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Abstract
In this paper, we employ iteration on operator version of the famous Young inequality
and obtain more arithmetic-geometric mean inequalities and the reverse versions for
positive operators. Concretely, we obtain refined Young inequalities with the
Kantorovich constant, the reverse ratio type and difference type inequalities for
arithmetic-geometric operator mean under different conditions.
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1 Introduction
Throughout this paper, A, B are both positive operators on a Hilbert space H , and Bh(H)
is the semi-space of all bounded linear self-adjoint operators on H . In addition, notation
B+(H) is written as the set of all positive operators in Bh(H). Besides, we may assume that
A and B are invertible without loss of generality,

A∇μB = ( – μ)A + μB and A�μB = A/(A–/BA–/)μA/, where  ≤ μ ≤ .

When μ = / we write A∇B and A�B for brevity, respectively; see Kubo and Ando [].
The Kantorovich constant is defined by K(t, ) = (t+)

t for t > , while the Specht ratio []
is denoted by

S(t) =
t


t–

e log t 
t–

for t > , t �= , and S() = lim
t→

S(t) = ,

and has the following properties:
(i) S(t) = S( 

t ) ≥  for t > .
(ii) S(t) is a monotone increasing function on (, +∞).

(iii) S(t) is a monotone decreasing function on (, ).
We start from an improvement of the famous Young inequality as follows.

Theorem ZS ([]) For a, b > , we have

a∇μb ≥ K(h, )ra–μbμ
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for all μ ∈ [, ], where r = min{μ,  – μ} and h = b
a . It admits an operator extension

A∇μB ≥ K(h, )rA�μB

for positive operators A and B on a Hilbert space.

Next, we show the reverse arithmetic-geometric mean inequality with the Specht ratio
for two positive operators.

Theorem T ([]) For invertible operators A and B with  < aIH ≤ A, B ≤ bIH , we have

(i) A∇μB ≤ S(h)A�μB,

(ii) A∇μB – A�μB ≤ L(, h) log S(h)A,

where L(, h) is defined by L(a, b) = a–b
log a–log b (a �= b); L(a, a) = a, h = b

a .

These inequalities have recently been improved by Furuichi [] as follows.

Theorem F ([]) If  < aIH ≤ A, B ≤ bIH , then

(i) A∇μB – r(A∇B – A�B) ≤ S(
√

h)A�μB,

(ii) A∇μB – A�μB – r(A∇B – A�B) ≤ L(
√

h, ) log S(
√

h)bIH ,

where r = min{μ,  – μ}, L(a, b) = a–b
log a–log b , h = b

a .

Afterwards, Krnić et al. [] introduced Jensen’s operator and established some bounds
for the spectra of Jensen’s operator. The obtained results were then applied to operator
means. In such a way, they get refinements and converses of numerous mean inequalities
for Hilbert space operators. See [, , , –] for more related developments.

See also [] for another improvement of the reverse weighted arithmetic-geometric
operator mean inequalities. Their proof is independent of [].

Theorem ZF ([]) If  < aA ≤ B ≤ bA with  < a <  < b, then

(i) A∇μB – r(A∇B – A�B) ≤ max
{

S(
√

a), S(
√

b)
}

A�μB,

(ii) A∇μB – A�μB – r(A∇B – A�B)

≤ max

{
L
(

√
a

, 
)

log S(
√

a), L
(

√
b

, 
)

log S(
√

b)
}

bA,

where r = min{μ,  – μ}, L(a, b) = a–b
log a–log b .

This paper aims to provide a method to obtain more arithmetic-geometric mean in-
equalities and the reverse version for positive operators. In Section , we introduce the
main lemmas. In Section , utilizing the refined Young inequality and iteration method, we
establish some weighted arithmetic-geometric mean inequality for two positive operators.
We also obtain reverse ratio type and difference type inequalities for positive operators by
means of iteration under different conditions in Section  and Section , respectively.
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2 Main lemmas
First of all, the main lemmas including operator iteration can be stated as follows.

