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1 Introduction

The history of weighted Hardy operators can be traced back to the end of the 19th century
when Hadamard [1] used the idea of fractional differentiation of an analytic function via
differentiation of its Taylor series. Corresponding to fractional differentiation, we note that
Hadamard dealt with fractional integration in the form of

xa
')

1
FF ) = /0 (- &) f (k) d,

which led him further to consider generalized fractional integrals of the form

1
/0 et )v(E) de. D)

Notice that, if g(x&) = %V‘(xf), V() = (1 — £)*7L, then (1.1) reduces to J%f(x). How-
ever, Hadamard considered the case v(§) = ﬁ(— In£)*71, he did not develop this idea.
Many vyears later a substantial theory of generalized integration (1.1) was created by
Dzherbashyan in [2] and [3]. It is clear that in R! if v(£§) = 1, then (1.1) is precisely reduced
to the classical Hardy operator H defined by

Hf(x):al—c /0 ft)ydt, x+0,
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which is one of the fundamental integral averaging operator in real analysis. In 1984,
Carton-Lebrun and Fosset [4] defined the weighted Hardy operators H, as follows. Let
¥ :[0,1] — [0,00) be a function. If f is a measurable complex-valued function on R”,
then

1
Hyf(x) 1= /0 ftx)y (@) dt, xeR".

Sometimes Hy is called the generalized Hardy operator [5]. Xiao [6] gave the characteriza-
tion of ¥ for which Hy, is bounded on either L (IR"), 1 < p < 0o, or BMO(RR"). Meanwhile,
the corresponding operator norms were worked out. Rim and Lee [7] obtained the similar
results on a p-adic field. For other results of the weighted Hardy operators on the Eu-
clidean space one can refer to [8] and references therein. As we know, the weighted Hardy
operators are closely related to Hausdorff operators; see [9]. In this paper, we will consider
the weighted Hardy operators on the Heisenberg group.

The Heisenberg group H" is the Lie group with underlying manifold R?” x R, whose

group law is given by
/ / / /
(xl; X250 e3%2m5 x2n+l)(x1; KoseeesXoys x2n+l)

n
/ / / / / /
= <x1 X, Xy + Ky X + Xy Kol + Xy + 2 E (xjxn+,- —x,'xnﬂ»)).
1

This multiplication is non-commutative. By the definition, we can see that the identity

element on H” is 0 € R?"*1, while the reverse element of x is —x. The vector fields

X; = B_x, +2xn+jm, j=1...,n,
Xpsj = i - 2% 0 , j=L..,mn
L 0X2041
Xons1 = ! )
X241

form a natural basis for the Lie algebra of left-invariant vector fields. The only non-trivial

commutator relations between those fields are
(X, Xijl = —4Xop1, j=1,...,1.
The Heisenberg group H” is a homogeneous group with dilations
8 (X1, X5+ s Koy Kopa1) 1= (rxl, Xy, . ..,rxzy,,erz”H), r>0.

The homogeneous norm is defined by

1
2n 2 r
2 2
|%ln = § :xi T X1 | o
i=1
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where x = (x1,%9,...,%2,,%2,+1). From this one also can derive the distance function

d(p,q):=d(q'p,0) = |q7'p|,,

This distance d is left-invariant in the sense that d(p, g) remains unchanged when p and ¢
are both left-translated by some fixed vector on H”. Furthermore, d satisfies the triangular
inequality (p.320 in [10])

dp,q) <dp,x) +dx,q), pxqeH".

For r > 0 and x € H", the ball and sphere with center x and radius » on H" are given by
B(x,r) = {y eH” :d(x,y) < r}

and
S, r)={yeH":d(x,y) =r},

respectively.
The Haar measure on H” coincides with the Lebesgue measure on R?" x R. We denote
by |E| the measure of any measurable set E C H". Then

|8,(E)| = r?|E|, d(8,x) = redx,

where Q = 2# + 2 is called the homogeneous dimension of H". We have
|B(x,r)| = [B(0,7)| = Qor?,

where

27" 3T (2)

Q=1 NCINCN

is the volume of the unit ball B(0,1) on H". The area of S(0,1) on H" is wg = QQ2; see [11].
For more details as regards the Heisenberg group one can refer to [12].

