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Abstract
The main purpose of this paper is to establish a boundedness result for strong
maximal functions with respect to certain non-doubling measures in R

n. More
precisely, let dμ(x1, . . . , xn) = dμ1(x1) · · ·dμn(xn) be a product measure which is not
necessarily doubling in R

n (only assuming dμi is doubling on R for i = 2, . . . ,n), and
let ω be a nonnegative and locally integral function such that
ωi(·) =ω(x1, . . . , xi–1, ·, xi+1, . . . , xn) is in A1∞(dμi) uniformly in x1, . . . , xi–1, xi+1, . . . , xn for
each i = 1, . . . ,n – 1, let dν =ω dμ, ν(E) =

∫
E ω(y)dμ(y), andMn

ω dμ be the strong
maximal function defined by

Mn
ω dμf (x) = sup

x∈R∈R
1

ν(R)

∫

R

∣
∣f (y)

∣
∣ω(y)dμ(y),

whereR is the collection of rectangles with sides parallel to the coordinate axes
in R

n. Then we show thatMn
ω dμ is bounded on Lpω dμ(R

n) for 1 < p <∞. This extends
an earlier result of Fefferman (Am. J. Math. 103:33-40, 1981) who established the Lp

boundedness when dμ = dx is the Lebesgue measure on R
n and dν =ω dμ is

doubling with respect to rectangles in R
n, ω satisfies a uniform A1∞ condition in each

of the variables except one.
Moreover, we also establish some boundedness result for the Cordoba maximal

functions (Córdoba A. in Harmonic Analysis in Euclidean Spaces, pp. 29-50, 1978)
associated with the Córdoba-Zygmund dilation in R

3 with respect to some
non-doubling measures. This generalizes the result of Fefferman-Pipher (Am. J. Math.
119:337-369, 1997).

Keywords: strong maximal functions; non-doubling measures; A∞ weights; reverse
Hölder inequality; geometric covering lemmas; Córdoba’s maximal functions;
Córdoba-Zygmund dilations

1 Introduction
The classical theory of one-parameter harmonic analysis for maximal functions and sin-
gular integrals on (Rn;μ) has been developed under the assumption that the underlying
measure μ satisfies the doubling property, i.e., there exists a constant C >  such that
μ(B(x; r)) ≤ Cμ(B(x; r)) for every x ∈ R

n and r > . However, some recent results [–
] show that it should be possible to dispense with the doubling condition for most of
the classical theory. It is well known that the use of doubling measure has two main ad-
vantages. One is that we can work with nested property. Another one is that the faces of
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the cubes have measure zero. As in [, ], we will only maintain the last property. If μ is a
nonnegative Radon measure without mass-points, one can choose an orthonormal system
in R

n so that any cube Q with sides parallel to the coordinate axes satisfies the property
μ(∂Q) =  (Theorem  of []). The advantage of assuming this property is the continuity
of the measure μ on cubes which can ensure that there is a Calderón-Zygmund decom-
position [, ], which is one of the basic and most frequently used tools in the classical
theory.

We first recall some well-known results on one-parameter Ap(μ) weights with respect
to the possibly non-doubling measure μ. We also refer to [] for the general theory of
classical weights. A μ-measurable function ω is said to be a weight if it is nonnegative and
μ-locally integrable. A weight ω is said to be an Ap(μ) weight if ω satisfies the following
definition.

Definition . Let  < p < ∞ and p′ = p/(p – ). We say that a weight ω satisfies the Ap(μ)
condition if

sup
Q

(


μ(Q)

∫

Q
ω dμ

)(


μ(Q)

∫

Q
ω–p′

dμ

)p–

< ∞,

where sup is taken over all cubes whose sides are parallel to the coordinate axes.

We use the notation A∞(μ) =
⋃

p> Ap(μ) to denote the class of weight functions ω ∈
Ap(μ) for some p > .

When μ is a nonnegative Radon measure without mass-points, Lemma . in [] tells
us that some classical results for ω ∈ Ap(μ) also hold. We state these results as follows.