Lemma . ([]) If A, B ∈ B+(H),  ≤ μ,ν ≤ , then

 min{μ,  – μ}(A∇B – A�B) ≤ A∇μB – A�μB ≤  max{μ,  – μ}(A∇B – A�B). (.)

Lemma . If A and B are positive operators on a Hilbert space,  ≤ μ,ν ≤ , then

A∇μ(A�νB) = A∇μνB – μ(A∇νB – A�νB).

Proof

A∇μ(A�νB) = ( – μ)A + μA�νB

= A – μA + μνA – μνA + μνB – μνB + μA�νB

= μνB + ( – μν)A – μ
[
( – ν)A + νB – A�νB

]

= A∇μνB – μ(A∇νB – A�νB). �

3 Further refinement of the Young inequalities
In this section, we use the scalar ratio type arithmetic-geometric mean inequality to get a
series of operator versions.

Lemma . ([]) If a, b >  and μ ∈ [, ], then

a∇μb ≥ K(h, )ra–μbμ,

where r = min{μ,  – μ} and h = b
a .

Using the method of the proof of Theorem  in [] we can obtain the following theorem.

Theorem . If A, B ≥ ,  < h ≤ A– 
 BA– 

 ≤ h′ or  < h′ ≤ A– 
 BA– 

 ≤ h < , then

A∇μB ≥ K(h, )rA�μB (.)

for all μ ∈ [, ], where r = min{μ,  – μ}.

Proof For the case of  < h ≤ A– 
 BA– 

 ≤ h′, by Lemma . we have

( – μ) + μx ≥ K(x, )rxμ

for any x > . And hence

( – μ)I + μX ≥ min
<h≤x≤h′ K(x, )rXμ

for a positive operator X such that  < hI ≤ X ≤ h′I .
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Substituting A– 
 BA– 

 for X in the above inequality we have

( – μ)I + μA– 
 BA– 

 ≥ min
<h≤x≤h′ K(x, )r(A– 

 BA– 

)μ.

It is easy to check that the function K(x, ) is increasing for x > , then

( – μ)I + μA– 
 BA– 

 ≥ K(h, )r(A– 
 BA– 


)μ. (.)

Multiplying both sides by A 
 to inequality (.), we obtain the required inequality.

For the case of  < h′ ≤ A– 
 BA– 

 ≤ h < , since the function K(x, ) is decreasing for
 < x <  and K( 

h , ) = K(h, ), similarly we obtain inequality (.). �

Theorem . For two operators A, B ≥  and  < h ≤ A– 
 BA– 

 ≤ h′ or  < h′ ≤
A– 

 BA– 
 ≤ h < , we have

A∇μB – r(A∇B – A�B) ≥ K(
√

h, )RA�μB (.)

for all μ ∈ [, ], where r = min{μ,  – μ} and R = min{r,  – r}.

Proof If  ≤ μ ≤ 
 , then  ≤ μ ≤ .

Here  < h ≤ A– 
 BA– 

 ≤ h′ ensures that  <
√

h ≤ A– 
 (A�B)A– 

 ≤ √
h′, and  < h′ ≤

A– 
 BA– 

 ≤ h <  ensures that  <
√

h′ ≤ A– 
 (A�B)A– 

 ≤ √
h < , respectively. Substitut-

ing B by A�B and μ by μ in (.), it follows that

A∇μ(A�B) ≥ K(
√

h, )min{μ,–μ}A�μ(A�B).

By Lemma . and A�μ(A�B) = A�μB, we have

A∇μ(A�B) = A∇μB – μ(A∇B – A�B),

and then

A∇μB – μ(A∇B – A�B) ≥ K(
√

h, )min{μ,–μ}A�μB.

If 
 ≤ μ ≤ , then  ≤  – μ ≤ 

 . By the above inequality we have

B∇–μA – ( – μ)(B∇A – B�A) ≥ K(
√

h, )min{(–μ),–(–μ)}B�–μA.

