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Abstract
In this paper, we present a direct method to solve the least-squares Hermitian
problem of the complex matrix equation (AXB,CXD) = (E, F) with complex arbitrary
coefficient matrices A, B, C, D and the right-hand side E, F. This method determines
the least-squares Hermitian solution with the minimum norm. It relies on a
matrix-vector product and the Moore-Penrose generalized inverse. Numerical
experiments are presented which demonstrate the efficiency of the proposed
method.
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1 Introduction
Let A, B, C, D, E, and F are given matrices of suitable sizes defined over the complex
number field. We are interested in the analysis of the linear matrix equation

(AXB, CXD) = (E, F) ()

to be solved for X ∈ Cn×n. Here and in the following Cm×n denotes the set of all m × n
complex matrices, while the set of all m×n real matrices is denoted by Rm×n. In particular,
we focus on the least-squares Hermitian solution with the least norm of (), which can be
described as follows.

Problem  Given A ∈ Cm×n, B ∈ Cn×s, C ∈ Cm×n, D ∈ Cn×t , E ∈ Cm×s, and F ∈ Cm×t , let

HL =
{

X|X ∈ HCn×n,

‖AXB – E‖ + ‖CXD – F‖ = min
X∈HCn×n

(‖AXB – E‖ + ‖CXD – F‖)}.

Find XH ∈ HL such that

‖XH‖ = min
X∈HL

‖X‖, ()

where HCn×n denotes the set of all n × n Hermitian matrices.
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Correspondingly, the set of all n × n real symmetric matrices and the set of all n × n real
anti-symmetric matrices are denoted by SRn×n and ASRn×n, respectively.

Nowadays, matrix equations are very useful in numerous applications such as control
theory [, ], vibration theory [], image processing [, ] and so on. Therefore it is an
active area of research to solve different matrix equations [, –]. For the real matrix
equation (), in [], least-squares solutions with the minimum-norm were obtained by
using generalized singular value decomposition and canonical correlation decomposition
of matrices (CCD). In [], the quaternion matrix equation () was considered and the
least-squares solution with the least norm was given through the use of the Kronecker
product and the Moore-Penrose generalized inverse. Though the matrix equations of the
form () are studied in the literature, less or even no attention was paid to the least-squares
Hermitian solution of () over the complex field which is studied in this paper. A special
vectorization, as we defined in [], of the matrix equation () is carried out and Problem 
is turned into the least-squares unconstrained problem of a system of real linear equations.

The notations used in this paper are summarized as follows: For A ∈ Cm×n, the sym-
bols AT , AH and A+ denote the transpose matrix, the conjugate transpose matrix and the
Moore-Penrose generalized inverse of matrix A, respectively. The identity matrix is de-
noted by I . For A = (aij) ∈ Cm×n, B = (bij) ∈ Cp×q, the Kronecker product of A and B is
defined by A ⊗ B = (aijB) ∈ Cmp×nq. For matrix A ∈ Cm×n, the stretching operator vec(A)
is defined by vec(A) = (a, a, . . . , an)T , where ai is the ith column of A.

For all A, B ∈ Cm×n, we define the inner product 〈A, B〉 = tr(AHB). Then Cm×n is a Hilbert
inner product space and the norm of a matrix generated by this inner product is the matrix
Frobenius norm ‖ · ‖. Further, denote the linear space Cm×n × Cm×t = {[A, B]|A ∈ Cm×n,
B ∈ Cm×t}, and for the matrix pairs [Ai, Bi] ∈ Cm×n × Cm×t (i = , ), we can define their
inner product as follows: 〈[A, B], [A, B]〉 = tr(AH

 A) + tr(BH
 B). Then Cm×n × Cm×t is

also a Hilbert inner space. The Frobenius norm of the matrix pair [A, B] ∈ Cm×n × Cm×t

can be derived:

∥∥[A, B]
∥∥ =

√〈
[A, B], [A, B]

〉

=
√

tr
(
AH A

)
+ tr

(
BHB

)

=
√

‖A‖ + ‖B‖.