Definition 1.1 Let w: [0,1] — [0, 00) be a function, for a measurable function f on H".
We define the weighted Hardy operators H,, on H"” as

1
Hof () = /0 FE@wt)dr.

Recall that the space BMO(H") is defined to be the space of all locally integrable func-
tions f on H” such that

IIf lIBMOGH™) := sup %/B[f(x) —f3| dx < 00,

BcH”

where the supremum is taken over all balls in H” and fz = \Til Jof ) dx.
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In Section 2, we will characterize the nonnegative functions w defined on [0, 1] for which
the weighted Hardy operator H,, is bounded on LP(H"), 1 < p < oo, and on BMO(H").
Meanwhile, the corresponding operator norm in each case will be obtained. In Section 3,
we will introduce a type of weighted multilinear Hardy operators and investigate the char-
acterizations of their weights for which the weighted multilinear Hardy operators are
bounded on the product of Lebesgue spaces in terms of Heisenberg group. In addition,
the corresponding norms will be worked out. We will give an extension of [13] and [6] to
the setting of the Heisenberg group H” since it is a non-commutative nilpotent Lie group
with the underlying manifold R?" x R, in which geometric motions are different from the
Euclidean space R” due to the loss of interchangeability. A new special function for the
sufficient part of BMO bounds will be constructed.

2 Bounds for weighted Hardy operators on H"
Theorem 2.1 Let w: [0,1] — (0,00) be a function and let1 < p < co. Then H,, is bounded
on LP(H") if and only if

1
Q
f t P w(t)dt < oo. (2.1)
0
Moreover, if (2.1) holds, then
1 o
IHuw |l 2o ) e @117 =/ t 7 w(t)dt.
0

Proof Since the case p = oo is trivial, it suffices to consider 1 < p < co. Suppose (2.1) holds.
By Minkowski’s inequality, we have

1 V4 é
I ey = ( /H ‘ fo FEmw(t)de dx)
< / 1( / [f(cStx)|pdx>ﬁw(t)dt
0 H”
1 5 Q
=/0 (/Hnlf(yﬂpdy) £ w(t)dt

1
~ Wl fo 3 wie) dt. 22)

Therefore, H,, is bounded from L?(H") to L? (H").
Conversely, suppose 1 < p < oo and H,, is bounded on Z?(H"). Then

C := Hyll zr @y r @y < 00,
and for f € L (H"),

IHuf 2oy < CIf Nl 2o @y (2.3)
Now, for any ¢ > 0, take

0, lxln <1,

fo=

/]

—<-¢
lxl,” o laln > L
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Then ”ﬁ:”iﬂ(Hn) = w_Q, and

0, lxlp <1,

HfE =1 ey o
I 1R e O T TR Y

Putting 0 < ¢ < 1, then by (2.3), we can see that

_ 978 1 Q p
(|x|h” / £ 7 wl(t) dt) dx
lely>1 Jl,!

Py = IHfo s = /
—Q—s 1 Q p
z/ <|xlh” ft‘p‘%(t)dt) dx
lxl> L e

—O-e I o, p
([, i) ([ om).

By the change of variable x = 1y, we get

Qe 1 o, ’
CPIfe I iy = </ w2 ”Sspdy> (/ £y W(t)dt)
[¥ln>1 €
Lo, p
= ||f£||117}’(H”)<88/8 Ly W(t)dt) .

This implies that
1 o
g* / 7 w(t)dt < C.
&
Letting € approach to 0, we have
1 o
/ £ Pw(t)dt < C. (2.4)
0

Moreover, when (2.3) is true, i.e. H,, is bounded on L?(H"), then by (2.2) and (2.4), we
have

1
_Q
IHuw |l Lo (gm)— L2 @) :/ £ 7 w(t)dt.
0

This completes the proof. O

On the Heisenberg group, the weighted Hardy operator can also turn into the n-

dimensional Hardy operator, see [14, 15].

Proposition 2.1 Iff is a radial function and w(t) = Q¢ then H,,f(x) = Hf (x), where

1 n
) = o / o JO EE O 2.5)

is the Hardy operator on the Heisenberg group.
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Proof In fact, if f is a radial function, then

Hf (x) = SO dy

[B(O, |%11)] J B0, x1y)

£ (8ea,y )27 x5 dt dy
" 1B, |x|h)|/ / )2y ey

— / f(8,x)tQ 7 dt dy
0,1

1
- /0 f(6:x)Qt% dt = H, f(x). 0

Denote L7 (H") = {f : f is radial and f € L’(H")}. By Theorem 2.1, we can get the follow-

ing result.
Corollary 2.1 Let1 < p < oco. Then H is bounded on LP(H"). Moreover,
1Rl 22 gy £ @my = L, l<p<oo,
p-1

[IH] £oo @) cooqmm) = 1.