Proposition A If μ is a nonnegative Radon measures in R
n without mass-points, for a

weight ω, the following conditions are equivalent:
(a) ω ∈ A∞(μ);
(b) ω satisfies a reverse Hölder inequality; namely, there are positive constants c and δ

such that for every cube Q

(


μ(Q)

∫

Q
ω+δ dμ

)/(+δ)

≤ c
μ(Q)

∫

Q
ω dμ,

and c may be taken as close to  as δ → ;
(c) there are positive constants c and ρ such that, for any cube Q and any μ-measurable

set F contained in Q,

ω(F)
ω(Q)

≤ c
(

μ(F)
μ(Q)

)ρ

,

where ω(E) =
∫

E ω dμ;
(d) there are positive constants α,β <  such that whenever F is a measurable set of a

cube Q,

μ(F)
μ(Q)

≤ α implies
ω(F)
ω(Q)

≤ β .
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Remark . The behavior of the constant c in (b) is not explicitly obtained in []. But by
a careful examination of its proof, we can find that c may be chosen as ( – δC

C+δ


)–/(+δ) for
two fixed constants C, C.

Let Bx be a collection of bounded sets containing x ∈ R
n. Let ν be a positive measure.

Given a locally integrable function f , denote

Mf (x) = sup
R∈Bx


ν(R)

∫

R

∣
∣f (y)

∣
∣dν(y).

If Bx is the collection of all the cubes containing x ∈ R
n (centered at x) whose sides

are parallel to the coordinate axes, then we obtain the usual Hardy-Littlewood maximal
function Mdν f (x) with respect to the measure dν (centered maximal function M̄dν f (x)).
By means of the Besicovitch covering lemma, it is easy to prove that M̄dν maps L(dν)
into weak L(dν), and Lp(dν) into Lp(dν) for p > . In dimension one, the non-centered
maximal operator Mdν is also shown to be bounded on Lp(dν) for p >  (see [] and []).
However, it is in general not true that Mdν f (x) has these boundedness properties. We refer
to [] for counterexamples.

WhenBx denotes the collection of all rectangles R containing x ∈R
n whose sides parallel

to the coordinate axes, M� Mn
dν is the strong maximal operator with respect to measure

ν in dimension n. When dν = dx is the Lebesgue measure on R
n, Jessen, Marcinkiewcz

and Zygmund [] and Fava [] showed that Mn
dx is bounded on Lp for all p > . However,

Fefferman [] showed that it is generally not true for the boundedness properties for an
arbitrary measure dν . It is thus natural to ask when is Mn

dν bounded on Lp(dν). Obviously,
if ν on R

n is a product measure of n one-dimensional nonnegative Radon measures, then
the method of iteration works perfectly to show that Mn

dν is bounded on Lp(dν),  < p < ∞.
For a general measure, the iteration method no longer works. In [], Fefferman constructed
a measure ν for which Mn

dν is unbounded on Lp(dν) for all p < +∞, and gave a sufficient
condition on ω for the Lp(ω dx) boundedness of Mn

ω dx. Fefferman’s result [] can be stated
as follows.

Theorem . Suppose that dν(x) = ω(x) dx on R
n where ω is a function which has the

property of being uniformly in the class A∞ in each variable separately. Then Mn
dν is a

bounded operator on Lp(dν) for all  < p ≤ ∞.

In fact, the proof given in [] also established a stronger result. This is given in Fefferman
and Pipher [].

Theorem . Suppose that dν(x) = ω(x) dx is a positive absolutely continuous measure
on R

n. Assume that dν is doubling with respect to the family of all rectangles with sides
parallel to the axes, and that ω is a function which has the property of being uniformly in
the class A∞ in each variable separately except one. Then Mn

dν is a bounded operator on
Lp(dν) for all  < p ≤ ∞.

If we replace the Lebesgue measure dx by a more general measure dμ, which is not
necessarily doubling, and use the notation dν(x) = ω(x) dμ, then it is not known whether
the strong maximal function Mn

dν is bounded on Lp(dν) for all  < p < ∞. This is exactly
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one of the motivations of this paper. To this end, we first define the notion of Ap weights
with respect to the possibly non-doubling measure dμ.

Definition . Let  < p < ∞ and p′ = p/(p – ). We say that a weight ω satisfies the Ap(μ)
condition if

[ω]Ap(μ) = sup
R∈B

(


μ(R)

∫

R
ω dμ

)(


μ(R)

∫

R
ω–p′

dμ

)p–

< ∞,

where B is a collection of bounded sets.