The structure of the paper is the following. In Section , we deduce some results in
Hilbert inner product Cm×n × Cm×t which are important for our main results. In Sec-
tion , we introduce a matrix-vector product for the matrices and vectors of Cm×n based
on which we consider the structure of (AXB, CXD) over X ∈ HCn×n. In Section , we de-
rive the explicit expression for the solution of Problem . Finally we express the algorithm
for Problem  and perform some numerical experiments.

2 Some preliminaries
In this section, we will prove some theorems which are important for the proof of our main
result. Given A ∈ Rm×n and b ∈ Rn, the solution of the linear equations Ax = b involves two
cases: inconsistent and consistent. The former leads to the solution in the least-squares
sense, which can be expressed as argminx∈Rn ‖Ax – b‖. This problem can be solved by
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solving the corresponding normal equations:

AT Ax = AT b, ()

moreover, we have

{
x|x ∈ Rn,‖Ax – b‖ = min

}
=

{
x|x ∈ Rn, AT Ax = AT b

}
.

As for the latter, () still holds, further, the solution set of Ax = b and that of () is the same,
that is,

{
x|x ∈ Rn, Ax = b

}
=

{
x|x ∈ Rn, AT Ax = AT b

}
.

It is should be noticed that () is always consistent. Therefore, solving Ax = b is usually
translated into solving the corresponding consistent equations (). In the following, we
will extend the conclusion to a more general case. To do this, we first give the following
problem.

Problem  Given complex matrices A, A, . . . , Al ∈ Cm×n, B, B, . . . , Bl ∈ Cm×n, C ∈
Cm×n, and D ∈ Cm×n, find k = (k, k, . . . , kl)T ∈ Rl such that

l∑
i=

ki[Ai, Bi] =

[ l∑
i=

kiAi,
l∑

i=

kiBi

]
= [C, D]. ()

Theorem  Assume the matrix equation () in Problem  is consistent. Let

Ei =

⎡
⎢⎢⎢⎣

Re(Ai)
Im(Ai)
Re(Bi)
Im(Bi)

⎤
⎥⎥⎥⎦ , F =

⎡
⎢⎢⎢⎣

Re(C)
Im(C)
Re(D)
Im(D)

⎤
⎥⎥⎥⎦ .

Then the set of vectors k that satisfies () is exactly the set that solves the following consistent
system:

⎡
⎢⎢⎢⎢⎢⎢⎣

〈E, E〉 〈E, E〉 · · · 〈E, El〉
〈E, E〉 〈E, E〉 · · · 〈E, El〉

...
...

...

〈El, E〉 〈El, E〉 · · · 〈El, El〉

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

k

k

...

kl

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

〈E, F〉
〈E, F〉

...

〈El, F〉

⎤
⎥⎥⎥⎥⎥⎥⎦

. ()

Proof By (), we have

[ l∑
i=

kiAi,
l∑

i=

kiBi

]
= [C, D]

⇐⇒
l∑

i=

ki[Ai, Bi] = [C, D]
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⇐⇒
l∑

i=

ki

⎡
⎢⎢⎢⎣

Re(Ai)
Im(Ai)
Re(Bi)
Im(Bi)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

Re(C)
Im(C)
Re(D)
Im(D)

⎤
⎥⎥⎥⎦

⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Re A)T vec(Im A)T vec(Re B)T vec(Im B)T

vec(Re A)T vec(Im A)T vec(Re B)T vec(Im B)T

...
...

...
...

vec(Re Al)T vec(Im Al)T vec(Re Bl)T vec(Im Bl)T

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Re A) vec(Re A) · · · vec(Re Al)

vec(Im A) vec(Im A) · · · vec(Im Al)

vec(Re B) vec(Re B) · · · vec(Re Bl)

vec(Im B) vec(Im B) · · · vec(Im Bl)

⎤
⎥⎥⎥⎥⎥⎥⎦

k

=

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Re A)T vec(Im A)T vec(Re B)T vec(Im B)T

vec(Re A)T vec(Im A)T vec(Re B)T vec(Im B)T

...
...

