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Abstract
This paper deals with an unstirred chemostat model with the Beddington-DeAngelis
functional response. First, some prior estimates for positive solutions are proved by
the maximum principle and the method of upper and lower solutions. Second, the
calculation on the fixed point index of chemostat model is obtained by degree theory
and the homotopy invariance theorem. Finally, some sufficient condition on the
existence of positive steady-state solutions is established by fixed point index theory
and bifurcation theory.
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1 Introduction
The chemostat is a laboratory apparatus used for the continuous culture of micro-
organisms. Mathematical models of the chemostat are surprisingly amenable to analysis.
Early results can be found in the articles of Levin [] and Hsu []. For a general discus-
sion of competition, Smith and Waltman [] discussed the well-unstirred model in detail.
Recently, Wu [–] and Nie [, ] studied the coexistence and asymptotic behavior of
chemostat models from the viewpoint of partial differential equations theories. The re-
sponse functions are mainly the Michaelis-Menten functional response f (S) = S/( + κS),
κ is a constant. Until very recently, both ecologists and mathematicians chose to base their
studies on the Beddington-DeAngelis (denoted by B-D) functional response introduced by
Beddington [] and DeAngelis []. The Beddington-DeAngelis functional response has
some of the same qualitative features as the Michaelis-Menten form but has an extra term
βu in the denominator which models mutual interference between predators. It has been
the source of controversy and can provide a better description of predator feeding over a
range of predator-prey abundances, which are strongly supported by numerous field and
laboratory experiments and observations.

In this paper, we are interested in the following unstirred chemostat model with
Beddington-DeAngelis functional response:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

St = d�S – auf (S, u) – bυg(S,υ), x ∈ �, t > ,
ut = d�u + ( – q)auf (S, u), x ∈ �, t > ,
υt = d�υ + bυg(S,υ) + qauf (S, u), x ∈ �, t > ,
∂S
∂v + γ S = –S, ∂u

∂v + γ u = , ∂υ
∂ν

+ γ υ = , x ∈ ∂�, t > 
S(x, ) = S(x) ≥ , x ∈ �,
u(x, ) = u(x) ≥ , �= , x ∈ �,
υ(x, ) = υ(x) ≥ , �= , x ∈ �,

(.)

where a, b, mi, ki, i = ,  and γ are positive constants, a and b are the maximal growth rates
of the two competitors, respectively. u stands the density of the plasmid-bearing organ-
ism; υ denotes plasmid-free organism; The parameter q,  < q <  denotes the fraction of
plasmid-bearing organism converting into plasmid-free organism. � is a bounded domain
in Rn with smooth boundary ∂�, f (S, u) = S

+mS+ku , g(S,υ) = S
+mS+kυ

are Beddington-
DeAngelis functions; mi, i = ,  are the Michaelis-Menton constants; ki (i = , ) model
mutual interference of between predators.

In the present paper, we shall investigate non-negative steady-state solutions of system
(.). Hence, we will concentrate on the following elliptic system:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d�S – auf (S, u) – bυg(S,υ) = , x ∈ �,
d�u + ( – q)auf (S, u) = , x ∈ �,
d�υ + bυg(S,υ) + qauf (S, u) = , x ∈ �,
∂S
∂ν

+ γ S = –S, ∂u
∂ν

+ γ u = , ∂υ
∂ν

+ γ υ = , x ∈ ∂�.

(.)

Let z = S + u + υ , then S = z – u – υ (refer to [–]) and z satisfies

�z = , x ∈ �,
∂z
∂ν

+ γ z = –S, x ∈ ∂�.

Then one can argue in the exactly same way as in [, , ] to obtain the limiting system
of (.), which can be written as

⎧
⎪⎨

⎪⎩

d�u + ( – q)auf (z – u – υ, u) = , x ∈ �,
d�υ + bυg(z – u – υ) + qauf (z – u – υ, u) = , x ∈ �,
∂u
∂ν

+ ru = , ∂υ
∂ν

+ rυ = , x ∈ ∂�,
(.)

where f (S, u) = S
+mS+ku , g(S,υ) = S

+mS+kυ
, and S = z – u – υ . We only concern on the

case that S(x), u(x),υ(x) are non-negative, so we redefine the response function as follows:

f̂ (S, u) =

{
f (S, u), S ≥ , u ≥ ,
, others,

ĝ(S,υ) =

{
g(S,υ), S ≥ ,υ ≥ ,
, others.

Then f̂ (S, u), ĝ(S,υ) ∈ C(R). We will denote f̂ (S, u), ĝ(S,υ) by f (S, u), g(S,υ) for the sake
of simplicity, respectively. Thus, the solution of equation (.) satisfies

S(x) + u(x) + υ(x) = z(x), x ∈ �̄.

