oo (B™*%)x = sgna and so

[f@x)| = |lal + Z |ax| + sgna Z ar| <IIfIl.

k=0 k=n+1

We know that lim,,_, o, Z,‘ﬁml ay = 0 whenever a = (ax) € ;. Then, if we pass to the limit
as n — oo in the last inequality, we have

jal + > laxl < IIfIl- (3.11)
k

By combining (3.10) and (3.11), we conclude that
F1l = lal + ) lal,
k

which is the norm on ¢;.
Let us define a transformation L such that L : {b[*}* — €1, L(f) = (a,a9,a,...). Then we
have

LK) = al + laol + lar] +--- = [f]

IL(f)|l being the £; norm. Therefore, L is norm preserving. It is obvious that L is surjective
and linear. This completes the proof. g

4 Some matrix classes related to the binomial sequence spaces

In this chapter, we characterize some matrix classes related to the binomial sequence
spaces by® and b*. Now, we start with two lemmas which are required in the proof of
the *theorems.

Lemma 4.1 (see [2]) Each matrix map between BK -spaces is continuous.

Lemma 4.2 (see [17]) Let X, Y be any two sequence spaces, A be an infinite matrix and B
be a triangle matrix. Then A € (X : Yp) ifand only if BA € (X : Y).
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For brevity of notations, here and in the following, we prefer to use
—~(j
: j—k ) k
tr = ; <k>(—SY r7(r+s) ay

for all n,k € N.

Theorem 4.3 Let A = (a,x) be an infinite matrix with complex entries. Then the following
statements hold.
(I) Aeb)*:4,)ifand only if

»

sup Z Zt;,ﬁ <00, (4.1)
KeF ™, keK

tr  exists forall k,n € N, (4.2)
Z tn  converges foralln € N, (4.3)

k
m m j

su (=Y r7(r + s)a,;| <00, meN, (4.4)
3 (0) ;

where 1 < p < 00.
(I) A e (b)*: L) ifand only if (4.2) and (4.4) hold, and

supZ|t;',f| < 00. (4.5)
neN «

Proof Given a sequence x = (xx) € b*, we suppose that the conditions (4.1)-(4.4) hold.
Then, by taking into account Theorem 3.5(1I), we conclude that {a,}ien € {b7*}? for all
n € N. Thus, the A-transform of x exists. Let us consider a matrix U™ = () defined by
uy =t for all n,k € N. Since U™ = (u);) satisfies Lemma 3.3(v), we deduce that U"* =
(un) € c:Lp).

Now, we consider the following equality:

k%; Ay = kX:O: }Zk: <;{> (=sY5r7(r + s)a (4.6)

for all n, m € N. If we take the limit (4.6) side by side as m — 0o, we obtain
Z Ak Xk = Z t;’,iyk. (4.7)
k k

By taking the £,-norm (4.7) side by side, we have

IAxlle, = || U™y, < oo.

&p

Therefore Ax € £, and so A € (b° : £,,).
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Conversely, suppose that A € (b : £,). It is known that b} and ¢, are BK-spaces. If we
combine this fact and Lemma 4.1, we deduce that there is a constant M > 0 such that

1Axlle, < Mllxll s (4.8)

forall x € b°.
Now, we define a sequence x = (x;) such thatx =) ", . g®(r,s) for all fixed k € N, where
g®(r,s) = {g,(,k)(r, $)}nen and K € F. Since inequality (4.8) holds for all x € b7°, we have

1
P\ p
) < Mlxls = M.

IAx]lg, = (Z

n

>tk

keK

Therefore (4.1) holds.

According to the assumption, A can be applied to the binomial sequence space b*. So,
it is trivial that the conditions (4.2)-(4.4) hold. This completes the proof of part (I).

If we take Lemma 3.3(iv) instead of Lemma 3.3(v), then part (II) can be proved in a

similar way. O

Theorem 4.4 Let A = (a,i) be an infinite matrix with complex entries. Then, A € (b : ¢)
if and only if (4.2), (4.4), and (4.5) hold, and

lim t)7 =oy  forallk €N, (4.9)

Hn— 00

lim Y tm=a. (4.10)
k

Proof Suppose that A satisfies the conditions (4.2), (4.4), (4.5), (4.9), and (4.10). Given an
arbitrary sequence x = (x) € b)* with limy_, % =/, then Ax exists. Since B = (b}) is
regular and y = (yx) is connected with the sequence x = (x;) by equation (2.2), we obtain
y = (yx) € ¢ such that limy_, o yx = [.

By considering the conditions (4.5) and (4.9), we have

k
Z o] < sup Z|t;ls| <00
=0 neN j
for all k € N. This shows us that (ax) € ¢;. Bearing in mind the condition (4.7), we have
Zankxk = Z i -1+ IZ tn, meN. (4.11)
k k k

By taking into account the conditions (4.5), (4.9), and (4.10), if we take the limit (4.11)
side by side as n — 0o, we write

n—00

lim (Ax), = > elyx = 1) + Lot (4.12)
k

which means that A € (b° : ¢).
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On the contrary, suppose that A € (b} : ¢). It is well known that every convergent se-
quence is also bounded, namely ¢ C £,. By combining this fact and Theorem 4.3(II), we
deduce that the necessity of the conditions (4.2), (4.4), and (4.5) holds. Since Ax exists
and belongs to ¢ for all x € b7*, if we take g®(r,s) = {gﬁ,k)(r, $)}uen instead of an arbitrary
sequence x = (x;), we deduce that Ag¥(r, s) = {t}nen € c for all k € N. This shows us that
the necessity of (4.9) holds.