...
...

vec(Re Al)T vec(Im Al)T vec(Re Bl)T vec(Im Bl)T

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

vec(Re C)
vec(Im C)
vec(Re D)
vec(Im D)

⎤
⎥⎥⎥⎦

⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎣

〈E, E〉 〈E, E〉 · · · 〈E, El〉
〈E, E〉 〈E, E〉 · · · 〈E, El〉

...
...

...

〈El, E〉 〈El, E〉 · · · 〈El, El〉

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

k

k

...

kl

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

〈E, F〉
〈E, F〉

...

〈El, F〉

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Thus we have (). �

We now turn to the case that matrix equation () in Problem  is inconsistent, just as
(), the related least-squares problem should be considered.

Problem  Given matrices A, A, . . . , Al ∈ Cm×n, B, B, . . . , Bl ∈ Cs×t , C ∈ Cm×n, and D ∈
Cs×t , find

k = (k, k, . . . , kl)T ∈ Rl

such that

‖kA + kA + · · · + klAl – C‖ + ‖kB + kB + · · · + klBl – D‖ = min . ()
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Based on the results above, we list the following theorem which concludes that solving
Problem  is equivalent to solving the consistent matrix equation system ().

Theorem  Suppose that the notations and conditions are the same as in Theorem . Then
the solution set of Problem  is the solution set of system ().

Proof By (), we have

∥∥∥∥∥

[ l∑
i=

kiAi – C,
l∑

i=

kiBi – D

]∥∥∥∥∥


=

∥∥∥∥∥

( l∑
i=

ki(Re Ai) – (Re C)

)
+

√
–

( l∑
i=

ki(Im Ai) – (Im C)

)∥∥∥∥∥


+

∥∥∥∥∥

( l∑
i=

ki(Re Bi) – (Re D)

)
+

√
–

( l∑
i=

ki(Im Bi) – (Im D)

)∥∥∥∥∥


=

∥∥∥∥∥∥∥∥∥

l∑
i=

ki

⎡
⎢⎢⎢⎣

Re(Ai)
Im(Ai)
Re(Bi)
Im(Bi)

⎤
⎥⎥⎥⎦ –

⎡
⎢⎢⎢⎣

Re(C)
Im(C)
Re(D)
Im(D)

⎤
⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥



=

∥∥∥∥∥
l∑

i=

kiEi – F

∥∥∥∥∥


.

It follows that () holds. This implies the conclusion. �

3 The structure of (AXB, CXD) over X ∈ HCn×n

Based on the discussion in [], we first recall a matrix-vector product for vectors and
matrices in Cm×n.

Definition  Let x = (x, x, . . . , xk)T ∈ Ck , y = (y, y, . . . , yk)T ∈ Ck and A = (A, A, . . . , Ak),
Ai ∈ Cm×n (i = , , . . . , k). Define

(i) A ◦ x = xA + xA + · · · + xkAk ∈ Cm×n;
(ii) A ◦ (x, y) = (A ◦ x, A ◦ y).

From Definition ., we list the following facts which are useful for solving Problem .
Let y = (y, y, . . . , yk)T ∈ Ck , P = (P, P, . . . , Pk), Pi ∈ Cm×n (i = , , . . . , k), and a, b ∈ C.

(i) xH ◦ y = xHy = (x, y);
(ii) A ◦ x + P ◦ x = (A + P) ◦ x;

(iii) A ◦ (ax + by) = a(A ◦ x) + b(A ◦ y);
(iv) (aA + bP) ◦ x = a(A ◦ x) + b(P ◦ x);
(v) (A, P) ◦ [ x

y ] = A ◦ x + P ◦ y;
(vi) [ A

P ] ◦ x = [ A◦x
P◦x ];

(vii) vec(A ◦ x) = (vec(A), vec(A), . . . , vec(Ak))x;
(viii) vec((aA + bP) ◦ x) = a vec(A ◦ x) + b vec(P ◦ x).