In the following, we set up the fixed point index theory on this paper. Let E be a Banach
Space. W ⊂ E is called a wedge if W is a closed convex set and αW ⊂ W for all α ≥ .
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For y ∈ W , we define Wy = {x ∈ E : ∃r = r(x) > , s.t., y + rx ∈ W }, Sy = {x ∈ W̄y : –x ∈ W̄y},
we always assume that E = W – W . Let T : Wy → Wy be a compact linear operator on E.
We say that T has property α on W̄y if there exists t ∈ (, ) and ω ∈ W̄y\Sy, such that
ω – tTω ∈ Sy.

Suppose that F : W → W is a compact operator, and y ∈ W is an isolated fixed point of
F , such that Fy = y, let L = F ′(y) is Fréchet differentiable at y, it follows that L : W → W .

Proposition . ([] Dancer index theorem) Assume that I – L is invertible on E, then we
have

() L has property α on W̄ , then indexW (F , y) = ;
() L does not have property α on W̄ , then indexW (F , y) = indexE(L, θ ) = ±.

Proposition . ([]) Assume that F(θ ) = θ , A = F ′(θ ) is Fréchet differentiable of F at θ

in W . If the eigenvalue problem

Ah = λh, h ∈ W (.)

has no eigenvalue equal to , then θ is isolate fixed point of F , and
() if (.) has no eigenvalue larger than , then indexW (F , θ ) = ;
() if (.) has an eigenvalue λ > , then indexW F(F , θ ) = .

Proposition . ([]) Assuming that T is a positive compact linear operator in ordered
Banach spaces, u is a positive element in Banach space, r(T) is the spectral radius of the
operator T , then

() if Tu > u, then r(T) > ;
() if Tu < u, then r(T) < ;
() if Tu = u, then r(T) = .

Proposition . ([]) Assume that q(x) ∈ C(�), q(x) + p >  on �, p is a positive real
constant, λ is the principal eigenvalue of the following problem:

–�φ – q(x)φ = λφ, x ∈ �,
∂φ

∂ν
+ rφ = , x ∈ ∂�.

If λ >  (or < ), then all eigenvalues of the following problem:

–�φ – pφ = t
(
q(x) + p

)
φ, x ∈ �,

∂φ

∂ν
+ rφ = , x ∈ ∂�

are larger than  (or less than ).

The organization of our paper is as follows. In Section , some prior estimates for pos-
itive solutions are proved by the maximum principle and the upper and lower solution
method. In Section , the calculations on the fixed point index of chemostat model by
degree theory and the homotopy invariance theorem. In Section , some sufficient con-
ditions on the existence of positive steady-state solutions is established by the fixed point
index theory in cone and bifurcation theory.
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2 Some prior estimates for positive solutions
The main purpose of this section is to give prior upper and lower positive bounds for pos-
itive solutions of (.) by using the maximum principle and the upper and lower solution
method.

Let λ,μ be, respectively, the principal eigenvalue of the following problem:

�ϕ + λϕf (z, ) = , x ∈ �,
∂ϕ

∂ν
+ rϕ = , x ∈ ∂�, (.)

�ψ + μψg(z, ) = , x ∈ �,
∂ψ

∂ν
+ rψ = , x ∈ ∂�, (.)

the corresponding principal eigenvalue function denoted by ϕ(x), ψ(x), and

‖ϕ‖ = , ‖ψ‖ = .

First, we consider the single species equation as follows:

d�u + a( – q)uf(z – u, u) = , x ∈ �,
∂u
∂ν

+ ru = , x ∈ ∂�. (.)

By [, , ], we can directly get the following conclusions.

Lemma . If a ≤ λd
–q , then  is the unique non-negative solution of (.); If a > λd

–q , (.)
has a unique positive solution, denoted by �, satisfying the following properties:

(i)  < � < z;
(ii) � is continuously differentiable for a ∈ ( λd

–q , +∞) and is point wisely increasing when
a is increasing.

(iii) lima→ λd
–q

� =  uniformly for x ∈ �̄, lima→∞ � = z(x) for almost every x ∈ �;

(iv) Let L(a,d) = d� + a( – q)(f (z – �,�) – �f ′
 (z – �,�) + �f ′

(z – �,�)) be the
linearized operator of (.) at �, then L(a,d) is differentiable in
C

B(�̄) = {u ∈ C(�̄) : ∂u
∂ν

+ ru = }, and all eigenvalues of L(a,d) are strictly negative.

