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1 Introduction and preliminaries
A measure p is called a doubling measure, if there exists a positive constant C such that
w(B(x,20)) < Cu(B(x,1)), for all x € supp u and all [ > 0, which is the main condition in
homogeneous spaces. Also 1 is a non-doubling measure, if there exists an integer k € (0, 1]
and a positive constant Cy, such that
1(B(x, 1) < Col. (1.1)
This innovation caused the tremendous development of harmonic analysis (see [1-8]). It
is worthy to mention that this theory solves the Painlevé’s problem and Vitushkin’s conjec-
tures (see [7, 9]). Hytonen [10] introduced the non-homogeneous metric measure spaces
(X,d, ), which contains the homogeneous spaces and non-doubling measure spaces.
Many researchers obtained the boundedness of operators on the non-homogeneous met-
ric measure spaces; see, e.g., [10-25].

For multilinear integral operators, the bilinear theory for Calderén-Zygmund opera-
tors was studied by Coifman-Meyers [26], then, the boundedness on Lebesgue spaces or
Hardy spaces for multilinear singular integrals was proved by Gorafakos-Torres [27, 28].
In non-doubling measure spaces, Xu [29, 30] and Lian-Wu [31] obtained the bounded-
ness of multilinear singular integrals or multilinear fractional integrals and commutators
respectively. In non-homogeneous metric measure spaces, Hu et al. [32] established the
weighted norm inequalities for multilinear Calderén-Zygmund operators. The authors of
[23] proved the boundedness on Lebesgue spaces for commutators of multilinear singular
integrals.

In this paper, we introduce multilinear fractional integrals and its commutators on non-

homogeneous metric spaces, then we study the boundedness in Lebesgue spaces for these
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operators, provided that fractional integral is bounded from L"(u) to L*(), for some
r€(1,1/8) and 1/s = 1/r — B with 0 < 8 < 1. Our results include both the results for the
homogeneous spaces and the non-doubling measure spaces.

Throughout this paper, L2°(¢t) denotes L>°(u) with compact support. C always denotes
a positive constant independent of the main parameters involved, but it may be different
in different currents. And p’ is the conjugate index of p, namely, 1/p + 1/p’ = 1. Next let us
give some definitions and notations.

Definition 1.1 ([10]) A metric space (X, d) is geometrically doubling, if there is a positive
integer Ny such that, for all ball B(x, r) C X, one can find a finite ball covering {B(x;, r/2)};\:[‘i

Definition 1.2 ([10]) For a metric measure space (X,d, u), if u is a Borel measure on X,
and there is a function A : X x (0, +00) — (0, +00) and a positive constant C;, such that for
all x € X, the function [ — A(x, [) is non-decreasing, and for all x € X, [ > 0, the following
holds:

(B, 1)) < Ax, 1) < Cia(x, 1/2), 1.2)
then (X, d, u) is called upper doubling.

Remark 1.3
(i) If A(x,!) equals to u(B(x, 7)), then the homogeneous spaces is upper doubling
spaces. Also, if A(x,[) equals CIX, then a metric space (X, d, 1) satisfying (1.1) is

upper doubling.
(ii) By [18], we know that there exists another function A < A, Vx,y € X with d(x,y) <,
and the following holds:
A, 1) < CA(y,1). (1.3)

Thus one always assumes that A satisfies (1.3) throughout this paper. Because the
singularity of the commutators is stronger than that of the fractional integral, we
need to assume A(x,al) > a”A(x,[), for all x € X and 4, > 0, in the proof of
boundedness of commutators.

(iii) The upper doubling condition is equivalent to the weak growth condition
introduced by Tan-Li in [33].

A measure p is (¢, 8)-doubling, if u(aB) < Bu(B), for o, B € (1, +00) and all ball B C X.
Bui-Duong [11] pointed out that there exist many doubling balls. One always means that
(o, B)-doubling ball is a (6, Bp)-doubling ball throughout the paper, for some fixed number

3log, 6

Bo > max{C, ,6"}, where n =log, Ny is viewed as a geometric dimension of the space,

except o and B are designated.