Suppose B = (B, B, . . . , Bs) ∈ Ck×s, Bi ∈ Ck (i = , , . . . , s), C = (C, C, . . . , Ct) ∈ Ck×t , Ci ∈
Ck (i = , , . . . , t), D ∈ Cl×m, H ∈ Cn×q. Then
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(ix) D(A ◦ x) = (DA) ◦ x;
(x) (A ◦ x)H = (AH , AH , . . . , AkH) ◦ x.

For X = Re X +
√

– Im X ∈ HCn×n, by XH = X, we have (Re X +
√

– Im X)H = Re X +√
– Im X. Thus we get Re XT = Re X, Im XT = – Im X.

Definition  For matrix A ∈ Rn×n, let a = (a, a, . . . , an), a = (a, a, . . . , an), . . . ,
an– = (a(n–)(n–), an(n–)), an = ann, the operator vecS(A) is denoted

vecS(A) = (a, a, . . . , an–, an)T ∈ R
n(n+)

 . ()

Definition  For matrix B ∈ Rn×n, let b = (b, b, . . . , bn), b = (b, b, . . . , bn), . . . ,
bn– = (b(n–)(n–), bn(n–)), bn– = bn(n–), the operator vecA(B) is denoted

vecA(B) = (b, b, . . . , bn–, bn–)T ∈ R
n(n–)

 . ()

Let

Eij = (est) ∈ Rn×n, ()

where

est =

⎧⎨
⎩

 (s, t) = (i, j),

 otherwise.

Let

KS = (E, E + E, . . . , En + En,

E, E + E, . . . , En + En, . . . , E(n–)(n–), En(n–) + E(n–)n, Enn). ()

Note that KS ∈ Rn× n(n+)
 .

Let

KA = (E – E, . . . , En – En, E – E, . . . , En – En, . . . , En(n–) – E(n–)n). ()

Note that KA ∈ Rn× n(n–)
 .

Based on Definition , Definition , () and () we get the following lemmas which are
necessary for our main results.

Lemma  Suppose X ∈ Rn×n, then
(i)

X ∈ SRn×n ⇐⇒ X = KS ◦ vecS(X), ()

(ii)

X ∈ ASRn×n ⇐⇒ X = KA ◦ vecA(X). ()
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Lemma  Suppose X = Re X +
√

– Im X ∈ Cn×n, then

X ∈ HCn×n ⇐⇒ X = KS ◦ vecS(Re X) +
√

–KA ◦ vecA(Im X). ()

Lemma  Given A ∈ Cm×n, B ∈ Cn×s, C ∈ Cp×n, and D ∈ Cn×q, and X = Re X +
√

– Im X ∈
HCn×n. The complex matrices Fij ∈ Cm×s, Gij ∈ Cm×s, Hij ∈ Cp×q and Kij ∈ Cp×q (i, j =
, , . . . , n;i ≥ j) are defined by

Fij =

⎧⎨
⎩

AiBj, i = j,

AiBj + AjBi, i > j,
Gij =

⎧⎨
⎩

, i = j,
√

–(AiBj – AjBi), i > j,

Hij =

⎧⎨
⎩

CiDj, i = j,

CiDj + CjDi, i > j,
Kij =

⎧⎨
⎩

, i = j,
√

–(CiDj – CjDi), i > j,

where Ai ∈ Cm, Ci ∈ Cp is the ith column vector of matrix A and C, meanwhile, Bj ∈ Cs,
Dj ∈ Cq is the jth row vector of matrix B and D, respectively. Then

[AXB, CXD] =

⎡
⎣(F, F, . . . , Fn, F, F, . . . , Fn, . . . , F(n–)(n–), Fn(n–), Fnn,

G, G, . . . , Gn, G, . . . , Gn, . . . , Gn(n–)) ◦
⎡
⎣ vecS(Re X)

vecA(Im X)

⎤
⎦ ,

(H, H, . . . , Hn, H, H, . . . , Hn, . . . , H(n–)(n–), Hn(n–), Hnn,

K, K, . . . , Kn, K, . . . , Kn, . . . , Kn(n–)) ◦
⎡
⎣ vecS(Re X)

vecA(Im X)

⎤
⎦

⎤
⎦ .

