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Abstract
In this paper, we study the log-behavior of a new sequence {Sn}∞n=0, which was
defined by Z-W Sun. We find that the sequence is log-convex by using the interlacing
method. Additionally, we consider ratio log-behavior of {Sn}∞n=0 and find the
sequences {Sn+1/Sn}∞n=0 and { n

√
Sn}∞n=1 are log-concave. Our results give an affirmative

answer to a conjecture of Z-W Sun on the ratio monotonicity of this new sequence.
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1 Introduction
Throughout the paper, we denote by N the set of nonnegative integers. The main objective
of this paper aims to confirm a conjecture on ratio monotonicity of a new kind of sequence
{Sn}∞n= via studying its log-behavior properties. The sequence {Sn}∞n= was introduced by
Sun in [, ] and defined as follows:

Sn =
n∑

k=

(
n
k

)(k
k

)
(k + ), n ∈N. (.)

Sun studied congruence and divisibility properties of this kind of numbers in [, ] and
posed the following conjecture.

Conjecture . ([], Conjecture .(ii), [], Conjecture .) The sequence { Sn+
Sn

}∞n= is

strictly increasing to the limit , and the sequence { n+√Sn+
n√Sn

}∞n= is strictly decreasing to the
limit .

To begin with, let us review some related concepts. Let {zn}∞n= be a sequence of positive
real numbers. We say a sequence {zn}∞n= is (strictly) ratio monotonic if its ratio sequence
{ zn+

zn
}∞n= is (strictly) monotonically increasing or (strictly) decreasing as n increases. A se-

quence {zn}∞n= is said to be log-convex (resp. log-concave) if, for all n ≥ ,

zn–zn+ ≥ z
n

(
resp. zn–zn+ ≤ z

n
)
. (.)
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Meanwhile, the sequence {zn}∞n= is called strictly log-convex (resp. log-concave) if the in-
equality in (.) is strict for n ≥ n for some n ∈ N. Indeed, ratio monotonicity is equiva-
lent to log-behavior. According to the definitions, it is easy to see that a ratio monotonically
increasing (resp. decreasing) sequence is itself a log-convex (resp. log-concave) sequence
and vice versa.

So far, many criteria for log-behavior of a sequence have been developed; see [–] and
the references therein for details. Also, there have been some important progress on ra-
tio monotonicity since many conjectures on ratio monotonicity were posed by Sun [].
For example, the reader may refer to [–]. Recently, Chen et al. [] introduced a no-
tion called ratio log-behavior in order to study the log-behavior of sequences of the form
{ n√zn}∞n=. By ratio log-concavity (resp. log-convexity) of a sequence {zn}∞n=, we mean that
the sequence { zn+

zn
}∞n= is log-concave (resp. log-convex). They found that the ratio log-

concavity (resp. log-convexity) of a positive sequence {zn}∞n=k
for some positive integer

k can imply the sequence { n√zn}∞n=k
is strictly log-concave (resp. log-convex) if it satis-

fies certain initial conditions; see [], Theorem . and Theorem .. To make this paper
self-contained, we will recall their criteria in Section .

The main results of the present paper can be stated as follows.

Theorem . The sequence {Sn}∞n= is strictly log-convex, that is,

S
n < Sn+Sn– for n ≥ . (.)

Theorem . The sequence {Sn}∞n= is ratio log-concave, that is,

(
Sn+

Sn

)

≥ Sn

Sn–
· Sn+

Sn+
for n ≥ .

Theorem . The sequence { n√Sn}∞n= is strictly log-concave.

On the basis of Theorem . and Theorem ., we can conclude the following result.

Theorem . Conjecture . is true.

The remainder of the paper is organized as follows. We give some preliminaries work in
Section , including a three-term recurrence for Sn, a lower and upper bound for Sn

Sn–
. In

Section , we give proofs of our main theorems.

2 Preliminaries
2.1 A three-term recurrence
The Zeilberger algorithm [] yields the following four-term recurrence for Sn:

(n + )Sn –
(
n + n + 

)
Sn+ + (n + )(n + )Sn+

– (n + )Sn+ = .

This recurrence cannot easily be tackled as almost all criteria for log-behavior are con-
cerned with three-term recurrences. So it is indispensable for us to find a three-term re-
currence. The following lemma was first obtained awkwardly by solving a linear system
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of equations. Afterwards, we found it can be deduced from a three-term recurrence for
nSn, which was established by a technique way due to Guo and Liu [].