Definition 1.4 ([15]) For 0 <y <1, Band R be two arbitrary balls with B C R and N be
the smallest integer satisfying 6™B&[g > [z. One defines

Npr

_ wu(6/B)
KJa=1+ Z[/\(xg,@lg)} . (1.4)

For y =0, one simply writes K ,(3(,)1)? = Kpg-
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Definition 1.5 Let « € (0, m). We call K is an m-linear fractional integral kernel, if

K(,...,") eLlloc((X)"’*l\{(x,yl Ve Vm) X =Y 1 <i < m}),

and the following two items hold:

(i)
C
|I<(xtylx~")yi)“~)ym)| < 771 ) (15)
Do Al dix, )]
YOO Y1 e s Vis o or V) € (X)L, with x # y; for some i;
(ii) thereisaconstant0<é <1,
|K (91,000 Ym) = KX V133 |
d ; /S
[Ziﬂ d(x;%)] [21‘:1 )\(x: d(x:yi))]m_a
if Cd(x,x') < maxi<j<m d(x,y;), and for every i,
|K@, 0153 Yis oY) = K601+ 3 Vs o s Vm)|

= Ty Py M i,y
if Cd(y;,y;) < maxi<j<, d(x,y;).

For any m compactly supported bounded functions f,...,f,;, and any point x ¢
(), suppf;, the multilinear fractional integral operators I, ,, is defined by

Lom(fis- -5 fn) (%)
= /Xm K@ y1, - 3m)i01) -+ fon ) A1) - - - dpe(yom)- (1.8)

Remark 1.6 As maxj<i<, d(x,y;) < Y i d(x,y) < mmaxi<j<, d(x,7;), (i) in Defini-
tion 1.5 is equivalent to the following:

(ii') Thereis a constant 0 <8 <1,

|K(x,y1,...,y,~,...,ym)—K(x’,yl,...,y,»,...,ym)|

- Cd(x,x')°
= [maxi<icm d(x, y:) 1P [7 A, dx, y)]m

if Cd(x,x') < maxy<;<, d(x,y;), and for every i,

|K(x,}/1,- . ~xyi»« . xym) - I((x:ylw . 1_)’;‘» oo ,J/m)|

- Cd(y;,5,)°
= [maxi<i<m dx,y:) 18 [0 A, d(x, y:)]me

if Cd(yl,y:) < MaXj<j<m d(x,yl)
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Definition 1.7 ([11]) Given p >1,b e Ll (u)isan RBMO(u) function, if there is a positive

loc

constant C, for all B, we have

1
u(pB)

[ 1669 - bl dao < . (1.9)
B
and for all two doubling balls B, R with B C R,

|mp(b) — mp(b)| < CKpp, (1.10)

where B is the smallest (c, B)-doubling ball with the form 6*B, k € N U {0}, and
)= [ b duto)
mz = — M .
P u@)

The RBMO(u) norm of b, denoted by ||b||., is the minimal constant C in (1.9) and (1.10).

Forl <j<m,let C]’” be the family of subsets o = {0 (1),0(2),...,0(j)} of {1,2,..., m} with
jdiiferent elements. Fgr eacho € ij, o' ={1,2,...,m}\o.For b; € RBMO(;ﬁ),j =1,...,m,
setb = (b1,by,...,b1), b = (boqy, - . » bo(), b (%) = boy (%) - - b (x). Denote f = (fi,... . fin),
Fo = oy nfop) and Borfoyr = (B e s1)s -+« Dot (o om)-

Definition 1.8 For b; e RBMO(u), j =1,...,m, and multilinear fractional integral opera-

tors I, we define the commutators [E,Ia,m] by

[Zila,m](f)(x) = Z Z (_l)m_jbo (x)la,m(ﬁf’];zr’fa/)(x)~

j=0 O'GC;”
Form =2,

(b1, b2s 1o 2] (f1, f2) (%) = b1 (%) D2 (%)]e 2 (F1, f2) () — D1 (X)L 2(f1, D2f2) (%)
= by ()2 (D11, /2) (%) + La2(bifis bof2) (). (1.11)

[b1,1,,] and [by, 1, 5] are defined thus:

(b1, 1o 2(f1: 12) (%) = D1(X) o 2 (f1, f2) (%) — Lo 2 (D11, 2) (%),
[02,102](f1,2) (%) = ba(X) a2 (f1, f2) (%) — L2 (fi, bafo) (%).

In this paper, one only considers the case of m = 2 for simplicity.