Proof By Lemma , we can get

AXB = A
[
KS ◦ vecS(Re X) +

√
–

(
KA ◦ vecA(Im X)

)]
B

=
[
(AKS) ◦ vecS(Re X) +

√
–(AKA) ◦ vecA(Im X)

]
B

=
[
(AKS) ◦ vecS(Re X)

]
B +

√
–

[
(AKA) ◦ vecA(Im X)

]
B

=
[(

A(E, E + E, . . . , En(n–) + E(n–)n, Enn)
) ◦ vecS(Re X)

]
B

+
√

–
[
A(E – E, . . . , En – En, . . . , En(n–) – E(n–)n) ◦ vecA(Im X)

]
B

=
(
AEB, A(E + E)B, . . . , A(En(n–) + E(n–)n)B, AEnnB

) ◦ vecS(Re X)

+
√

–
(
A(E – E)B, . . . , A(En – En)B, . . . , A(En(n–) – E(n–)n)B

) ◦ vecA(Im X)

= (AB, AB + AB, . . . , AnBn– + An–Bn, AnBn) ◦ vecS(Re X)

+
√

–(AB – AB, . . . , AnB – ABn, . . . , AnBn– – An–Bn) ◦ vecA(Im X)

= (F, F, . . . , Fn(n–), Fnn) ◦ vecS(Re X) + (G, G, . . . , Gn(n–)) ◦ vecA(Im X)

= (F, F, . . . , F(n–)(n–), Fn(n–), Fnn, G, G, . . . , Gn(n–)) ◦
⎡
⎣ vecS(Re X)

vecA(Im X)

⎤
⎦ .
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Similarly, we have

CXD = (H, H, . . . , H(n–)(n–), Hn(n–), Hnn, K, K, . . . , Kn(n–)) ◦
⎡
⎣ vecS(Re X)

vecA(Im X)

⎤
⎦ .

Thus we can get the structure of [AXB, CXD] and complete the proof. �

4 The solution of Problem 1
Based on the above results, in this section, we will deduce the solution of Problem . From
[], the least-squares problem

‖AXB – E‖ + ‖CXD – F‖ = min

with respect to the Hermitian matrix X is equivalent to

∥∥∥∥∥∥∥∥∥∥∥∥

⎡
⎣ P

P

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

vecS(Re X)

vecA(Im X)

vecS(Re X)

vecA(Im X)

⎤
⎥⎥⎥⎥⎥⎥⎦

–

⎡
⎢⎢⎢⎢⎢⎢⎣

vec(Re E)

vec(Im E)

vec(Re F)

vec(Im F)

⎤
⎥⎥⎥⎥⎥⎥⎦

∥∥∥∥∥∥∥∥∥∥∥∥



= min, ()

where

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

(BT ⊗ A)LS√
–(BT ⊗ A)LA

(DT ⊗ C)LS√
–(DT ⊗ C)LA

⎤
⎥⎥⎥⎥⎥⎥⎦

, P = Re(P), P = Im(P).

It should be noticed that () is an unconstrained problem over the real field and can
easily be solved by existing methods, therefore, the original complex constrained Problem
 is translated into an equivalent real unconstrained problem (). Since the process has
been expressed in [], we omit it here. Based on Theorems , , and Lemma , we now
turn to the least-squares Hermitian problem for the matrix equation (). The following
lemmas are necessary for our main results.