Remark . For (.), we have the same conclusion as Lemma .. Suppose b > dμ, we
denote the unique positive solution by θ for the following problem:

d�υ + bυg(z – υ,υ) = , x ∈ �,
∂υ

∂ν
+ rυ = , x ∈ ∂�, (.)

let L(b,d) = d�+ b(g(z – θ , θ ) – θg ′
(z – θ , θ ) + θg ′

(z – θ , θ )) be the linearized operator of (.)
at θ .

Next, let λ̂ be the principal eigenvalue of the following eigenvalue problem:

�ϕ + λ̂ϕf (z – θ , ) = , x ∈ �,
∂ϕ

∂ν
+ rϕ = , x ∈ ∂�, (.)

the corresponding eigenfunction denoted by ϕ̂(x) and uniquely determined by normal-
ization ‖ϕ̂‖ = .
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In order to accurately estimate the positive solution of (.), we consider the following
boundary value problem:

d�υ + bυg(z – υ,υ) + aq�f (z – υ, ) = , x ∈ �,
∂υ

∂ν
+ rυ = , x ∈ ∂�. (.)

Lemma . Suppose a > λd
–q , there exists a unique positive solution of (.). Then  < υ < z,

and θ < υ < z, when b > dμ.

Proof Let ω = z – υ , then

d�ω + bυg(ω,υ) + aq�f (ω, ) = , x ∈ �,
∂ω

∂ν
+ rω = S, x ∈ ∂�.

Suppose infx∈�̄ ω(x) = ω(x) < , then x /∈ �. Otherwise, �ω(x) ≥ . However,

d�ω(x) = bυ(x)g
(
ω(x),υ(x)

)
+ aq�f

(
ω(x), 

)
< ,

a contradiction. If x ∈ ∂�, it follows from the definition of r(x) and S(x) that

∂ω

∂ν

∣
∣
∣
∣
x

= S(x) – rω(x) > .

This contradicts ∂ω
∂ν

|x < , hence, υ ≤ z on �̄, and υ ≤ z,υ �= z, then ω = z – υ ≥ , �= .
If ω(x) = , for some point x ∈ �̄, then it follows from the maximum principle [] that
x ∈ ∂�. Furthermore, from the Holp lemma [], we can get ∂ω

∂ν
|x < , this contradicts

the boundary condition.
Thus, υ < z on �̄, and for

d�υ + bυg(z – υ,υ) + aq�f (z – υ, ) > d�υ + bυg(z – υ,υ).

Hence υ > θ when b > dμ.
Next, we will prove the existence and uniqueness of solutions. For sufficiently small δ > ,

δφ, z are the upper and lower solutions of (.). It follows from the comparison principle
[] that (.) exists the minimum solution υ and maximum solution υ, satisfying δφ ≤
υ ≤ υ ≤ z.

In the following, we prove the uniqueness. Thanking to υ,υ are the solution of (.),
we have

d�υ + bυg(z – υ,υ) + aq�f (z – υ, ) = , x ∈ �,

d�υ + bυg(z – υ,υ) + aq�f (z – υ, ) = , x ∈ �.

Multiplying the second equation and first equation by υ,υ, respectively, and applying
the Green’s formula, we obtain I =

∫

�
d(�υ · υ – �υ · υ) = . Then

∫

�

bυυ
(
g(z –υ,υ) – g(z –υ,υ)

)
dx + aq

∫

�

�
[
υf (z –υ, ) –υf (z –υ, )

]
dx = .

According to the monotonicity of f , g , and υ ≤ υ, we get υ ≡ υ. �



Feng et al. Journal of Inequalities and Applications  (2016) 2016:294 Page 6 of 14

In conclusion, we can get prior estimates on the system (.).

Theorem . Suppose (u,υ) is non-negative solution of (.), and u �= ,υ �= . Then
(i)  < u < � < z,  < υ ≤ υ̂ < z, x ∈ �̄;

(ii) u + υ < z, x ∈ �̄;
(iii) a > λd

–q .

Proof The proof is in [, ], we omit it. �

3 Calculations of fixed point index
In this section, we will calculate the fixed point index of (.) by using the standard fixed
point index theory in cone.

Let C(�̄) = {y ∈ C(�̄)| ∂y
∂n + ry = }, E = [C(�̄) × C(�̄)]. For a sufficiently large P > ,

and τ ∈ [, ], we consider the following equations:

⎧
⎪⎨

⎪⎩

(–d� + τP)u = τ (P + a( – q)f (z – u – υ, u))u, x ∈ �,
(–d� + τP)υ = τ (Pυ + bg(z – u – υ,υ)υ + qauf (z – u – υ, u)), x ∈ �,
∂u
∂ν

+ ru = , ∂υ
∂ν

+ rυ = , x ∈ ∂�.
(.)