Lemma . Let Sn be defined in (.). Then it satisfies a three-term recurrence:

(n + )(n – )(n + )Sn+ – (n – )(n + )
(
n + n + 

)
Sn

+ n(n + )(n + )Sn– =  for n ≥ . (.)

Proof Let un = nSn. Guo and Liu [], Eq. (.), found a three-term recurrence for un,
i.e.,

n(n + )(n + )(n + )(n + )un+ – n(n + )(n + )
(
n + n + 

)
un+

+ (n + )(n + )(n + )un = . (.)

Substituting nSn for un in (.) and then simplifying, the recurrence (.) follows easily.
�

2.2 Bounds for Sn
Sn–1

In [], Chen and Xia provided a heuristic approach to find bounds for zn
zn–

, where zn satis-
fies a three-term recurrence. The following bounds can be acquired by using their method.

Lemma . Let

h(n) =  –


n .

Then we have

h(n – ) <
Sn

Sn–
< h(n) for n ≥ . (.)

Proof We proceed our proof by induction on n. For the sake of simplicity, let

sn =
Sn

Sn–
.

To begin with,

h() =



< s =



< h() =



,

so inequality (.) holds for n = .
Suppose that h(n – ) < sn < h(n), we proceed to show that h(n) < sn+ < h(n + ).
On the one hand, by Lemma ., we have

sn+ – h(n + ) =
(n + )(n + n + )

(n + )(n + )
–

n(n + )
(n + )(n – )sn

– h(n + )

<
n + 
(n + )

(
n + n + 

n + 
–

n

(n – )h(n)

)
– h(n + )
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=
n + 
(n + )

(
n + n – n – n – n + 

(n – )(n + )(n – )

)
– h(n + )

=
–n – n + 

(n + )(n – )(n + )(n – )
<  for n ≥ ,

which obviously implies sn+ < h(n + ).
On the other hand, consider that, for n ≥ ,

sn+ – h(n) =
(n + )(n + n + )

(n + )(n + )
–

n(n + )
(n + )(n – )sn

– h(n)

>
n + 
(n + )

(
n + n + 

n + 
–

n

(n – )h(n – )

)
– h(n)

=
(n + )(n – n – n + n + n – )

(n + )(n – )(n + )(n – n + )
– h(n)

=
n – n – n + n + n – 

n(n + )(n – )(n + )(n – n + )
> .

Evidently, this gives us sn+ > h(n).
According to an inductive argument, it follows that, for all n ≥ , we have

h(n – ) < sn < h(n). �

As a corollary, we have the following.

Corollary . Let Sn be defined by (.). Then we have

lim
n→∞

Sn+

Sn
= .

3 Proofs of theorems
Before giving proofs of our theorems, we need to recall some known results. The following
proposition first appeared in [] and is formally called the interlacing method by Došlić
and Veljan [].

Proposition . ([]) Suppose that {zn}∞n= is a sequence of positive numbers. Then, for
some positive integer N , the sequence {zn}∞n=N is log-convex (resp. log-concave) if there exists
an increasing (resp. a decreasing) sequence {h(n)}∞n= such that

h(n – ) ≤ qn ≤ h(n)
(
resp. h(n – ) ≥ qn ≥ h(n)

)
(.)

holds for n ≥ N + , where qn = zn+
zn

. Moreover, the sequence {zn}∞n=N is strictly log-convex
(resp. strictly log-concave) if and only if the above inequalities (.) are strict.

To prove Theorem . and Theorem ., the following criteria due to Chen et al. [] are
also indispensable.
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Theorem . ([], Theorem .) Let {zn}∞n= be the sequence defined by the following re-
currence:

zn = u(n)zn– + v(n)zn–.

Assume that v(n) <  for n ≥ . If there exist a nonnegative integer N and a function h(n)
such that, for all n ≥ N + ,

(i) u(n)
 ≤ zn

zn–
≤ h(n);

(ii) h(n) – u(n)h(n) – u(n + )v(n)h(n) – v(n)v(n + ) < ,
then {zn}∞n=N is ratio log-concave.

Theorem . ([], Theorem .) Assume that k is a positive integer. If a sequence {zn}∞n=k
is ratio log-concave and

k+√zk+
k√zk

>
k+√zk+
k+√zk+

,

then the sequence { n√zn}∞n=k is strictly log-concave.

We are now in a position to prove our main theorems.

Proof of Theorem . Since h(n) is strictly monotonically increasing, it follows that {Sn}∞n=

is strictly log-convex by Lemma . and Proposition .. �

As a corollary, we have the following.