Remark . If B is the collection of all rectangles whose sides are parallel to the
coordinate axes, then we obtain product weights Ap(μ) � An

p(μ). If dμ(x, . . . , xn) =
dμ(x) · · ·dμn(xn) is a product measure, then by the Lebesgue differentiation theorem, it
is easy to see that, if ω ∈ An

p(μ), then ωi(xi) = ω(x, . . . , xi–, ·, xi+, . . . , xn) ∈ A
p(μi) uniformly,

that is, there exists a constant c >  such that, for a.e. (x, . . . , xi–, xi+, . . . , xn) ∈R
n–,

[ωi]A
p(μi) = sup

I

(


μi(I)

∫

I
ωi dμi

)(


μi(I)

∫

I
ω

–p′
i dμi

)p–

≤ c < ∞,

where the supremum is taken over all intervals I in R. Consequently ωi satisfies the prop-
erties in Proposition A above uniformly in x, . . . , xi–, xi+, . . . , xn if μi is a Radon measure
without mass-point.

If we replace the Lebesgue measure dx by a product measure dμ(x) = dμ(x) ×
dμ(x) × · · · × dμn(xn), inspired by the work of Fefferman [], it is natural to ask the
following.

Question  What conditions on ω(x) and dμ(x) can ensure the boundedness of the strong
maximal function Mn

ω dμ with respect to the measure ω dμ on Lp(ω dμ) for  < p < ∞?

Question  What conditions on ω(x) and dμ(x) can ensure the boundedness of the strong
maximal function Mn

dμ with respect to the measure dμ on Lp(ω dμ) for  < p < ∞?

If we work in R
 with the dilation group {ρs,t}s,t> given by ρs,t(x, y, z) = (sx, tz, stz), that is

Bx= the family of all rectangles containing x ∈ R
 whose sides are parallel to the coordinate

axes in R
, and whose side lengths in the x, y, and z directions are given by s, t, and s · t

respectively (these rectangles are called Córdoba-Zygmund rectangles), then we get the
Córdoba maximal function M(f )(x) �Mdν(f )(x) with respect to the measure dν whose
sharp estimates have been obtained by Córdoba [].

With the Córdoba-Zygmund rectangles, we can define Córdoba’s weights Ap(μ) �
Ap(μ). By the Lebesgue differential theorem, if ω ∈ Ap(μ), then ω(·, y, z) ∈ A

p(μ) uni-
formly in y, z, and ω(x, ·, z) ∈ A

p(μ) uniformly in x, z.
When dν = dx, Fefferman [] proved the following theorem.

Theorem . The weighted norm inequality

∫

R

∣
∣Mdx(f )(x)

∣
∣p

ω(x) dx ≤ C
∫

R

∣
∣f (x)

∣
∣p

ω(x) dx
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holds if and only if ω ∈Ap(dx).

Moreover, the following is proved by Fefferman and Pipher in [].

Theorem . Suppose dν = ω(x, y, z) dx dy dz is a positive measure on R
 which is dou-

bling with respect to all the Zygmund rectangles in R
 and uniformly in A∞ in the x and

y variables. Then the Córdoba maximal function Mdν with respect to the measure dν is
bounded on Lp(dν) for all  < p < ∞.

When we replace the Lebesgue measure dx dy dz by dμ(x, y, z) which is not necessarily
doubling with respect to all the Córdoba-Zygmund rectangles in R

, it is then interesting
to ask the following.

Question  Let dμ(x, y, z) be a nonnegative Radon measure on R
. What conditions

on ω and dμ can guarantee the boundedness of the Córdoba strong maximal function
Mdμ(f )(x, y, z) with respect to the measure dμ on Lp(ω dμ) for  < p < ∞?

Question  Let dν(x, y, z) = ω(x, y, z) dμ(x, y, z) be a measure on R
. What conditions

on ω and dμ can guarantee the boundedness of the Córdoba strong maximal function
Mdν(f )(x, y, z) with respect to the measure dν on Lp(dν) for  < p < ∞?

In this paper, we always assume that μ = μ × μ × · · · × μn is a product measure,
where μi, i = , . . . , n are all nonnegative Radon measures without mass-points and com-
plete. The assumption that μi are complete is just a technical requirement to allow us
change the order of integration. For a rectangle R ⊆R

n, we mean a rectangle whose sides
parallel to the coordinate axes.

The main theorems of this paper are as follows.

