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Abstract
Let g > 2 be a fixed integer, A= A(g) < q,B=B(q) < g,and H=H(q) < g. Define

MABH ={aeZ]|(a,q=1ab=1 (modq)1<a<A1=<b=<Bla-b|<H}

With the aid of the estimates for the general Kloosterman sums and the properties of
trigonometric sums, we obtain an upper bound of the general partial Gaussian sums
over the number set (A, B, H).
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1 Introduction
Let g, N, H, n be integers with ¢ > 2, H > 0, x be a Dirichlet character mod ¢ and e(y) =

e¥™¥, The study of the following partial Gaussian sums:

N+H

5 (=)

a=N+1

is of great importance. By extending his well-known work on character sums, Burgess

obtained the following.

Proposition 1 ([1]) Let g be a prime and x be a non-principal Dirichlet character mod q.
Then, for any integers N, n, H, r with 0 < H < q and r > 2, we have

N+H

na
Z X (a)e(—) < Hl—l/rq1/4(r—1) 10g2 q.
a=N+1 9

Proposition 2 ([2]) Let g > 2 be an integer and y be a primitive character mod q. Then,
for any integers N, n, H with 0 < H, we have

N+H

Z X(a)e(%) < H2/3q1/8+e. (L.1)

a=N+1
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Proposition 3 ([3]) Let g = p* (@ > 1) be a power of the prime p > 3 and yx be a non-
principal Dirichlet character mod q. Then, for any integers N, n, H with 0 < H, we have

N+H

na
Z x(a)e(;) < qul/12 log®g. (1.2)

a=N+1

At almost the same time, Liu [4] showed independently the following.

Proposition 4 Let q be a prime power, x, ¥ be a multiplicative and additive character

mod q, respectively, with x non-principal. Then, for any integers N, H with 0 < H, we have

N+H
Z x (@)W (a) < H> g1+,

a=N+1

Now let ¢ > 2 be a fixed integer, A = A(q) < ¢, B=B(q) < g,and H = H(q) < q. Define
MWA,B,H)={a€Z|(a,q)=1,ab=1 (mod q),1<a<A,1<b<B,a-b|l<H].

It is a direct generalization of the set of so-called H-flat numbers mod g, which was studied
extensively by Xi (see [5] and references therein).

This paper deals with general partial Gaussian sums of the following type:

GG ABHg) = ) ukx(a)e(y),

ach(A,B,H) 1

where k > 0 is an arbitrary fixed integer. For the sake of periodicity of e(%) we can also
restrict 7 to be 1 < n < q. Then with the aid of the estimates for the general Kloosterman
sums and the properties of trigonometric sums, we shall obtain upper bound estimates as

follows.

Theorem Let g > 2 be an integer and x a non-principal Dirichlet character mod q. Then

nABd(q) ) Bd(q)(log g)(log H)
q* q

Gi(x,A,B,H;q) < Akqmd(q)( +log’ q>,
which is uniformly nontrivial for any positive integer n such that n < g"'?.

Taking # a constant, we can immediately obtain the following.

Corollary1 Letq > 2 be an integer and x a non-principal Dirichlet character mod q. Then
we have

AB B 1 log H
Gk(X,A,B,H;q)<<Akq1/2d(q)( d(q)+ d(q)(log )(log )+10g3q).

7* q

Taking k = 0, B = g in Corollary 1, we obtain the following.
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Corollary 2 Let g > 2 be an integer and x a non-principal Dirichlet character mod q.
Then, for any positive integers A, H such that A, H < q, we have

Go(x,A,q, H; q) < q*d*(q)log? q. 1.3)

Remark It is easy to see that (1.3) is stronger than (1.1) for any integer H such that g/16*¢ <

H < q. It is also stronger than (1.2) for any integer H such that ¢*°d®3(q) < H < q. These
results reveal that more cancelations occurred in the number set ii(A, B, H).

Taking A = H = g in Corollary 2, we obtain the following.

Corollary 3 Let g > 2 be an integer and x a non-principal Dirichlet character mod q.
Then we have

q
na
Go(X, 0049 = Y _ X (a)e(;) < q"*d*(q)log’ q.

a=1

This is a little stronger than the classical result of the complete Gauss sums in the case when
(n,q)>1.