Corollary . The sequence { Sn+
Sn

}∞n= is strictly monotonically increasing.

Since {Sn}∞n= is a positive sequence, we can define the sequence { n√Sn}∞n=. Then we have
the following result.

Corollary . The sequence { n√Sn}∞n= is strictly increasing. Moreover,

lim
n→∞

n
√

Sn = . (.)

Proof By Corollary ., it follows that

Sn+

Sn
>

Sn

Sn–
for n ≥ .

Consider that S = , so

Sn = S · S

S
· S

S
· · · Sn

Sn–
<

(
Sn+

Sn

)n

,

which implies

Sn+
n < Sn

n+.
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This is equivalent to

(
Sn+

n
) 

n(n+) <
(
Sn

n+
) 

n(n+) ,

that is,

n
√

Sn < n+
√

Sn+.

Additionally, consider that, for a real sequence {zn}∞n= of positive real numbers, it was
shown that

lim
n→∞ inf

zn+

zn
≤ lim

n→∞ inf n√zn (.)

and

lim
n→∞ sup n√zn ≤ lim

n→∞ sup
zn+

zn
, (.)

see Rudin []. The inequalities in (.) and (.) imply that

lim
n→∞

n√zn = lim
n→∞

zn

zn–

if limn→∞ zn
zn–

exists. By Corollary ., we arrive at (.).
This completes the proof. �

Proof of Theorem . By Lemma ., the recurrence (.) implies that

Sn =
(n + )(n – n + )

n(n – )
Sn– –

(n – )(n + )
n(n – )

Sn–.

To keep the notation in Theorem ., here we still let

u(n) =
(n + )(n – n + )

n(n – )
, v(n) =

(n – )(n + )
n(n – )

.

Consider that

u(n)


– h(n – ) = –
(n – n + n – n + n – )

n(n – )(n – )

<  for n ≥ ,

which shows that

u(n)


< h(n – ) for n ≥ . (.)

Additionally, for n ≥ ,

h(n) – u(n)h(n) – u(n + )v(n)h(n) – v(n)v(n + )



Sun et al. Journal of Inequalities and Applications  (2016) 2016:272 Page 7 of 9

=
–A(n)

n(n + )(n – )(n – )

< , (.)

where

A(n) = ,n – ,n – ,n + ,n + ,n – ,n

– ,n + ,n + ,.

Combining the inequalities (.) and (.), we arrive at our statement in Theorem . by
Theorem .. �

Remark . Notice that the first author of the present paper and Zhao [] also found
some criteria for ratio log-behavior, which can also be used to prove ratio log-concavity of
{Sn}∞n=.

Proof of Theorem . By Theorem ., it suffices to find a positive integer k such that

k+√Sk+
k√Sk

>
k+√Sk+
k+√Sk+

.

Let k = , we have

√
S

S
=

√



>
√

S

S
=

√
√

√


since

(√



)

–
( √

√
√



)

=
,,

,,
> .

Therefore, by Theorem . and Theorem ., it follows that { n√Sn}∞n= is strictly log-
concave. �

Corollary . The sequence { n+√Sn+
n√Sn

}∞n= is strictly monotonically decreasing.

Corollary . For Sn, we have

lim
n→∞

n+√Sn+
n√Sn

= .

Proof With the aid of Lemma ., we have


n∏

i=

h(i – ) < Sn < 
n∏

i=

h(i).

Therefore, we can deduce that

log

( n+√Sn+
n√Sn

)
=

log Sn+

n + 
–

log Sn

n
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<
log (

∏n+
i= h(i))

n + 
–

log (
∏n

i= h(i – ))
n

and

log

( n+√Sn+
n√Sn

)
=

log Sn+

n + 
–

log Sn

n

>
log (

∏n+
i= h(i – ))

n + 
–

log (
∏n

i= h(i))
n

.

Resorting to Mathematica 10.0, we find that

lim
n→∞

(
log (

∏n+
i= h(i))

n + 
–

log (
∏n

i= h(i – ))
n

)
= ,

lim
n→∞

(
log (

∏n+
i= h(i – ))

n + 
–

log (
∏n

i= h(i))
n

)
= .

Thus we can arrive at

lim
n→∞ log

( n+√Sn+
n√Sn

)
= ,

which implies

lim
n→∞

n+√Sn+
n√Sn

= .

This finishes the proof. �

Proof of Theorem . The first part of Conjecture . follows from Theorem ., Corol-
lary . and Corollary .. The second part follows from Theorem ., Corollary ., and
Corollary .. This completes the proof of Theorem .. �
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