Theorem 1.9 Let0<a<2,1<p1,p2<+oo,0<ézpil+pi2—a<1,g1 € L () and g, €

LP2(w). If 1 is bounded from L () into L*(w), for some r € (1,1/8) and 1/s = 1/r — B, with

0 < B <1, then there is a positive constant C,

||1a,z(g1,g2)||m(m = Cligillzer g 1€21l 22 (1
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where Ig is defined by

B £0)
CE 00 dle 1 10

Theorem 1.10 Set ||| =00,0<a <2,1< py, pa < +00,0 < % = Pil +pi2 —a<l,g €LP(u),

& € LP2(u), by, by € RBMO(u) and if I is bounded from L' () into L°() for some r €
(1,1/B), 1/s = 1/r — B with 0 < B < 1, then there is a positive constant C,

I [bl:bZ:[a,Z](gl;gZ)”Lq(m < Cligiller g2l r2 ()

Remark 1.11 For the case that || ;|| < 0o, by Lemma 2.1 in Section 2 below, Theorem 1.10
also holds, if we assume that

f I2(g1,82)(x) du(x) = 0, / [b1,10,21(g1, &) (%) dp(x) = 0,
X X
/X[bz,fa,z](ghgz)(x) du(x)=0 and /X[bbsza,z](gl,gz)(x)dﬂ(x) =0.

This paper is organized as follows. Theorem 1.9 and Theorem 1.10 are proved in Sec-
tion 2. In Section 3, some applications are stated.

2 Proof of main results
Proof of Theorem 1.9 Leta =y + g, 0 <o; <1/p; <1,i=1,2. It is easy to check that

lzl[k(x, d(x,y) ] < [i *(, d(x,y»)}

i=1 i=1
Thus

lg1(y1)g2 (y2)]
2 30, M d(x,y))]

2
) 1_1[/)( (o, ds, oy 0
2

= [ [ 2 (lgi) @)

i=1

Latee)w| < [ — () du(y2)

Let1/q; =1/p;—a; and 1/q; + 1/g2 =1/g, 1 < q; < 0o. It follows from the Holder’s inequality
and the L”(u) — L% (1) boundedness of I,,;, i = 1,2, that

10,2 (g1, 22) ”qu)

2

Hlai(|gi|)

i=1

<

L9(w)
< [z (1g21) | 1 () 12 (Ig21) @) | s W

< llgillzer gy g2l o2 ()

Thus the proof of Theorem 1.9 is completed. d
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In order to prove Theorem 1.10, we need some lemmas.

Forf € L}, (n) and 0 < B <1, one defines the sharp maximal operator
) — me(f)]
M>Pf(x )—su / —mz(f)| dun )+ su —'mB(f )

here A, :={(B,R) :x € BC R and B, R are doubling balls}.
One defines the non-centered doubling maximal operator

Nf@) = sup / )| du).

B>x,B doubling H(B)

It is easy to see
If )| < Nf (%),

for every f € Lj (1) and p-a.e. x € X.
For p >1, @ € (0,1) and ¢ € (1,00), one defines the non-centered maximal operator
Mﬁi»f as follows:

M f(x) = [f(y\ du(y) m.
ol ) = S0P g pB [(pB)T—e a

For simplicity, write Mif)()mf(x) as M(,)f. If p = 5 and for every p > 1, then || M,)f |l 1r(u)
< Cllf () and for p € (t,1/er) and 1/q = 1p — &, |M) 10 < CIIf vy (see [15).

Lemma 2.1 ([15]) For f € LIOC(M), fo(x) du(x) =0 if |l < oo. Assume 0 < B <1 and
inf(1, Nf) € LP(), 1 < p < 00, then

INOW sy = CIMEP D]

Lemma 2.2 ([11, 15]) For 1< p <oo and 1 <p < oo, if b € RBMO(w), then for all balls
BeX,

1 1/p
{m /B|b3—m§(b)|pd,u(X)} < Clib||s. (2.1)

Lemma 2.3 ([3]) For b € RBMO(u),

—— (b) - mp(b)| < Cil|b]|...