2 Some lemmas
To prove the theorem, we need the following lemmas.

Lemma 1 Let g, n, £, r be integers with q > 2, q > n, and £ > 0. Define h(r,¢;n) =
Y aee(%), Then we have

nl+1 ¢
=2 _ +0(n"), 7,
T R (), ql

L Tty 41
where s =min(r,q—r) withl <r<gq-1.
Proof See Lemma 3 of [6] or Lemma 2.4 of [7]. O
Lemma 2 Let g be a positive integer. Then we have

Ky (m,m;.9)| < ¢ (m,n,9)"*d(q),

ma+na

where K, (m,1;9) = 3, (nod o X (@e( p
(mod q) and (m, n,q) the greatest common divisor of m, n, q.

) is the general Kloosterman sum, with aa = 1

Proof See Lemma 1 of [5]. 0

3 Proof of the Theorem
Now we come to prove the theorem. Note that

Gk(X:A,B:H;CI)=Z Z akx(a)e<n7:),

t<H a<A,b<B
a-b=t (mod q),ab=1 (mod q)
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Applying the trigonometric sums identity

1 (ma) q, q|m,
>o()-
a=1 q

0, gqtm,
we obtain

Gi(x,A,B,H;q)

3 akx(a)e<%>

ach(A,B,H)

’ na
Y X ()
t<H a<A,b<B 9
a-b=t (mod q),ab=1 (mod q)

AEEAE) 3 (e

m<qt<H a<A,b<B
ab=1 (mod q)
/ (m + n)a —mb
ORI CE D MR CE ey
m=<q t<H a,b<q 9
ab=1 (mod q)

DIDWE= IR WEY

c<A r<q d<B s=q
/ (m+r+n)a-(m-s)b
SXTT(-2) X e
rs<qm=qt<H a,b<q 9
ab=1 (mod q)
: che( Dz

c<A

3 ZZZ ( )I( (m+r+n,s—m;q)h(-r,k; A)h(-s,0; B)

rs<qm=q t<H

iyy e<—m7t>1(x (m + 1~ )(—q, ks AYh(—g, 0; B)

q m<q t<H

Z ZZ (——)K m+ 1+ n,—m; q)h(-r, k; A)h(—q,0; B)

r<q-1m=<qt<H

Ly vy e(-m;t>1<x (m + n,5 — m; q)h(—q, k; Ah(—s, 0; B)

9 s<q-1m=qt<H

ig Z Z Z€<—%>KX (m+r+n,s —m;q)h(-r,k; A)h(-s, 0; B).

q r$s<q-1m=qt<H

Then from Lemma 1 and Lemma 2, we have

% Z Z e(—m;t)l(x (m + n,—m; q)h(-q, k; A)h(—q, 0; B)

T yi=qizn

)|K (m+n, m,q)| |h( q,kA)| \h( -q,0; B)|

< = me(

m=q

Page 4 of 8
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< HAk+qu—5/2d(q) Z (Wl + n’q)l/Z
m=q/H

1/2
+ Ak+1B —3/2d (Wl +n q)
P Yy, I

)
q/H<m=g-1

where ||x|| = min,cz |x — al.

Combining the estimates

Z (m+n,q)“2=Zd”2 Z 1

m=q/H dlq

m<q/H
d|(m+n)
et Yo
dlq m=<q/(dH)+n/d

< H™qd(q) + nd(q)

and
(Vl’l +n, q)1/2 Z 1 1
y maosan v
q/H<m=<g-1 m dlq q/H<m=<g-1
d|(m+n)
1
_ dl/Z
> >
W gonsty
1 n
d? —(1+—
< ; . Z ton M dm
1 it g<mst=
< d(q)logH + nd(q),
we have

% ) Ze(—%t)KX (m + 1~ (g, k; AYh(—q, 0; B)

m=qt<H

&« nAM B3 d% (q) + AM'Bg~32d*(q) log H. (3.1)