Lemma  ([]) Given A ∈ Rm×n and b ∈ Rn, the solution of equation Ax = b involves two
cases:

(i) The equation has a solution x ∈ Rn and the general solution can be formulated as

x = A+b +
(
I – A+A

)
y ()

if and only if AA+b = b, where y ∈ Rn is an arbitrary vector.
(ii) The least-squares solutions of the equation has the same formulation as () and the

least-squares solution with the minimum norm is x = A+b.
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For convenience, we introduce the following notations and lemmas.
Given A ∈ Cm×n, B ∈ Cn×s, C ∈ Cp×n, D ∈ Cn×q, E ∈ Cm×s, and F ∈ Cp×q, let

�̂ij =

⎡
⎢⎢⎢⎢⎢⎣

Re(Fij)

Im(Fij)
Re(Hij)

Im(Hij)

⎤
⎥⎥⎥⎥⎥⎦

, ϒ̂ij =

⎡
⎢⎢⎢⎢⎢⎣

Re(Gij)

Im(Gij)
Re(Kij)

Im(Kij)

⎤
⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎣

Re(E)

Im(E)
Re(F)

Im(F)

⎤
⎥⎥⎥⎥⎥⎦

,

W =

⎡
⎣ P U

UT V

⎤
⎦ , e =

⎡
⎣ e

e

⎤
⎦ , ()

where n ≥ i ≥ j ≥ ,

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈�̂, �̂〉 〈�̂, �̂〉 · · · 〈�̂, �̂nn〉
〈�̂, �̂〉 〈�̂, �̂〉 · · · 〈�̂, �̂nn〉

...
...

...

〈�̂nn, �̂〉 〈�̂nn, �̂〉 · · · 〈�̂nn, �̂nn〉

⎤
⎥⎥⎥⎥⎥⎥⎦

,

U =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈�̂, ϒ̂〉 〈�̂, ϒ̂〉 · · · 〈�̂, ϒ̂n(n–)〉
〈�̂, ϒ̂〉 〈�̂, ϒ̂〉 · · · 〈�̂, ϒ̂n(n–))

...
...

...

〈�̂nn, ϒ̂〉 〈�̂nn, ϒ̂〉 · · · 〈�̂nn, ϒ̂n(n–)〉

⎤
⎥⎥⎥⎥⎥⎥⎦

,

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈ϒ̂, ϒ̂〉 〈ϒ̂, ϒ̂〉 · · · 〈ϒ̂, ϒ̂n(n–)〉
〈ϒ̂, ϒ̂〉 〈ϒ̂, ϒ̂〉 · · · 〈ϒ̂, ϒ̂n(n–)〉

...
...

...

〈ϒ̂n(n–), ϒ̂〉 〈ϒ̂n(n–), ϒ̂〉 · · · 〈ϒ̂n(n–), ϒ̂n(n–)〉

⎤
⎥⎥⎥⎥⎥⎥⎦

,

e =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈�̂,�〉
〈�̂,�〉

...

〈�̂nn,�〉

⎤
⎥⎥⎥⎥⎥⎥⎦

, e =

⎡
⎢⎢⎢⎢⎢⎢⎣

〈ϒ̂,�〉
〈ϒ̂,�〉

...

〈ϒ̂n(n–),�〉

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Theorem  Given A ∈ Cm×n, B ∈ Cn×s, C ∈ Cm×n, D ∈ Cn×t , E ∈ Cm×s, and F ∈ Cm×t , let
W , e be as in (). Then

HL =
{

X|X = (KS,
√

–KA) ◦ [
W +e +

(
I – W +W

)
y
]}

, ()

where y ∈ Rn is an arbitrary vector. Problem  has a unique solution XH ∈ HL. This solution
satisfies

XH = (KS,
√

–KA) ◦ (
W +e

)
. ()
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Proof By Lemma  and Theorem , the least-squares problem

‖AXB – E‖ + ‖CXD – F‖ = min

with respect to the Hermitian matrix X can be translated into an equivalent consistent
linear equations over the real field

W

[
vecS(Re X)

vecA(Im X)

]
= e.

It follows by Lemma  that

[
vecS(Re X)

vecA(Im X)

]
= W +e +

(
I – W +W

)
y.

Thus

X = (KS,
√

–KA) ◦ (
W +e +

(
I – W +W

)
y
)
.