For (u,υ)T ∈ E, τ ∈ [, ], (U , V )T ∈ [C+α(�̄)] × [C+α(�̄)] is the unique solution of the
following linear problem:

⎧
⎪⎨

⎪⎩

(–d� + τP)U = τ (P + a( – q)f (z – u – υ, u))u, x ∈ �,
(–d� + τP)V = τ (Pυ + bg(z – u – υ,υ)υ + qauf (z – u – υ, u)), x ∈ �,
∂U
∂ν

+ rU = , ∂V
∂ν

+ rV = , x ∈ ∂�,

define Fτ : [, ] × E → E, Fτ (u,υ)T = (U , V )T , it follows from [] that Fτ is compact.
It is clear to see that (u,υ)T ∈ E is fixed point of Fτ if only and if (u,υ)T ∈ E is a positive

solution of (.). Let

K =
{

u ∈ C(�̄)|u(x) ≥ , x ∈ �
}

,

W =
{

(u,υ) ∈ E|u(x) ≥ ,υ(x) ≥ , x ∈ �
}

,

D =
{

(u,υ) ∈ W | ≤ u(x) ≤ �,  ≤ υ(x) ≤ max
�̄

υ̂ + , x ∈ �
}

,

D′ = (int D) ∩ W .

Then W is a cone in E, D is bounded set in W , let F = F. It follows that there exists K > 
such that f (z – u – υ, u) ≥ f (z – u, u) – Kυ .

Suppose that P is sufficiently large, for all (u,υ) ∈ D, we can get

P + a( – q)f (z – u – υ, u) > , P + bg(z – u – υ,υ) – aquK > .

Then F : D′ → W is continuously differentiable, hence, (.) had non-negative solution if
only and if F has fixed point on D. According to the homotopy invariance of degree, we
have

degW
(
I – Fτ , D′, (, )

)
= degW

(
I – F , D′, (, )

)
, τ ∈ [, ].
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In the following, we calculate the index number of (, ) and (, θ ) by using the fixed
point theory.

Lemma . For the index number of the operator F at (, ) the following results hold:
(i) if a �= λd

–q , b > μd, then indexW (F , (, )) = ;
(ii) Suppose that b < μd. If a > λd

–q , then indexW (F , (, )) = ; If a < λd
–q , then

indexW (F , (, )) = .

Proof Define the operator at (, ) of F as follows:

L(ϕ,ψ) = F ′(, )

(
ϕ

ψ

)

= (–d� + P)–

(
P + a( – q)f (z, ) 

aqf (z, ) P + bg(z, )

)(
ϕ

ψ

)

.

Hence, F ′(, ) · (ϕ,ψ)T = λ(ϕ,ψ)T is equivalent to

⎧
⎪⎨

⎪⎩

–d�ϕ + Pϕ = 
λ

(Pϕ + a( – q)f (z, )ϕ), x ∈ �,
–d�ψ + Pψ = 

λ
(Pψ + bψg(z, ) + qaϕf (z, )), x ∈ �,

(ϕ,ψ) ∈ W .
(.)

Take y = (, ), then W̄y = K × K, Sy = {(, )}, W̄y\Sy = K × K\{(, )}.
If  is an eigenvalue of (.), then

{
d�ϕ + a( – q)f (z, )ϕ = , x ∈ �,
d�ψ + bψg(z, ) + aqϕf (z, ) = , x ∈ �,

(.)

if a �= λd
–q , b �= μd, form the first equation of (.) and definition of λ, we have ϕ ≡ .

Similarly, it follows from the second equation that ψ ≡ . Thus  is not an eigenvalue of
L, it is to see that (, ) is an isolated fixed point.

(i) Suppose that a �= λd
–q , b > μd. If λ̂ is the principal eigenvalue of –d�ψ – bg(z, )ψ =

λ̂ψ , then λ̂ < . From Proposition ., there exists 
λ̂

<  is an eigenvalue of (–d� + P)ψ =

λ̂

(P + bg(z, ))ψ ,ψ is the corresponding eigenfunction, then the L has no eigenvalue
greater than , so (,ψ) is the corresponding eigenfunction. It follows from Proposition .
that we have indexW (F , (, )) = .