Theorem . Let μ(x) = μ(x) · μ(x) · · ·μn(xn) be a product measure where μi,
i = , . . . , n are all nonnegative Radon measures in R without mass-points and com-
plete. Moreover, we assume that each μi for  ≤ i ≤ n is doubling on R. If ωi(xi) =
ω(x, . . . , xi–, ·, xi+, . . . , xn) ∈ A∞(μi) uniformly with respect to a.e. (x, . . . , xi–, xi+, . . . , xn) ∈
R

n– for i = , . . . , n – , then the operator Mn
ω dμ is bounded on Lp(ω dμ) for all  < p < ∞.

Theorem . Let μ(x) = μ(x) · μ(x) · · ·μn(xn) be a product measure where μi, i =
, . . . , n are all nonnegative Radon measures in R without mass-points and complete. More-
over, we assume that each μi for  ≤ i ≤ n is doubling on R. Then the strong maximal oper-
ator Mn

dμ with respect to the measure dμ is bounded on Lp(ω dμ) if and only if ω ∈ An
p(dμ)

for all  < p < ∞.

Concerning the Córdoba maximal function associated with the Córdoba-Zygmund di-
lations ρs,t in R

, when ω(x, y, z) dμ(x, y, z) is not necessarily doubling with respect to all
the Córdoba-Zygmund rectangles in R

, we have the following.

Theorem . Assume μ = μ × μ × μ, where μ, μ are nonnegative Radon measures
and satisfy the doubling property for all intervals I ⊆ R, and μ is a nonnegative Radon
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measure in R without mass-points (which is not necessarily doubling). If ω ∈ Ap(μ), then
the following weighted inequality holds:

∫

R

[
Mω dμ(f )(x, y, z)

]q
ω(x, y, z) dμ(x, y, z) ≤ C

∫

R

∣
∣f (x, y, z)

∣
∣q

ω(x, y, z) dμ(x, y, z),

for all  < q < ∞.

Moreover, using Theorem . we have the following.

Theorem . Assume μ = μ × μ × μ, where μ, μ are nonnegative Radon measures
and satisfy the doubling property for all intervals I ⊆ R, and μ is a nonnegative Radon
measure in R without mass-points (which is not necessarily doubling). Then the Córdoba
maximal operator Mμ is bounded on Lp(ω dμ) if and only if ω ∈Ap(μ) for all  < p < ∞.

The organization of the paper is as follows. In Section , we will establish the reverse
Hölder inequality for weights ω in the class An

p(μ) adapted to our general product mea-
sure μ, which is not necessarily doubling with respect to the rectangles with sides parallel
to the coordinate axes in R

n. Section  gives the proofs of Theorems . and . of bound-
edness of strong maximal functions with respect to the non-doubling measures dμ and
dν = ω dμ. In Section , we establish Theorems . and . for the Córdoba strong maxi-
mal functions with respect to the Córdoba-Zygmund dilations.

2 Reverse Hölder inequality of weights An
p(μ)

The purpose of this section is to establish reverse Hölder inequality of weights in the class
An

p(μ) adapted to our general product measure μ.
We use the notation w(E) =

∫
E w(x) dμ(x) for every measurable set E ⊂R

n in this section.

Lemma . Assume μ is a nonnegative Radon measure. If ω ∈ An
p(μ) for some  < p < ∞,

then there exists η >  such that whenever F is a measurable subset of a rectangle R and
satisfies μ(F)

μ(R) ≤ η, then

ω(F)
ω(R)

≤  – η.

Proof Since ω ∈ An
p(μ) for some  < p < ∞, then when f is non-negative and Lp(ω dμ)

integrable in a rectangle R, we have

(∫

R
f dμ

)p

=
(∫

R
f ω


p ω

– 
p dμ

)p

≤
(∫

R
f pω dμ

)(∫

R
ω

– p′
p dμ

) p
p′

≤ [ω]An
p(μ)

(∫

R
f pω dμ

)
(μ(R))p

ω(R)
,

where 
p + 

p′ = , which shows

(


μ(R)

∫

R
f dμ

)p

≤ [ω]An
p(μ)


ω(R)

∫

R
f pω dμ.
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For a measurable set F ⊆ R, let E = R\F , f = χE , from the above inequality,

(
μ(E)
μ(R)

)p

≤ [ω]An
p(μ)

ω(E)
ω(R)

,

which implies

ω(F)
ω(R)

≤  –


[ω]An
p(μ)

(

 –
μ(F)
μ(R)

)p

. (.)