Moreover, if we take x = e in (4.7), we obtain Ax = {)_; 7} ,en € c. The last result is the

necessity of (4.10). This completes the proof. d

Corollary 4.5 Let A = (a,) be an infinite matrix with complex entries. Then A € (b* : ¢),,
if and only if the conditions (4.2), (4.4), and (4.5) hold, and the conditions (4.9) and (4.10)
hold with ax = 0 for all k e N and o = m, in turn.

Lemma 4.6 (see [18]) Let A = (aux) be an infinite matrix with complex entries. Then A €
(b : c) if and only if (4.5) and (4.9) hold, and

;Ln;o;lt:z - ] @1
—k k
Jim ( ) —sY X (r + 5) Ayj| = Z|t neN. (4.14)

Theorem 4.7 (b)*:¢),, N (b :c) = 9.

Proof We suppose that (b : ¢),, N (b : ¢) # @. Then there is at least a matrix A = (a,x)
such that the conditions of Corollary 4.5 and Lemma 4.6 hold for A = (a,). If we consider
the conditions (4.9) and (4.13), we conclude that

lim E e =
n—0o0 k | Vlk

This result contradicts the condition (4.10). So, the classes (b.° : ¢),, and (b : ¢) are dis-
joint. This last step completes the proof of the theorem. O

Now, by using Lemma 4.2, we can give some more results.

Corollary 4.8 Given an infinite matrix A = (au) with complex entries, we define a matrix
E"Y = (eny) as follows:

1 Zn n
MV_— Vl]]
k= vy 4 (1) o

Jj=0

forall n,k € N, where u,v € R and uv > 0. Then the necessary and sufficient conditions in
order that A belongs to any of the classes (b* : b)), (b}* : by"), (B2 - b%") and (b : BYY),,
are obtained by taking E*" = (€l) instead of A = (au) in the required ones in Theorems
4.3, 4.4 and Corollary 4.5, where by" and by are defined in [18].
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Corollary 4.9 Given an infinite matrix A = (a,x) with complex entries, we define a matrix
C = (cuk) as follows:

1 n
Cuk=—— )
n+14 /

j=0

forall n,k € N. Then the necessary and sufficient conditions in order that A belongs to any
of the classes (b : Xoo), (b : X,,), (b} : €), and (b* : ), are obtained by taking C = (c,x)
instead of A = (a,x) in the required ones in Theorems 4.3, 4.4 and Corollary 4.5, where X,,,
Xoo, and ¢ are defined in [4] and (5], respectively.

Corollary 4.10 Given an infinite matrix A = (a,x) with complex entries, we define two
matrices C = (cyx) and E = (e,x) as follows:

Cuk = Ank — Apslk  ANA  eup = Apk — Ap_1k

foralln, k € N. Then the necessary and sufficient conditions in order that A belongs to any of

the classes (b : Loo(A)), (b : c(A)), (BLF : £,(A)), and (B* : c(A)),, are obtained by taking
C = (cuk) or E = (eux) instead of A = (auk) in the required ones in Theorems 4.3, 4.4 and
Corollary 4.5, where £oo(A) and c(A) are defined in [19] and £,(A) is defined in [17].

Corollary 4.11 Given an infinite matrix A = (a,x) with complex entries, we define a matrix
E = (eux) as follows:

1 < ,
enk = —— ;(1 +t)a

forall n,k € N, where 0 < t < 1. Then the necessary and sufficient conditions in order that A
belongs to any of the classes (V" : al.), (b : a;), (brF :at), and (b7* : a'),, are obtained by
taking E = (e,x) instead of A = (ayx) in the required ones in Theorems 4.3, 4.4 and Corol-
lary 4.5, where al,, a;, and a’. are defined in [20] and [6], respectively.

Corollary4.12 Given an infinite matrix A = (a,x) with complex entries, we define a matrix
E = (eux) as follows:

n
Enk = E ajk
j=0

for all n,k € N. Then the necessary and sufficient conditions in order that A belongs to any
of the classes (b)* : bs), (b° : cs), and (b* : cs),, are obtained by taking E = (e,) instead of
A = (au) in the required ones in Theorems 4.3, 4.4 and Corollary 4.5.

5 Conclusion

By considering the definition of the binomial matrix B"* = (b;), we deduce that B = ()
reduces in the case  + s = 1 to the E” = (/. ), which is called the method of Euler means of
order r. So, our results obtained from the matrix domain of the binomial matrix B = (b))

are more general and more extensive than the results on the matrix domain of the Euler
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means of order r. Moreover, the binomial matrix B = (b}7) is not a special case of the
weighed mean matrices. So, this paper filled up a gap in the existent literature.
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