| 6’63

Lemma 2.4 For 0 <o <2,1<p1,pr,q <00, 1<r<qand b,by € RBMO(w). If Iy is
bounded from L" (i) to L*(u), for somer € (1,1/8) and 1/s =1/r — B, with 0 < 8 < 1, then, for
everyx € X, ¢ € LP1(w), and g, € LP2(1),
M by, by, 1,)(g1,82) (%)
= C{ 161114116211 M6) (Ia,z(gl,gz))(x) + ||b1 1M, (6) ([bZIID( 2](g1,g2))(x)
4 1Bl M) (11, L) (@1,82)) ) + b1 1 12 L MO D 0 ()M 922(0)), (2:2)
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MA@ by, 1, 5)(@1,8)(%)

< C{1b1 M6 (L 2(81,2)) () + 1B | MG D 01 (OMED 03 ()}, 2:3)
M by, 1,5)(g1,82) (%)
L1121 M) (l2(@1,22) @) + 12 M B 1 (DM r ()} (2.4)

Proof Choose by, by € L*°(u) according to Lemma 3.11 in [14]. As L°(u) is dense in L7 ()
for 1 < p < 0o, by standard density arguments, we only need to consider the case that
8,8 € L ().

Similar to Theorem 9.1 in [6], in order to obtain (2.2), we only need to prove that, for
everyx € B,

@ /;‘[bl,bz,la,z](gl,gz)(z)—HB|dM(Z)

< C{Ib1 1116211 M6) (10,2 (g152)) (%) + 15111 My6) ([D2, La 21 (81, £2) ) ()
+ b2 M) (161, 10,2) (81, €2)) ) + CllB1 [ [1b2 LML B @ M D ()}, (2.5)

p2,(5)
and, for every ball B C R, with x € B, R is a doubling ball,
\Hp — Hrl < CK2 oK (15111152 11.M,6) (La,2(81, 82)) ()
1Byl 1B 1M g ()M o ()
+ 116111 M 6) ([ sza,z](ghgz)) x)

+ 16211 M 6 ([01, L 2] (g1, £2)) () ]. (2.6)
For every ball B, let
HB ‘= Mg (Ia,z((bl - mﬁ(hl))gIXX\gB) (bZ - mE(bZ))gZXX\%B));
Hp:=mp (Ia,2((bl - mR(bl))ngx\gp (by - mR(bz))gzxx\gR))~

It is easy to see that

(b1, b2, 10,2] = L2 (b1 — b1(2)) g1, (b2 — b2(2))g2)

and

Lz ((br ~ m(B1))g1, (b2 — m(b2)) 22)
L2 ((b1 = b1(2) + b1 (2) — mg(b1) g1, (ba — ba(2) + ba(2) — m(b2))gs)
(b1(2) — mg(b)) (b2(2) — m5(b2)) L 2(1, 82)
= (b1(@) = mp(01) )Lz (g1, (b2 = ba(2))g2)
= (b2(2) = mp(b2)) Lop (b1 - b1(2)) 21, 22)
4 Lo (51 - bu(2))gu, (b2 — 2(2))g2).
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Thus

ﬁ/B“bhbz,la,z](ghgz)(z)—HB|du(z)

: C(ﬁ /B|(b1(z) = m(b1)) (ba(2) = m55(52)) Lo 2(81,22)(2)] du(z))
C(ﬁ /B| (b1(a) = mp(b)Lea (@1, (b2 = ba(2))22) )| du(Z))
' C(@ /B| (b2(2) = (b)) s (b1~ b1(2))21,22) 2)| du(Z)>
* C(@ /B|’a'2((b1 — m5(b)g1, (bs — m5(b2))g:2) (2) - Ha| du(@)
= F +Fy+F;+Fjy. 2.7)

For F;, choose ri, 1y > 1, such that % + rl—l + %

1 " 1/n
F < C<m/3\bl(Z)—mr;b1| du(Z))

1 r 1/ry
(e fe-msta]” o)

1 ’ 1/r
* (m /B|I"'2(g1’g2)| du(z)>
< Cllbill 162 11xMy6) (In,2 (g1, £2)) ().

= 1. It follows from Holder’s inequality that

For F,, choose s > 1 such that % + % =1, it follows that

1 s 1/s
E < C<m/3|b1(Z)—WZ§bl| dﬂ(z)>

1 - 1/r
X <m/B|[bz,Ia,2](g1,g2)| d,U«(Z)>
< CllbilliM6) (b2 Lo 2) (€1,82)) ().

For F;, in the same way, one obtains

Fs < Cllba ||+ M6)([b1, 10,2) (1, 22) ) ().