It is easy to see that, for a small enough η > , when μ(F)
μ(R) < η, we have  – 

[ω]Anp (μ)
( – μ(F)

μ(R) )p <

 – η. Hence

ω(F)
ω(R)

≤  – η,

which completes the proof. �

Remark . By the same proof, Lemma . holds for ω ∈ Ap(μ) with respect to the
Córdoba-Zygmund rectangles in R

.

Since [ω]An
p(μ) ≥ , from the inequality (.), one can also easily obtain the following

lemma.

Lemma . Under the same assumption on μ in Lemma ., if ω ∈ An
p(μ) for some  <

p < ∞, then, for all  < α < , there is a positive constant β <  such that whenever F is a
measurable set of a rectangle R, we have

μ(F)
μ(R)

≤ α implies
ω(F)
ω(R)

≤ β . (.)

This is equivalent to saying that, for all  < α′ < , there is a positive constant β ′ <  such
that whenever F is a measurable subset of a rectangle R,

μ(F)
μ(R)

≥ α′ implies
ω(F)
ω(R)

≥ β ′.

Remark . Equation (.) is called the An∞(μ) condition. It is easy to see that if ω ∈
An

p(μ), ωi(xi) = ω(x, . . . , xi–, ·, xi+, . . . , xn) ∈ A∞(μi) uniformly with respect to x, . . . , xi–,
xi+, . . . , xn.

Under our assumption on μ being a product measure, we also have the reverse Hölder
inequality for ω ∈ An

p(μ).

Lemma . Assume that μ = μ ×μ ×· · ·×μn is a product measure, where the measures
μi, i = , . . . , n are all nonnegative Radon measures without mass-points and complete. If
ω ∈ An

p(μ), for some  < p < ∞, then ω satisfies a reverse Hölder inequality, that is, there
exist two positive constants c and δ such that for every rectangle R

(


μ(R)

∫

R
ω+δ dμ

)/(+δ)

≤ c
μ(R)

∫

R
ω dμ,
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and c may be taken as close to  as δ → +.

Proof By induction. When n = , ω ∈ A
p(μ), the result is obtained from Proposition A.

Suppose that n > , and this result holds for n – . Denote R = I × I × · · · × In = Ĩ × In,
(x, . . . , xn) = (p, xn) and μ̃ = μμ · · ·μn–. By the Lebesgue differentiation theorem, ω(·, xn)
is uniformly in the class An–

p (μ̃), thus there exists δ >  such that

(


μ̃(Ĩ)

∫

Ĩ
ω+δ (p, xn) dμ̃

)/(+δ)

≤ c


μ̃(Ĩ)

∫

Ĩ
ω(p, xn) dμ̃, (.)

and c may be taken as close to  as δ → +.
Consider the function

W (xn) =
(


μ̃(Ĩ)

∫

Ĩ
ω+δ (p, xn) dμ̃(p)

)/(+δ)

.

We now prove that W satisfies the reverse Hölder inequality. By Proposition A, we only
need to prove that there are positive constants α,β <  such that, whenever E is a measur-
able subset of interval In, one has

μn(E)
μn(In)

≤ α implies
W (E)
W (In)

≤ β .

For a measurable subset E ⊂ In, by (.)

W (E) =
∫

E
W (xn) dμn(xn)

≤ c
∫

E


μ̃(Ĩ)

∫

Ĩ
ω(p, xn) dμ̃(p) dμn(xn)

= c


μ̃(Ĩ)

∫

E

∫

Ĩ
ω(p, xn) dμ̃(p) dμn(xn)

=
c

μ̃(Ĩ)

∫

F
ω(x) dμ(x),

where F = Ĩ × E. If μn(E)
μn(In) ≤ α, we have μ(F)

μ(R) = μ̃(Ĩ)μn(E)
μ̃(Ĩ)μn(In) ≤ α. Take α >  small enough, then

ω(F) < ( – α)ω(R) by Lemma .. So

W (E) ≤ c
μ̃(Ĩ)

ω(F)

≤ c( – α)
μ̃(Ĩ)

∫

In

∫

Ĩ
ω(p, xn) dμ̃(p) dμn(xn)