(ii) Suppose that b < μd. If a > λd
–q ,  is not an eigenvalue of (.), and λ(–d� – ( –

q)af (z, )) < . From Proposition ., then there exists 
λ̂

<  which is an eigenvalue of the
first equation of (.), the corresponding eigenfunction denoted by ϕ, and putting it into
the second equation, we have

(

–d� +
(

 –

λ̂

)

P –

λ̂

bg(z, )
)

ψ =

λ̂

aqf (z, )ϕ.

Thanks to b < μd and 
λ̂

< , all eigenvalues of the operator (–d�+ ( – 
λ̂

)P – 
λ̂

bg(z, ))I
are larger than , that is the operator is inverse, hence, let

ψ =
(

–d� +
(

 –

λ̂

)

P –

λ̂

bg(z, )
)– 

λ̂
aqf (z, )ϕ.
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Then there exists the eigenvalue of L is larger than , and the corresponding eigenfunction
denoted by (ϕ,ψ), then from Proposition ., we can get indexW (F(, )) = .

When a < λd
–q ,  is not the eigenvalue of (.). Next, we prove that L does not have the

α property on W̄y . Suppose that L on W̄y has α property, then there exist t ∈ (, ) and
the function (φ,ψ) ∈ W̄y\Sy = K × K\{(, )} such that (I – tL)(ϕ,ψ)T ∈ Sy , that is,

{
(–d� + P)ϕ = t(P + a( – q)f (z, ))ϕ, x ∈ �,
(–d� + P)ψ = t((P + bg(z, ))ψ + qaf (z, )ϕ), x ∈ �.

(.)

For (.), if ψ ≡ , then ϕ ≡ , since (ϕ,ψ) is an eigenfunction, hence ψ �= , we discuss
the following two cases:

(a) If ϕ ≡ , then from the second equation of (.), we see that λ(–d� – bg(z, )) > 
when b < μd, it follows from the Proposition . that (.) has no eigenvalues which are
equal to or less than . This is a contradiction hypothesis.

(b) If ϕ �≡ , then we can get the following results from equation (.), when

a <
λd
 – q

, λ
(
–d� – a( – q)f (z, )

)
> .

It follows from Proposition . that (.) has no eigenvalues which are equal to or less
than , this is a contradiction with the hypothesis. Hence, L as no property α on W̄y . By
Proposition ., we can get that

indexW (F , y) = indexW
(
L, (, )

)
= ±.

It is easy to see that indexW (L, (, )) = (–)σ , where σ is the sum of the algebraic mul-
tiplicities of the eigenvalues of L which are greater than . From above results and
(.), we see that L has no eigenvalues which are greater than , then σ = , that is,
indexW (F , (, )) = . �

Lemma . indexW (F , D′) = .

Proof Taking τ ∈ (, ) sufficiently small, such that τa( – q) < λd, τb < λd, it follows
from Lemma . that indexW (F , (, )) = , so as  < τ << , degW (I – Fτ , D′, (, )) = , by
the homotopy invariance, we get degW (I – Fτ , D′, (, )) = , thus indexW (F , D′) = . �

Lemma . Suppose b > μd, the index on the point of (, θ ) satisfies the following results:
(i) If a < λ̂d

–q , then indexW (F , (, θ )) = ; if a > λ̂d
–q , then indexW (F , (, θ )) = .

(ii) If a = λ̂d
–q , then either (.) has a positive solution or indexW (F , (, θ )) = .

Proof Defining the linearized operator F on (, θ ) as follows:

L = F ′(, θ ) = (–d� + P)–

(
P + a( – q)f (z – θ , ) 

aqf (z – θ , ) – bθg ′
(z – θ , θ ) P + Lb

)

,

where Lb = b(g(z – θ , θ ) – θg ′
(z – θ , θ ) + θg ′

(z – θ , θ )). Taking y = (, θ ), then W̄y = K ×
C(�), Sy = {} × C(�̄), W̄y\Sy = K\{} × C(�̄).
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First, we will prove that I – L is invertible on W̄y as a �= λ̂d
–q . Assume that there exists

φ,ψ ∈ C(�̄) such that L(φ,ψ)T = (φ,ψ)T , then

d�φ + a( – q)f (z – θ , )φ = ,

d�ψ + Lbψ + qaf (z – θ , )φ – bθg ′(z – θ , θ )φ = .

From the definition of a �= λ̂d
–q and λ, we can get φ ≡ , and taking φ ≡  into the second

equation, then d�ψ + Lbψ = .
It follows from Lemma . that ψ ≡ , hence I – L is inverse on W̄y .
(i) When a < λ̂d

–q , we can prove that L has no property α on W̄y .
We assume that L has property α on W̄y , then there exist t ∈ (, ) and the function

(φ,ψ) ∈ W̄y\Sy = K\{} × C{�̄}, such that I – tL(φ,ψ)T ∈ Sy = {} × C(�̄), that is

{
(–d� + P)φ – t(P + ( – q)af (z – θ , ))φ = ,
(–d� + P)ψ – t(aqf (z – θ , )φ – bθg ′

(z – θ , θ )φ + Pψ + Lbψ) ∈ C(�̄).
(.)