Applying Lemma 1 and Lemma 2 again, we obtain

% > Ze(—%t)zg (m + 1+ n,—m; Q)h(~r,k; A)h(~q, 0; B)

r<q-1m=<qt<H

-1
< % Z Zmin(H, H%“ >|Kx(m+r+ n,—m;q)| . |h(—r,k;A)| . |h(—q,0;B)|

r<q-lm=q
Ak
<« HBq™"*d(q) Z Z (m+7+n,-mq)"*- TSn(D)]

r
r<q-1m<q/H n( q )|

1/2 k
_3 (m+r+n-mq) A
B 3 D o Tein()
r<q-1q/H<m=<g-1 q
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1
<« HA*Bg™*"d(q) Z - Z (m + 71+ n,—m, q)"?
r<q-1 m=<q/H

)1/2

1 (m+r+n-mq
ABgd(q) Y - D
+A"Bg "d(q) -

m
r<q-1 gq/H<m=q-1

Combining

Z ! Z (m + 7+ n,—m, q)"

r
r<q-1 m=<q/H

PNEDIEPI

dlq r<q m=q/H
d|(r+n) dlm
ey Loy
dlq (n+1)/d§r§(q+n—1)/d m<q/ (Hd)
1 n
H d—3/2 - 1 _
<q/HY > (14
dlq (n+1)/d<r<(q+n-1)/d
+n-1
< Hqd(q) log(qi)
n+1

and

)1/2

m+r+n-m,
PIEEDS o

r<q-1 q/H<m<q 1
1

DD IEED S
dlq r<q-1 r q/H<m=q-1 m
d|(r+n) dim

- 1 1
:Zduz Z — Z =

dlgq (n+1)/d<r<(q+n-1)/d ql(Hd)<m=qld

< (logH)Y d?> " ( —

dlq r<qld

-1
< d(g)(log H) log(&),
n+1

we have

. Z ZZ (——)K (m+r+1,—m;q)h(—r,k; A)h(—q,0; B)

r<q-1m=qt<H

+n-1
< A*Bqg"*d*(q)(log H) log(an)-

Similarly, we get the estimate

BZZZ (-—)K (m + 1,5 — m; q)h(~q, k; AYh(—s, 0; B)

s<gq m=q t<H

-1
<<Ak+1q‘3/2d2(q)log(q )
n+1

Page 6 of 8
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Noting that

% Z Z Ze(—%)[(x(m + 7+ n,s—m;q)h(-r,k; A)h(-s, 0; B)

q rs<q-1m=qt<H

k
1/2 A 1

1
)-(m+r+n,s—m,q)

<L q1(q) Z me(

r,s<q-1m=q q

HAk —-1/2 - .S —m, 1/2
< q “d(q) Z - Z(m+r+ns m,q)
rs<q-1 m=q/H

(m+r+n,s—m,q)?

1
k
+ASqRdg) Y — Y] -

r,s<q-1 q/H<m<g-1

Using the estimates

Z X:(m+r+ns—mq)”2

r,s<q- 1 m<q/H

DD VDD IE

dlq m<q/H r<q-1 s<q 1
d|(m+r+n)  d|(s—m)

1

1
=de Z Z dr—-m-n Z ds+m

dlq m=q/H (m+n+1)/d<r<(q+m+n-1)/d (1-m)/d<s<(q-m-1)/d

< H'qd(q)(logq)log(2q + n - 1)

and

Zi Z (m+r+;/1’,4;9—1/n,q)1/2

rs
r,s<q-1 q/H<m<g-1

yar 3 Ly Ly
dlq q/H<m=<q- 1 r<q-1 s<q 1
d|(m+r+n)  d|(s—m)

DI D N S T NN

dr—-m-—n ds+m

m
dlq q/H<m=<g-1 (m+n+l)/d<r<(qg+m+n-1)/d (1-m)/d<s<(qg-m-1)/d

< d(q)(log® q) log(2q + n - 1),
we have

Z <——>I( (m + 71+ n,s—m;q)h(-r,k; A)h(-s, 0; B)

m=<q t<H

1
72

T,

[sin(Z5)] [ sin(Z)]

Page 7 of 8

< Afq"d(q)(log® q) log(2q + n - 1). (3.4)

Now combining (3.1)-(3.4), we have

AB B 1 loc H
Gi(x, A, B,H; ) <<Akq1/2d(q)(n 261«’(61) . d(q)(logq)(log H)  log? q).
9 q

This completes the proof of the theorem.
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