= c( – α)
∫

In


μ̃(Ĩ)

∫

Ĩ
ω(p, xn) dμ̃(p) dμn(xn)

≤ c( – α)
∫

In

(


μ̃(Ĩ)

∫

Ĩ
ω+δ (p, xn) dμ̃(p)

)/(+δ)

dμn(xn)

= c( – α)W (In).
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For a small enough α > , let c close to  by taking δ close to +, we have c( –α) < . Again,
by Proposition A, W satisfies the reverse Hölder inequality:

(


μn(In)

∫

In

W +δ dμn

)/(+δ)

≤ c′

μn(In)

∫

In

W dμn, (.)

and c′ may be taken as close to  as δ → . Finally choosing δ = δ = δ sufficiently small,
we have

(


μ(R)

∫

R
ω+δ dμ

)/(+δ)

=
(


μ(R)

∫

R
ω(p, xn)+δ dμ̃(p) dμn(xn)

)/(+δ)

=
(


μn(In)

∫

In

(


μ̃(Ĩ)

∫

Ĩ
ω(p, xn)+δ dμ̃(p)

)(/(+δ))(+δ)

dμn(xn)
)/(+δ)

=
(


μn(In)

∫

In

W +δ dμn

)/(+δ)

≤ c′

μn(In)

∫

In

W dμn
(
by (.)

)

≤ cc′ 
μ̃(Ĩ)μn(In)

∫

R
ω(p, xn) dμ̃(p) dμn(xn)

(
by (.)

)

and from the above analysis, cc′ may be taken as close to  by letting δ → +. We then
complete the proof. �

If ω ∈ An
p(μ), p > , then ω–p′ ∈ An

p′ (μ), where /p + /p′ = . Consequently, by
Lemma ., it is easy to deduce the following corollary.

Corollary . Let p > , and ω ∈ An
p(μ), then there is an ε >  such that ω ∈ An

p–ε(μ).

Proof Since ω–p′ ∈ An
p′ (μ) satisfies a reverse Hölder inequality for some exponent δ > :

(


μ(R)

∫

R
ω(–p′)(+δ) dμ

)/(+δ)

≤ c
μ(R)

∫

R
ω–p′

dμ.

Fix q such that q′ –  = (p′ – )( + δ). It is easy to see that  < q < p. By the above inequality,
one has

(


μ(R)

∫

R
ω dμ

)(


μ(R)

∫

R
ω–q′

dμ

)q–

≤ c
(


μ(R)

∫

R
ω dμ

)(


μ(R)

∫

R
ω–p′

dμ

)(q–)(+δ)

,

from which it follows that ω ∈ An
q(μ) since (q – )( + δ) = p –  and ω ∈ An

p(μ). Setting
ε = p – q, we complete the proof. �
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3 The strong maximal functions with respect to non-doubling measures
The main purpose of this section is to prove Theorem .. We first need to prove the
following geometric covering lemma whose proof is inspired by those in [, , ], and
[] when du = dx. Weak type estimates for strong maximal functions were first studied
by Jessen, Marcinkiewcz and Zygmund [] who first proved the strong differentiation
theorem. Córdoba and Fefferman [] gave a more geometric proof (see also Jawerth and
Torchinsky []). Their method in [] relies on a deep understanding of the geometry of
rectangles. Namely, they established a deep and difficult geometric covering lemma. This
lemma will lead to the weak type (p, p) of Mn

ω dμ as argued in []. Then we can complete the
proof of Theorem . by interpolation (see, e.g., [] and []). The proof of Theorem .
is the same as that of Theorem . in Section , we shall omit it here.

Lemma . Assume that μ(x) = μ(x) · μ(x) · · ·μn(xn) is a product measure where μi,
i = , . . . , n are all nonnegative Radon measures in R without mass-points and complete.
Assume also that each μi for  ≤ i ≤ n is doubling on R and that ωi ∈ A∞(μi) uniformly,
i = , . . . , n – .

Then, for all  < p < ∞, given a sequence {Ri} of rectangles whose sides are parallel to the
axes, there exists a subcollection {R∗

i } such that

ω
(⋃

Ri

)
≤ cω

(⋃
R∗

i

)
(.)

and
∥
∥
∥
∑

χR∗
i

∥
∥
∥

p

Lp(ω dμ)
≤ cω

(⋃
R∗

i

)
. (.)