For Fy, let g = Xspand g% = g — g for k =1,2. Therefore,

1

Fy < c(m /B Lo (b1 — mpb1)gi (2), (by — mzb)gs ) (2)| du(Z))
1

. C(m /B L (51 = m3b1)gl (2), (b — m5b)2) )| dM(Z))

. C(@ /B (b = mzb)@ (@), (bs — mzb)l) )| du(Z))
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+ C(—M(EB) /B|Ia,2 ((b1 - mgbl)gf(z), (by - Wl§b2)g§)(z) —HB| du(z))

=: F41 + F42 + F43 + F44.

For1<pl<oo i=12, chooseslz,/pl,szz,/p,lz Lyl o =Ly landl=

st sy s1 op1owv1 52
=+ --. It follows from Hélder’s inequality and Theorem 1.9 that

Pz
M(B)l /v
Ean = C= ep [l (b1 ~ mzbu)gi, (b2 = mb2)3) |
1 ) )
= CW ” (b1 - mgbl)gl 51 () ” (b2 - mgbz)g2 L52()

1 " 1/n . Upy
< CW </§B |by — m3zb | du(z)) (/g3|g1(z)\ du(z)>
1/vo Ups
X (/;B |by — mpby | dp,(z)> <ﬁ3|g2(z)|1’2 du(z))

5

ﬁ(feg |b; — mpb;|" du(Z))I/vL (fsg lgi ()| d/L(z))l/pi

h 6B) /L(6B)1 ap;i/2

< Cllbull bl M 2 (M D o ().

For F;,, it follows from (i) of Definition 1.5, Lemmas 2.2-2.3, the condition of A(x, al) >
a”\(x,1), and Holder’s inequality that

b1 (y1) — mzbillgi ()]
Fin =€ (63)/ / / [.(z,d(z,3)) + Mz, d(z, 7))
X |ba(y2) = mpbs||g; (v2)| dia(y1) dpa(y2) dpa(2)

1
<o o0 - mabilla vl st

« / |b2(y2) — mpba|1g2(y2)| din(y2)
X\EB (A (z,d(z,y2))]*

du(z)

ng|b1(y1)—m§b1|Pidpc(y1) Upy f%B|g1()’1)|p1dM()’1) Up1
C( 1(6B) ) ( (6B )

oo

_ |b2(y2) — mpba||g2(y2)|
6B) (B d
x u(6B)™ " u( );/@'63\@ vo5 M 6181 n(y2)

" PL(B) 1-a/2 M(%B) 1-a/2
< Cllbull My Ba@ 67 “/2[ }
M Zl (¢B) 2, 1)

1
" w5 x 6185 fm/ [b2002) = e g202)] dialr2)

1

(/2) (1-a/2)
< Cllby )M p1,(5) gl(x)Z6 im [u(5 x 6:2B)]1-ar
5

[ [a) = ) 4 e b) < )] iy
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< Cllbull M,y &1 @) Z 6-imi-er)

i=1

Jorgn1b202) - mg’%—;(bmﬂz dply2)\ vy Jsis g |8202)1P2 dpu(y2)\ V2
) [( w(5 x 6’%8) ) ( w(5 x 61'%3)170472/2 )

f6k%B lg2(y2) P2 dﬂ(Yz))“Pz (f@gg du(y2)\ Vra
)]

152 | ( M(S « 6;93)1—&;}2/2 M(S X 6’%3

< Cllbull b M D e ()M 5 ().

In the same way, one obtains

Fi3 < Cl1by [l l1ba [l M2 g1 (x) M2 3 ().

Page 10 of 17

For Fy4, let z,zg € B, it follows from (ii) of Definition 1.5, Lemmas 2.2-2.3, the condition

of A, and Holder’s inequality that

o2 ((b1 = mzbr)g3, (b — mba)g; ) (2)

— Lo (b1 — mpb1)gs, (b, — mpba)g3 ) (z0)|

= C/ / |I<(Z’y1’y2) - I((ZO»ylry2)|
X\2BJx\2¢B

2
ﬂl(b () — mb;) g | dpay;)

/ / d(Z’ZO)(S } 1|(b ()//) me )g/()’/ Idu(}’;)
x¢8Jx\¢3 (d(z, 1) + d( Z,yz))‘s[Z, LA d(x, y)) )

< Cl—[/ d(Z:ZO)8'|b (y}) me IIg;(Y;)IdM()’/
- X\¢B d(z,9)% Mz, d(z, )]

M(5 X 6k§B) ]1—&/2
)

<C ke | 2 7 7 5T
HZ./ 63\6k—163 |:)»(z,5 X 6"%[3

j=1 k=1

. 160)) ~ mibllg()l dpn(y))
[(5 x 6k gB)]l—a/Z

f61< 6B |b (y]) me |P} dﬂ(y] )l/p//.