Therefore, for  ≤ μ ≤ , we have

A∇μB –  min{μ,  – μ}(A∇B – A�B) ≥ K(
√

h, )min{r,–r}A�μB.

This completes the proof. �

Now, applying the same iteration method as in Theorem . to inequality (.), we obtain
the following.
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Corollary . Assume the conditions as in Theorem .. Then

A∇μB – (r – R)(A∇B – A�B) – R(A∇ [μ]+


B – A� [μ]+


B) ≥ K(
√

h, )R′
A�μB

for all μ ∈ [, ], where r = min{μ,  – μ}, R = min{r,  – r}, R′ = min{R,  – R}, h = M
m ,

and [x] is the greatest integer less than or equal to x.

Corollary . ([]) Suppose that two operators A, B and positive real numbers m, m′, M,
M′ satisfy either  < m′I ≤ A ≤ mI < MI ≤ B ≤ M′I or  < m′I ≤ B ≤ mI < MI ≤ A ≤ M′I .

(I) If  ≤ μ ≤ 
 , then

A∇μB – (r – R)(A∇B – A�B) – R(A∇ 


B – A� 


B) ≥ K(
√

h, )R′
A�μB.

(II) If 
 ≤ μ ≤ , then

A∇μB – (r – R)(A∇B – A�B) – R(A∇ 


B – A� 


B) ≥ K(
√

h, )R′
A�μB,

where r = min{μ,  – μ}, R = min{r,  – r}, R′ = min{R,  – R}, h = M
m , and h′ = M′

m′ .

Proof In the case of (i),  < h = M
m ≤ A– 

 BA– 
 ≤ M′

m′ = h′; In the case of (ii),  < 
h′ = m′

M′ ≤
A– 

 BA– 
 ≤ m

M = 
h < . Then Corollary . leads to the required inequality. This completes

the proof. �

4 Reverse ratio type arithmetic-geometric mean inequalities
In the following, we show a refinement of reverse arithmetic-geometric mean inequality
by applying the main lemmas in Section .

Theorem . If  < aI ≤ A– 
 BA– 

 ≤ bI with a <  < b, and  ≤ μ ≤ , then

A∇μB – (r – R)(A∇B – A�B) – R(A∇ [μ]+


B – A� [μ]+


B)

≤ max
{

S
( √a

)
, S

( √b
)}

A�μB,

where r = min{μ,  – μ}, R = min{r,  – r}.

Proof If  ≤ μ ≤ 
 , then  ≤ μ ≤ . Since  < aI ≤ A– 

 BA– 
 ≤ bI ensures that

√
aA ≤

A�B ≤ √
bA, by substituting B by A�B and μ by μ in (i) of Theorem ZF, it follows that

A∇μ(A�B) –  min{μ,  – μ}[A∇(A�B) – A�(A�B)
]

≤ max
{

S
( √a

)
, S

( √b
)}

A�μ(A�B).

Lemma . leads to the following equalities:

A∇μ(A�B) = A∇μB – μ(A∇B – A�B),

A∇(A�B) – A�(A�B) = A∇ 


B – A� 


B –



(A∇B – A�B).
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Then it follows by Lemma . that

A∇μB – μ(A∇B – A�B) –  min{μ,  – μ}
[

A∇ 


B – A� 


B –



(A∇B – A�B)
]

≤ max
{

S
( √a

)
, S

( √b
)}

A�μB. (.)

If 
 ≤ μ ≤ , then  ≤  – μ ≤ 

 . The hypothesis  < aI ≤ A– 
 BA– 

 ≤ bI admits √
b

B ≤
B�A ≤ √

a B. Then by the inequality (.) we have

B∇–μA – ( – μ)(B∇A – B�A) – R
[

B∇ 


A – B� 


A –



(B∇A – B�A)
]

≤ max

{
S
(


√b

)
, S

(


√a

)}
B�–μA.