The proof is completed. �

We now turn to the consistency of the matrix equation (). Denote

N =

⎡
⎢⎢⎢⎢⎢⎣

N

N

N

N

⎤
⎥⎥⎥⎥⎥⎦

, ê =

⎡
⎢⎢⎢⎢⎢⎣

vec(Re E)

vec(Im E)

vec(Re F)

vec(Im F)

⎤
⎥⎥⎥⎥⎥⎦

, ()

where

N =
[
vec

(
Re(F)

)
, vec

(
Re(F)

)
, . . . , vec

(
Re(Fn)

)
, vec

(
Re(F)

)
, . . . ,

vec
(
Re(Fn)

)
, . . . , vec

(
Re(F(n–)(n–))

)
, vec

(
Re(Fn(n–))

)
, vec

(
Re(Fnn)

)
,

vec
(
Re(G)

)
, . . . , vec

(
Re(Gn)

)
, vec

(
Re(G)

)
, . . . ,

vec
(
Re(Gn)

)
, . . . , vec

(
Re(Gn(n–))

)]
,

N =
[
vec

(
Im(F)

)
, vec

(
Im(F)

)
, . . . , vec

(
Im(Fn)

)
, vec

(
Im(F)

)
, . . . ,

vec
(
Im(Fn)

)
, . . . , vec

(
Im(F(n–)(n–))

)
, vec

(
Im(Fn(n–))

)
, vec

(
Im(Fnn)

)
,

vec
(
Im(G)

)
, . . . , vec

(
Im(Gn)

)
, vec

(
Im(G)

)
, . . . ,

vec
(
Im(Gn)

)
, . . . , vec

(
Im(Gn(n–))

)]
,

N =
[
vec

(
Re(H)

)
, vec

(
Re(H)

)
, . . . , vec

(
Re(Hn)

)
, vec

(
Re(H)

)
, . . . ,

vec
(
Re(Hn)

)
, . . . , vec

(
Re(H(n–)(n–))

)
, vec

(
Re(Hn(n–))

)
, vec

(
Re(Hnn)

)
,

vec
(
Re(K)

)
, . . . , vec

(
Re(Kn)

)
, vec

(
Re(K)

)
, . . . ,

vec
(
Re(Kn)

)
, . . . , vec

(
Re(Kn(n–))

)]
,
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N =
[
vec

(
Im(H)

)
, vec

(
Im(H)

)
, . . . , vec

(
Im(Hn)

)
, vec

(
Im(H)

)
, . . . ,

vec
(
Im(Hn)

)
, . . . , vec

(
Im(H(n–)(n–))

)
, vec

(
Im(Hn(n–))

)
, vec

(
Im(Hnn)

)
,

vec
(
Im(K)

)
, . . . , vec

(
Im(Kn)

)
, vec

(
Im(K)

)
, . . . ,

vec
(
Im(Kn)

)
, . . . , vec

(
Im(Kn(n–))

)]
.

By Lemma , we have

(AXB, CXD) = (E, F) ⇐⇒ N

⎡
⎣ vecS(Re X)

vecA(Im X)

⎤
⎦ = ê. ()

Thus we can get the following conclusions by Lemma  and Theorem .

Corollary  The matrix equation () has a solution X ∈ HCn×n if and only if

NN+ê = ê. ()

In this case, denote by HE the solution set of (). Then

HE =
{

X|X = (KS,
√

–KA) ◦ [
M+e +

(
I – W +W

)
y
]}

, ()

where y ∈ Rn is an arbitrary vector.
Furthermore, if () holds, then the matrix equation () has a unique solution X ∈ HE if

and only if

rank(N) = n. ()

In this case,

HE =
{

X|X = (KS,
√

–KA) ◦ (
W +e

)}
. ()

The least norm problem

‖XH‖ = min
X∈HE

‖X‖

has a unique solution XH ∈ HE and XH can be expressed as ().

5 Numerical experiments
In this section, based on the results in the above sections, we first give the numerical al-
gorithm to find the solution of Problem . Then numerical experiments are proposed to
demonstrate the efficiency of the algorithm. The following algorithm provides the main
steps to find the solutions of Problem .