It follows from the definition of φ,ψ which satisfies (.), let T = (–d� + P)–(P + ( –
q)af (z – θ , ))I , for (.), Tφ = 

t
φ > φ, from Proposition ., we can obtain r(T) > . How-

ever, from a < λ̂d
–q , we know that there exists φ >  such that

d�φ + a( – q)f (z – θ , )φ = λ
(
d� + a( – q)f (z – θ , )

)
φ < .

Adding both sides with Pφ > , we can get (d� + a( – q)f (z – θ , ) + P)φ < Pφ, that is

Tφ = (–d� + P)–(a( – q)f (z – θ , ) + P
)
φ < φ.

From Proposition ., we can obtain r(T) < , and then get a contradiction. Hence L has
no property α on W̄y . From Proposition ., we know

indexW (F , y) = indexW
(
L, (, θ )

)
= ±.

It is easy to see that indexW (L, (, θ )) = (–)σ , where σ is the sum of the algebraic mul-
tiplicities of the eigenvalues of L which are greater than . Set λ be the eigenvalue of L,
the corresponding eigenfunction named by (φ,ψ), then L(φ,ψ)T = λ(φ,ψ)T , that is

{
(–d� + P)–(P + ( – q)af (z – θ , ))φ = λφ,
(–d� + P)–(aqf (z – θ , )φ – bθg ′

(z – θ , θ )φ + Pψ + Lbψ) = λψ .

By the definition of the above operator T , we see that Tφ = λφ and r(T) < , then all
eigenvalues of L are less than , so

indexW
(
F , (, θ )

)
= indexE

(
L, (, )

)
= (–)σ = (–) = .

Next, we prove that L has property α on W̄y when a > λ̂d
–q . Suppose that η is the prin-

cipal eigenvalue of d�φ + a( – q)f (z – θ , )φ = ηφ, thanks to a > λ̂d
–q , η > , from Propo-

sition ., we know that there exists t ∈ (, ) is eigenvalue of (–d� + P)φ = t(P + a( –
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q)f (z – θ , ))φ, take φ ∈ K\{} as the corresponding eigenfunction, then (φ, ) ∈ W̄y\Sy

such that

(–d� + P)φ – t
(
P + a( – q)f (z – θ , )

)
φ = ,

–t(–d� + P)–(aqf (z – θ , )φ – bθg ′
(z – θ , θ )φ

) ∈ C(�̄),

that is, I – tL(φ,ψ)T ∈ Sy , thus, L has property α on W̄y . By the Proposition ., we can
obtain indexW (F , (, θ )) = .

(ii) First, we show that I – L is not invertible on W̄y . That is, there exists (ω,χ ) ∈ W̄y

such that L(ω,χ )T = (ω,χ )T , it follows that

{
d�ω + α( – q)f (z – θ , )ω = ,
d�χ + Lbχ + qaf (z – θ , )ω – bθg ′

(z – θ , θ )ω = .
(.)

If a = λ̂d
–q , then we take φ̂ >  into the second equation of (.) as follows:

L(a,b)(d� + Lb)χ = –qaf (z – θ , )ω + bθg ′
(z – θ , θ )φ̂.

From Remark ., we see that all the eigenvalues of L(b,d) less than , that is, the operator
L(b,d) is invertible, then there exists the unique

χ = L–
(a,b)

(
–qaf (z – θ , )ω + bθg ′

(z – θ , θ )φ̂
)
,

hence there exists (φ̂,χ) ∈ W̄y = K × C(�̄) such that L(ω,χ )T = (ω,χ )T . Thus, we
have proved that I – L is not invertible on W̄y . Hence, the results cannot be proved by
Proposition . in this case.