Theorem 2.2 Let w: [0,1] — (0,00) be a function. Then H,, is bounded on BMO(H") if
and only if

1
/ w(t) dt < 00. (2.6)
0
Moreover, if (2.6) holds, then

1
”HWHBMO(H”)—>BMO(H”):/ w(t) dt.
0

Proof For each t > 0 and ball B(xg,r) C H"”, let tB(xo,r) be the ball B(8;xo,tr), then
|tB(x0, )| = t2|B(x0, 7).
Suppose (2.6) holds. Let f e BMO(HH”) and let B be a ball. Then by Fubini’s theorem, we

have
1
(o = o /B Hof (3) dx

_ % fB /O 1 F (6wt dt dx
_ f 1(|;| / f(étx)dx)w(t)dt
/ <|B|/fWQdy)W(t)

- f Fsw(t) dt.
0
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Then

ﬁ /B IHaf () = (Huf)s| dx

_1f
1Bl J5

1
5é /B /0 I (80%) — fo | wi2) dt dx

1
_ fo (é /B I (8) — ﬁBydx)w(t)dz

) fol (ltlﬁ ./ts V) ~fal dy) mod

1
< I lemogn /0 w(t) dt, 2.7)

1 1
f FRwle)dt - / Fawlt)d] dx
0 0

which implies that H,, is bounded on BMO(H?").
Conversely, if H,, is bounded on BMO(H"). Choose

11 Xon+l > 07

_ﬁ)(x) = Or Xon+l = 0,
-1, Xon+1 < 0.

Thenfo € BMO(H”) with ”f() ”BMO(H”) 7-/0 Let
fol W(t) dt’ Xon+l > 0,

HWfO(x) =10, X241 = 0,
—fol w(t)dt, Xope1 <O.

Then
1
Hfo(s) =fot0) [ (o
0
Consequently,
1
/ w(t) dt < ||H, llBMoE")—BMO®H?).- (2.8)
0
Moreover, when (2.6) holds, then (2.7) and (2.8) imply that
1
[IH,y lIBMOH")— BMOGH") = / w(t) dt.
0

This completes the proof. O

Corollary 2.2 Denote

BMO(H") = {f : f is radial and f € BMO(H")}.
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Then H is bounded on BMO(H") and

IIH]I BMO@E™) - BMO@") = 1.

3 Bounds for weighted multilinear Hardy operators on H"

The study of multilinear averaging operators is traced back to the multilinear singular
integral operator theory [16], and motivated not only the generalization of the theory of
linear ones but also their natural appearance in analysis. For a more complete account on
multilinear operators, we refer to [13, 17] and [18]. Very recently, Fu et al. [13] defined a
kind of multilinear Hardy operators, we will investigate their estimates on the Heisenberg

group.

Definition 3.1 Let m € N and

m

®:[0,1] x [0,1] x --- x [0,1] — [0, 0)

be an integrable function. The weighted multilinear Hardy operator H} on H” is defined

as

H2 () (x) := / (l_[f 8% ) 0)dt, xeH",
0<t1,£2,50 0t <1

where]’ =S fom) D) := Dty, ta, ..., ty), dt :=dti dty - - - dty, and f, i =1,...,m, are
complex-valued measurable functions on H". When m = 2, HY, is referred to as bilinear.

Remark 3.1 If f;, i = 1,2,...,m, are radial functions and ®(t;,...,t,) = Q" [/ ¢; ! then
HZf (x) = [ 172, Hfi(x), where H is given by (2.5).

In fact, if f;, i = 1,2,...,m, are radial functions, then

m

- 1
Hilx) = ——a / fiyi) dy;
ll'=_1[ Qg|x|hQ 1:1[ [yiln<lxlp
Qm H/ / St,\x\hyl dtl d)/
1 - ' Q-1 ’
= Wl_[/ f Ji(6yx)t; " dt; dy;
Q =1 Y0 Js(on
m a1
=Q"[] / fi(8x)t 2 dt
i=1 Y0

= fo 1(Hf(at, )Q’”]_[t?_lthJ(x).
<t ebm< i=1

Theorem 3.1 Suppose @ :[0,1] x [0,1] x --- x [0,1] — [0,00) is a function and m > 2.
Let 1 <p,pi<oo,i=1,...,mand llp =1/p; + --- + 1/p,,. Then HY is bounded from
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IPA(H") x -+ x LPm(H") to LP (H") if and only if

A ;=/ (l_[t ”l) (?) df < 00. (3.1)
0<t1,£2,e00tim<1

Moreover, if (3.1) holds, then

m —_
” Ho Hu’l (H) e L () L () = A (32)
Proof For simplicity, we only consider the case m = 2. A similar procedure works for the
other m > 3.

Since the case p = coand p; = 00,i = 1,...,m s trivial, it suffices to consider 1 < p, p; < o0,
i=1,...,m.