Proof If we can prove it at n = , then it is easy to complete the proof by induction. Hence
we only give the proof when n=.

With no loss of generality, we may assume {Ri} is a finite sequence, and Ri are arranged
so that the side length in x direction is decreasing. If R = I × J ⊆R

 is a rectangle, denote
R̂ = I × J , where J is an interval with the same center and three times the length of J .
We choose R∗

 = R and assume R∗
 , . . . , R∗

k have been selected. We obtain R∗
k+ as the first

rectangle R on the list of Ri after R∗
k such that

μ

(

R ∩
[ ⋃

i≤k,R∩R∗
i �=∅

R̂∗
i

])

<


μ(R). (.)

We will prove that {R∗
i } satisfies (.), (.). Now assume that some R ∈ {Ri} was not se-

lected, then we can find some positive integer k such that

μ

(

R ∩
[ ⋃

i≤k,R∩R∗
i �=∅

R̂∗
i

])

≥ 

μ(R). (.)

Let I , I∗
i denote the slices of R and R∗

i , respectively, with respect to hyperplanes perpen-
dicular to the x. Since the sides of the rectangles {Ri} parallel to the x direction are in
decreasing order, it is easy to obtain

R ∩
[ ⋃

i≤k,R∩R∗
i �=∅

R̂∗
i

]

=
(

I ∩
[ ⋃

i≤k,R∩R∗
i �=∅

Î∗
i

])

× J ,
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where R̂∗
i = Î∗

i × Ĵ∗
i . Then from (.) we have

μ

(

I ∩
[⋃

i≤k

Î∗
i

])

≥ 

μ(I). (.)

Recalling that ωx = ω(·, x) ∈ A∞(μ) uniformly in x, by Remark ., there exists  < β < ,
such that

ωx

(

I ∩
[⋃

i≤k

Î∗
i

])

≥ βωx (I),

where ωx (E) =
∫

E ωx (x) dμ(x) for a measure set E ⊆R, which implies that

⋃

i

Ii ⊆ {
x | Mωx dμ (χ⋃

Î∗i
) ≥ β

}
.

For a one-dimensional Hardy-Littlewood maximal operator with respect to the measure
ωx dμ, it is well known that Mωx dμ is bounded on L(ωx dμ) [], which implies that

ωx

(⋃

i

Ii

)

≤ cωx

(⋃
Î∗

i

)
.

Integrating in x, we have

ω

(⋃

i

Ri

)

≤ cω
(⋃

i

R̂∗
i

)

≤ c
∑

i

ω
(
R̂∗

i
)

= c
∑

i

∫

I∗i

(∫

J∗i
ω(x, x) dμ

)

dμ.

By classical standard arguments, when μ is doubling, ω(x, ·) dμ(·) is doubling uniformly
in x. Hence, we have

ω

(⋃

i

Ri

)

≤ c
∑

i

∫

I∗i

(∫

J∗i
ω(x, x) dμ

)

dμ = c
∑

i

ω
(
R∗

i
)
.

Proceeding similarly to obtaining (.), by (.), for {R∗
i } we have

μ

(

I∗
k ∩

[ ⋃

i<k,R∩R∗
i �=∅

Î∗
i

])

<


μ

(
I∗

k
)
,

that is,

μ

(

I∗
k ∩

[⋃

i<k

Î∗
i

])

= μ

(

I∗
k ∩

[⋃

i<k

I∗
i

])

<


μ

(
I∗

k
)
.
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By the assumption that ωx is uniformly in A∞(μ) and by Proposition A, one obtains

ωx

(

I∗
k ∩

[⋃

i<k

I∗
i

])

≤ β ′ωx

(
I∗

k
)

(.)

for some β ′ < . Let Ek = I∗
k \[

⋃
i<k I∗

i ], then ωx (Ek) ≥ ( – β ′)ωx (I∗
k ). So

ω

(⋃

i

Ri

)

≤ c
∑

i

ω
(
R∗

i
)

= c
∑

i

∫

J∗i

(∫

I∗i
ω(x, x) dμ

)

dμ

≤ c/
(
 – β ′)∑

i

∫

J∗i

(∫

Ei

ω(x, x) dμ

)

dμ

= c/
(
 – β ′)

∫

⋃
J∗i ×Ei

ω(x, x) dμ

≤ c/
(
 – β ′)ω

(⋃

i

R∗
i

)