In the following, we prove that (.) can bifurcate from (a, , θ ) by the bifurcation theory
[, ], then we get the result. Defining the function as F(a, u,υ) = (d�u + a( – q)uf (z –
u – υ, u), d�υ + bυg(z – υ – u,υ) + aqf (z – u – υ, u)u). Clearly, F(a, , θ ) = . Define the
operator as follows:

L(a, , θ ) = D(u,υ)F(a, , θ ) =

(
d� + a( – q)f (z – θ , ) 

–bθg ′
(z – θ , θ ) + aqf (z – θ , ) d� + Lb

)

,

where D(u,υ)F(a, , θ ) stands for the Fréchet derivatives of F at the point (u,υ).
Let L(a, , θ )(ω,χ )T = (, )T . From the analysis of (.), we see that the nuclear space

of L(a, , θ ) satisfies N(L(a, , θ )) = span{(φ̂,χ)}. Hence dim N(L(a, , θ )) = .
The adjoint operator of L(a, , θ ) can be written as

L∗
 (a, , θ ) =

(
d� + a( – q)f (z – θ , ) –bθg ′

(z – θ , θ ) + aqf (z – θ , )
 d� + Lb

)

.

Let L∗
 (a, , θ )(ω,χ )T = (, )T , it is easy to get (ω,χ ) = (φ̂, ), so N(L∗

 (a, , θ )) =
span{(φ̂, )}. According to the Fredholm theorem [], we can obtain R(L(a, , θ )) =
{(ω,χ ) ∈ E| ∫

�
ωφ̂ dx = }, so codim R(L(a, , θ )) = .
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Define L(a, , θ ) = DaD(u,v)F(a, , θ ), then

L(a, , θ ) · (φ̂,χ) =

(
( – q)f (z – θ , ) 

qf (z – θ , ) 

)(
φ̂

χ

)

=

(
( – q)f (z – θ , )φ̂

qf (z – θ , )φ̂

)

.

Owing to N(L∗
 ) and R(L) are orthogonal, however

∫

�
( – q)f (z – θ , )φ̂

 �= .
Hence L(a, , θ )(φ̂,χ)T /∈ R(L). To sum up, when a = λ̂d

–q , b > μd, it follows from the
bifurcation theorem [, ] that F(a, u,υ) =  (a ∈ R) can produce the bifurcation at the
point (a, , θ ). That is, there exist |s| < δ (δ > ) and the C function as (a(s),φ(s),ϕ(s)) :
(–δ, δ) → R × E, such that u(s) = s(φ̂ + φ(s)),υ(s) = θ – s(χ + ϕ(s)),

a() = a, φ() = ϕ() = , φ(s),ϕ(s) ∈ Z, Z ⊕ N(L) = E,

and satisfying F(a(s), u(s),υ(s)) =  (|s| < δ).
We shall discuss two possible cases as follows:
Case : if a′(s) ≡ , then a(s) = a, for s submitting to |s| < σ , and F(a(s), u(s),υ(s)) = ,

that is, (u(s),υ(s)) is the solution (.), since φ̂ > , and |s| is very small, then there exists
ε >  such that u(s) > ,υ(s) > , when  < s < ε ≤ δ. Hence, (.) have positive solutions.

Case : if a′(s) �≡ , then there exists δ′ > , a′(s) is not equal to  when |s| < δ ≤ δ′. Ac-
cording to the uniqueness of the bifurcation solution of F(a(s), u(s),υ(s)) = , (, θ ) is iso-
lated fixed point of the operator F in the neighborhood of (a, , θ ). Owing to  is the eigen-
value of F ′(, θ ), we cannot calculate indexW (F , (, θ )) = (–)σ . Hence, we can define the
operator as

Ft(u,υ) = (–d� + P)–

(
Pu + ( – q)af (z – u – υ, u)u – tu

M + bg(z – u – υ,υ)υ + qaf (z – u – υ, u)u

)

.

Obviously, (, θ ) is the fixed point of Ft . Defining the derived operator of Ft at (, θ ) as
follows:

Lt = F ′
t(, θ ) = (–d� + P)–

(
p + ( – q)af (z – θ , ) – t 

–bθg ′
(z – θ , θ ) + aqf (z – θ , ) P + Lb

)

.

The compact operator Ft deduce that F ′
t is compact operator. Suppose that  is the eigen-

value of Lt when t ∈ (, ], then Lt(φ,ψ)T = (φ,ψ)T , that is,

{
d�φ + a( – q)f (z – θ , )φ – tφ = ,
d�ψ + Lbψ + aqf (z – θ , )φ – bθg ′

(z – θ , θ )φ = .

Thanks to a( – q) = λd, then λ(d� + ( – q)af (z – θ , ) – t) < , that is, d� + ( –
q)af (z – θ , ) – t is invertible, then φ ≡ , and from Lemma ., we know that the operator
L is invertible. Then, similarly, we see that ψ ≡ . Thus,  is not the eigenvalue of Lt .