Notice that S( 
√a ) = S( √a) and S( 

√b
) = S( √b), so it follows that

A∇μB – ( – μ)(A∇B – A�B) – R
[

A∇ 


B – A� 


B –



(A∇B – A�B)
]

≤ max
{

S
( √a

)
, S

( √b
)}

A�μB.

This completes the proof. �

Since  < aIH ≤ A, B ≤ bIH with a < b admits that √
h

≤ A– 
 BA– 

 ≤ √
h where √

h
<  <√

h, we obtain the counterpart of Theorem ..

Corollary . If  < aI ≤ A, B ≤ bI with a < b and  ≤ μ ≤ , then

A∇μB – (r – R)(A∇B – A�B) – R(A∇ [μ]+


B – A� [μ]+


B) ≤ S
( √h

)
A�μB,

where r = min{μ,  – μ}, R = min{r,  – r}, and h = b
a .

5 Reverse difference type arithmetic-geometric mean inequalities
In the following theorem we show the corresponding difference type analogs of Theo-
rem ..

Theorem . If  ≤ μ ≤  and  < aI ≤ A– 
 BA– 

 ≤ bI with a <  < b, then

A∇μB – A�μB – (r – R)(A∇B – A�B) – R(A∇ [μ]+


B – A� [μ]+


B)

≤ max
{

L
( √a, 

)
log S

( √a
)
, L

( √b, 
)

log S
( √b

)} b√
a

A,

where r = min{μ,  – μ}, R = min{r,  – r}.

Proof (I) If  ≤ μ ≤ 
 , then  ≤ μ ≤ . Since  < aI ≤ A– 

 BA– 
 ≤ bI ensures that

√
aA ≤

A�B ≤ √
bA, substitute B by A�B and μ by μ in (ii) of Theorem ZF, so we obtain
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A∇μ(A�B) – A�μ(A�B) –  min{μ,  – μ}[A∇(A�B) – A�(A�B)
]

≤ max
{

L
( √/a, 

)
log S

( √a
)
, L

( √/b, 
)

log S
( √b

)}√
bA.

As showed in the proof of Theorem ., the following inequality holds:

A∇μB – A�μB – (r – R)(A∇B – A�B) – R(A∇ 


B – A� 


B)

≤ max
{

L
( √/a, 

)
log S

( √a
)
, L

( √/b, 
)

log S
( √b

)}√
bA

≤ max
{

L
( √a, 

)
log S

( √a
)
, L

( √b, 
)

log S
( √b

)}
b/

√
aA, (.)

since a <  < b and L( 
√a , ) = 

√a L( √a, ).

(II) If 
 ≤ μ ≤ , then  ≤  – μ ≤ 

 . The hypothesis  < aI ≤ A– 
 BA– 

 ≤ bI ensures
√
b

B ≤ B�A ≤ √
a B. Then by the inequality (.) and S( 

√a ) = S( √a), we have

A∇μB – A�μB – (r – R)(A∇B – A�B) – R(A∇ 


B – A� 


B)

= B∇–μA – B�–μA – (r – R)(B∇A – B�A) – R(B∇ 


A – B� 


A)

≤ max
{

L
( √b, 

)
log S

( √/b
)
, L

( √a, 
)

log S
( √/a

)}√
/aB

≤ max
{

L
( √b, 

)
log S

( √b
)
, L

( √a, 
)

log S
( √a

)}
b/

√
aA.

The proof is done. �

Similarly, we replace the hypothesis  < aI ≤ A– 
 BA– 

 ≤ bI , where a <  < b by  < aI ≤
A, B ≤ bI with a < b, and we obtain the following.

Corollary . If  < aI ≤ A, B ≤ bI with a < b, and  ≤ μ ≤ , then

A∇μB – A�μB – (r – R)(A∇B – A�B) – R(A∇ [μ]+


B – A� [μ]+


B)

≤ b
√

hL
( √h, 

)
log S

( √h
)
I,

where r = min{μ,  – μ}, R = min{r,  – r}, and h = b
a .
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