,

which leads to (.).
Finally, as done in [, ] by duality, we assume that ϕ is a function on R satisfying

‖ϕ‖Lp′ (ωx dμ) = , 
p + 

p′ = , then by the Lp′ (ωx dμ) boundedness of Mωx dμ again, one
has, for a.e. x,

∫ ∑
χI∗k ϕωx dμ =

∑∫

I∗k
ϕωx dμ

=
∑(


ωx (I∗

k )

∫

I∗k
ϕωx dμ

)

ωx

(
I∗

k
)

≤
∑ 

 – β ′ ωx (Ek) inf
x∈I∗k

Mωx dμ (ϕ)(x)

≤ 
 – β ′

∫

⋃
I∗k

Mωx dμ (ϕ)ωx dμ

≤ 
 – β ′

(∫

⋃
I∗k

Mp′
ωx dμ

(ϕ)ωx dμ

)/p′(
ωx

(⋃
I∗

k

))/p

≤ c
(
ωx

(⋃
I∗

k

))/p
,

which implies
∫ (∑

χI∗k

)p
ωx dμ ≤ cωx

(⋃
I∗

k

)
.

Integrating over x finishes the proof of (.). �

4 Córdoba’s maximal function
In this section, as an application of Theorem ., we study the necessary and sufficient
conditions on ω for the weighted inequality for the Córdoba maximal function Mμ(f ) in
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R
 with respect to the not necessarily doubling measure μ:

∫

R

[
Mμ(f )(x, y, z)

]p
ω(x, y, z) dμ(x, y, z) ≤ C

∫

R

∣
∣f (x, y, z)

∣
∣p

ω(x, y, z) dμ(x, y, z).

Proof of Theorem . Using the fact that ω ∈ Ap(μ) (Ap weights with respect to the
Córdoba-Zygmund rectangles and the not necessarily doubling measure μ), we see that
w(·, y, z) is in A

p(dμ) uniformly in y, z and w(x, ·, z) is in A
p(dμ) uniformly in x, z. By the

assumptions that the measures μ, μ are doubling on R, Theorem . is an immediate
corollary of Theorem .. �

We will prove Theorem . by an argument similar to the one given in []. We first
prove the reverse Hölder’s inequality for ω ∈Ap(μ). For a fixed number a > , let U be the
family of all rectangles whose sides are parallel to the coordinate axes in R

, and whose
side lengths in the x, y directions are given by s and sa, where s is arbitrary. First of all, by
Corollary .. of [], using a linear change of scale we obtain the following proposition.

Proposition . Let ν = ν ×ν be a product measure, where ν, ν are nonnegative Radon
measures and satisfy the doubling property for all interval I ⊆ R, and ω be a weight. Sup-
pose that there exist  < α, β <  such that, for ∀R ∈ U ,

ν(F)
ν(R)

≤ α implies
∫

F
ω dν ≤ β

∫

R
ω dν,

where F is a ν-measurable subset of R. Then there are positive constants c and γ such that
for every rectangle R ∈ U

(


ν(R)

∫

R
ω+γ dν

)/(+γ )

≤ c
ν(R)

∫

R
ω dν.

Proceeding as in [] or the proof of Lemma ., together with the above proposition, we
can establish the following reverse Hölder inequality for Córdoba’s weights with respect
to a certain non-doubling measure μ. We omit the proof.

Proposition . There are positive constants c and ε such that, for all Córdoba-Zygmund
rectangles R

(


μ(R)

∫

R
ω+ε dμ

)/(+ε)

≤ c
μ(R)

∫

R
ω dμ.

Then with a proof similar to that of Corollary ., one has the following result.

Corollary . Let p > , and ω ∈Ap(μ). Then there is an ε >  such that ω ∈ Ap–ε(μ).

We are now ready to complete the proof of Theorem ..

Proof of Theorem . The necessity follows just as in the classical case. Now if ω ∈Ap(μ),
by Hölder’s inequality, one has

Mμ(f ) ≤ [ω]Ap(μ)
[
Mω dμ

(|f |p)]/p.
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Then Mμ is Lq(ω dμ) bounded for every q > p by Theorem .. Using the fact ω ∈ Ap–ε(μ)
for some ε >  by Corollary ., one sees that Mμ is bounded on Lp(ω dμ). �
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