Suppose (3.1) holds. Using Minkowski’s inequality and the change of variables 8, x = y,

2 2 5
I#45an = ([ )

Y
< IABux)f(80,x) |/ dx ) ®(t1,8:) dty dts.
0<ty,tp<1 \JH"

8:,% = ¥, we have

f F1(5ux)(60, )0 (01, 1) i di
0<ty,t2<1

By Holder’s inequality with 1/p = 1/p; + 1/p,, we get

I s = [ ( [1( [ s
0<ty, ta<l;
Q

2
= WAllorr e ol 72 any [[t" o, t) dt dt,.

0<ty,t2<1 i-1

17, dx) qD(tl, tg) dtl dtg

Thus pr maps L7 (H") x LP2(H") into L?(H"), and

2 _Q
M longensamn-pim < [ 16" o t)dnde = 42 (33)

0<ty,t2<1 i-1

Conversely, suppose that H is a bounded operator from L”1(H") x L?2(H") to LF(H").
For sufficiently small ¢ € (0,1), we set

0, lxln <1,
Jix) = ~9_p, i=1,2.
lel,™ 7, Ixln>1,

A standard integral calculation gives

7 —’ i=1,2.

And

0, lxlp <1,

Hé(flg’ ;)(x): _pr,_Q_»r,
|o¢ |h fW fﬁ i £, nt (4, t) dt dty, x|, > 1.
h *Ip
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Consequently, we have

[Ha (A7) o

1

_Q_»r _i_L p ]

:{/ xl, & S"(f f ZROPCEe <I>(t1,t2)dt1dt2> dx}p
%ln>1

&
o 1 el _Q p, _Q », P o
> {/ |xl, "“’”(/ / R @(tl,tz)dtldtz) dx}
lxl> L e Je

ya

_ (/ |y| —-Q-¢p Q+€p8 Qdy> (/ / tl !71 Pl t P2 2 CD(tl,tz)dtldtz)

[yln>1

_7_7 17
( ) / / RS t” 2 D(t, 1) dty dt,
1Z3 p

:(@) 1( ) ’ / / PR 1) di by

ep ep

P o

= |If ”m (") It ”va )€ / / ,:1}’1 et ty o O(ty,tp) dty dt,.

Therefore,

Q_» Q_v»r,

1 rl
I Doy v = [ [ 67767 7 00, ) dis
& &

Since ¢ — 1 as ¢ — 0, we obtain
Ay < |IH3 |21 @y ) 1o @) < 00.
This inequality and (3.3) yield (3.2). The proof is complete. O

4 Bounds for weighted Cesaro operators on H"

Given a nonnegative function w: [0,1] — (0, 00). For a measurable complex-valued func-
tion f on H", the adjoint operator of the weighted Hardy operator, the weighted Cesaro
operator is defined as

1
Cof (%) ::/f(Sl/tx)t_Qa)(t)dt, x € H",
0
which satisfies

/ F@)(Hag) ) dx = / 2()(Cof)(x) di.
" H”

Here f € LP(H"), g € L1(H"),1< p <00, q = p/(p — 1), H,, is bounded on L?(H"), and C,, is
bounded on L4(H").

Theorem 4.1 Let w: [0,1] — (0,00) be a function and let 1 < q < co. Then C,, is bounded
on L1(H") if and only if

1
/ £ VD (1) dt < 0. (4.1)
0
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Moreover, if (4.1) holds, then

1
1Co 1l g ) L E1m) =/ £ VD (1) dt.
0

Theorem 4.2 Let w: [0,1] — (0,00) be a function. Then C,, is bounded on BMO(H") if
and only if

1
/ £ %w(¢) dt < 0o. (4.2)
0

Moreover, if (4.2) holds, then

1
”CWHBMO(H”)»BMO(H”):/ £ w(¢) dt.
0

We also define the weighted multilinear Cesaro operator C; on H” as
) x) = f [TiGun) | 0@ di, xemr

0<t1,£2,estm<1 i=1

m

Theorem 4.3 Suppose @ :[0,1] x [0,1] x -+ x [0,1] — [0, 00) is a function and m > 2.
Let1 <q,q <o00,i=1,...,m, and 1/qg =1/q, + --- + 1/q,,. Then C} is bounded from
LN(H") x --- x L9 (H") to L1(H") if and only if

m
Cpi= / [164 )@@ di < . (4.3)
0<ty,ty- tm<1

i=1

Moreover, if (4.3) holds, then
1C Nl a1 () . Lam )= L9 @ty = Cone (4.4)

The proof of the theorem in Section 4 is immediate from the proof of Section 2 and

Section 3.
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