Due to (, θ ) is the isolated fixed point of Ft , indexW (Lt(, )) = (–)σ . To show that Lt

has no eigenvalue greater than , suppose that σ >  is an eigenvalue of Lt . Let

(ω,χ ) �= (, ), Lt(ω,χ )T = σ (ω,χ )T , then
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d�ω + Pω =

σ

(
Pω + a( – q)f (z – θ , )ω – tω

)
. (.)

Equation (.) can be rewritten as follows:

d�ω +

σ

( – q)af (z – θ , )ω =
(

P +
t
σ

–
P
σ

)

ω.

Thanks to σ > , then ν = P + t
σ

– P
σ

>  is some eigenvalue of d� + 
σ

( – q)af (z – θ , ).
However, from

λ

(

d� +

σ

( – q)af (z – θ , )
)

≤ λ
(
d� + ( – q)af (z – θ , )

)
,

we obtain λ(d� + 
σ

( – q)af (z – θ , )) ≤ , this contradicts with ν > . Hence, indexW (Ft ,
(, θ )) =  as t ∈ [, ]. Because (, θ ) is isolated fixed point of (.), we can take some neigh-
borhood U of (, θ ) in D′ such that Ft has no fixed point at ∂U . Using the homotopy in-
variance property, we get index W (F , (, θ )) = indexW (Ft(, θ )) = . �

4 Coexistence of the chemostat model
In this section, by using the fixed point index calculation method, combined with Lem-
mas .-., we can show that there exists the sufficient condition of existence of non-
negative solutions to equation (.).

Theorem .
(i) If a < λd

–q , b < μd, then the unique non-negative solution of (.) is zero;
(ii) if a > λd

–q , b < μd, then (.) have at least one positive solution besides (, );
(iii) if a > λd

–q , b > μd, then (.) have at least one positive solution besides (, ), (, θ ).

Proof (i) From Lemma ., (.) can have no semi-trivial solution as (, θ ) when a < λd
–q ,

b < μd then there exists only a zero solution as (, ). It follows from Lemma . that

indexW
(
F , (, )

)
= , then indexW

(
F , D′) = indexW

(
F , (, )

)
.

Hence, we cannot prove the existence of positive solution by the fixed point index theory.
In the following, we show it by the upper and lower solution method.
When a < λd

–q , we suppose (.) have non-negative solution (ũ, υ̃). It follows that either
ũ >  or ũ ≡ . If ũ > , then

 = d�ũ + a( – q)f (z – ũ – υ̃ , ũ)ũ ≤ d�ũ + a( – q)f (z – ũ, ũ)ũ, x ∈ �.

Hence ũ is a positive lower solution of (.), and there exists an upper solution as C >
, ũ ≤ C, x ∈ �̄. Therefore, (.) has a positive solution u+ such that ũ ≤ u+ ≤ C, x ∈
�̄. This contradicts Lemma .. Thus ũ ≡ , then when b < μd, assume that (.) have
non-negative solution (, υ̃), and υ̃ > , this contradicts with Remark .. Hence, the non-
negative solution of (.) has the only zero.

(ii) If a > λd
–q , b < μd, from Lemma ., we know that (.) has a semi-trivial solution

(, θ ), then there exists only (, ). It follows from Lemma . that

indexW
(
F , (, )

)
= ,
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and according to Lemma ., indexW (F , D′) = , then

indexW
(
F , D′) �= indexW

(
F , (, )

)
.

Hence (.) has at least a positive solution on D′.
(iii) Similar to the proof of (ii), we can prove that (, ), (, θ ) are the non-negative solu-

tions, if a > λ̂d
–q , b > μd. Thanks to Lemmas .-.,

indexW
(
F , D′) �= indexW

(
F , (, )

)
+ indexW

(
F , (, θ )

)
.

Hence (.) has at least a positive solution on D′. �

Remark . When a = λd
–q , b > μd, it follows from Lemma . that we can obtain either

indexW (F , (, θ )) = , or for (.) there exists a positive solution.
When indexW (F , (, θ )) = ,

indexW
(
F , D′) = indexW

(
F , (, )

)
+ indexW

(
F , (, θ )

)
,

the method of the index calculation cannot judge the existence of positive solutions. If
another result of Lemma . holds, then (.) has a positive solution. To sum up, we cannot
determine whether we have the existence of the positive solution.

5 Conclusion
The coexistence of an unstirred chemostat model with B-D functional response is studied
by fixed point index theory in our paper. First of all, some prior estimates for positive
solutions are proved by the maximum principle and the upper and lower solution method.
Second, the calculations are performed on the fixed point index of chemostat model by
degree theory and the homotopy invariance theorem. Finally, some sufficient condition on
the existence of positive steady-state solutions is established by fixed point index theory
in cone and bifurcation theory.
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