Algorithm 
() Input A ∈ Cm×n, B ∈ Cn×s, C ∈ Cm×n, D ∈ Cn×t , E ∈ Cm×s, and F ∈ Cm×t .
() Compute Fij, Gi,j , Hi,j and Ki,j (i, j = , , . . . , n, i ≥ g) by Lemma .
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() Compute P, U , V and e according to ().
() If () and () hold then calculate XH (XH ∈ HE) according to ().
() If () holds then calculate XH (XH ∈ HE) according to (), otherwise go to the

next step.
() Calculate XH (XH ∈ HL) according to ().

For convenience, in the following examples, the random matrix, the Hilbert matrix, the
Toeplitz matrix, the matrix whose all elements are one and the magic matrix are all de-
noted as by the corresponding Matlab function.

Example  Let Ar =  rand(, ), Br = rand(, ), Cr =  rand(, ), Dr = rand(, ),
Ai = rand(, ), Bi =  rand(, ), Ci = rand(, ), Di =  rand(, ). Let X̃ =
rand(, ), Xr = X̃ + X̃T ; X̂ = hilb(), Xi = X̂ – X̂T ; A = Ar +

√
–Ai, B = Br +

√
–Bi, C =

Cr +
√

–Ci, D = Dr +
√

–Di, X = Xr +
√

–Xi, E = AXB, F = CXD. By using Matlab  and
Algorithm , we obtain rank(W ) = , ‖W‖ = .e+, ‖WW +e – e‖ = .e–.
rank(N) = , ‖N‖ = .e+, ‖NN+ê – ê‖ = .e–. From Algorithm (), it can
be concluded that the complex matrix equation [AXB, CXD] = [E, F] is consistent, and it
has a unique solution XH ∈ HE ; further, ‖XH – X‖ = .e– can easily be tested.

Example  Let m = , n = , s = . Take Ar = [toeplitz( : ), m×], Br = ones(, ), Cr =
[hilb(), ×], Dr = ones(, ), Ai = ×, Bi = ones(, ), Ci = ×, Di = ×. Let
X̃ = rand(, ), Xr = X̃ + X̃T ; X̂ = hilb(n), Xi = X̂ – X̂T ; A = Ar +

√
–Ai, B = Br +

√
–Bi, C =

Cr +
√

–Ci, D = Dr +
√

–Di, X = Xr +
√

–Xi, E = AXB, F = CXD. From Algorithm (),
we can obtain rank(W ) = , ‖W‖ = .e+, ‖WW +e – e‖ = .e–. rank(N) =
, ‖N‖ = ., ‖NN+ê – ê‖ = .e–. From Algorithm , it can be concluded
that the complex matrix equation [AXB, CXD] = [E, F] is consistent, and it has a unique
solution XH ∈ HE , further, ‖XH – X‖ = . can easily be tested.

Example  Let m = , n = , s = . Take Ar = ×, Br = rand(, ), Cr = ×, Dr =
rand(, ), Ai = rand(, ), Bi = ×, Ci = rand(, ), Di = ×. Let X̃ = rand(, ),
Xr = X̃ +X̃T ; X̂ = rand(, ), Xi = X̂ –X̂T ; A = Ar +

√
–Ai, B = Br +

√
–Bi, C = Cr +

√
–Ci,

D = Dr +
√

–Di, X = Xr +
√

–Xi, E = AXB+ ones(m, s), F = CXD+ ones(m, s). By using
Matlab  and Algorithm , we obtain rank(W ) = , ‖W‖ = .e+, ‖WW +e – e‖ =
.e–. rank(N) = , ‖N‖ = ., ‖NN+ê – ê‖ = .. According to Algo-
rithm () we can see that the complex matrix equation [AXB, CXD] = [E, F] is inconsis-
tent, and it has a unique solution XH ∈ HE and we can get ‖XH – X‖ = ..

6 Conclusions
In this paper, we derive the explicit expressions of least-squares Hermitian solution with
the minimum norm for the complex matrix equations (AXB, CXD) = (E, F). A numerical
algorithm and examples show the effectiveness of our method.
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