<CHZ ( [/,L5X6k63)]1 apj/2

j=1 k=1

fskgg |g].(y].)|17;’ dpt(y;) 1pi
g ( n(5 x 6X¢B) )

1
<C 6-“1/\4
HZ ([M(5 x 652 B)|-ori

j=1 k=1

, l/p/’-
/ |b W) - m6’<6B WI@ - mgbj|pl d/L()/,‘))
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2 oo
< C[ D 6™ klbillM, g ()

j=1 k=1
< Clbullullba M@ (MR 05 (5),

where § = 8; + 89, 81,82 > 0.
It follows from taking the mean over z, € B that

Fu < Cllbyll, 152 M 0,01 ()M 3 (). (2.8)

Thus (2.5) is obtained from (2.7) to (2.8).
Now we turn to the proof of (2.6). Set N = Npr + 1. For two balls B C R with x € B, here
R is a doubling ball and B is an every ball,

5[ Lea (b1 = mbi)gt, (bs = mb2)gs) ]| = e[ Lo ((br = meb)gt, (ba = meby)gs ) ]|
< |mp[Lo2((br — mzb1)g1 Xx\6N 5> (b2 — M5b2)g xx\65) ]
— (Lo ((by — mb1)gi xx\e¥ g (B2 — m5ba)ga Xx\ens) |
+ e[ Lo2 (b1 = mrb1)gi XN (b2 — MRD2)E Xx\6VE) ]

—mp [Ia 2( by - mel)gIXX\6NB: (by — myby g2XX\6NB)

(

(b

( li

+ [ma (L (b1 = msb1)g Xonp 6 (b2 = Mb)@ xx g5) |

+ s a (( )i
(( )

]

[ bl mel ngX\ B’ (b2 - meZ g2X6NB\6
+ ’mR[Iot2 b, - mRbl)glxéNB\ R (b2 _mRbZ)g2XX\6NB ]’

= G1+G2+G3+G4+G5+G6. (29)

+ |mg[ L (b1 — meby)g Xx\&r> (by - msz)gz)(@vB\%R)

Similar to the estimate of Fyq,
12) /2
G1 < Cllbull bl My @ @1 (MR 0o ().
For Gy, it is easy to see that

I3 ((by — mghy)g xx\6N s (b2 — mMrb2)ga Xx\6N ) (2)
— a2 ((bl - mgb)g xx\eN s (b2 — mEbZ)g2XX\6NB)(Z)
= (mgby — mzby)1o2((b1 — mrbi)g xx\6N 3> &2 Xx\6N ) (2)
+ (mgby — mgh)la,2 (&1 X006V 5» (b2 — Mrb2)gs Xx\6NB) (2)

+ (mgby — mpby)(mrby — myba) Ly, 2 (1 Xx\6N 5 82 Xx\6N 8) (2)-

Thus

1
Gy < ‘(Wlez - ngbz)m /Ia,2 ((bl - mRbl)gIXX\GNB;gZXX\6NB)(Z) du(z)
R

1
) —— / L2 (8006 (02 — meb2)gr K vs) (@) dis(2)
w(R) Jr
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1
| by = o = ) / L2 @ X6 €200 6 5) @) i (2)
R

=: G21 + G22 + G23.
For G21,

L2 ((by — mrby)@ X\ 6N Ro €2 Xx\6N R) (2)
= Io2((b1 — mgby)g1,£:)(2) — T ((br - Wlel)ngeNBXgR:nggR) (2)
— I 2 ((by — mpb1)gi x 6 82 X6NBX %R) (2)
+ 1o ((b1 - mRbl)g1X6NBX6R’g2X6NBXGR)(Z)

(

(

Lo ((by = mrb1)g1 X 8 2282 X6N ) (2)

(2 mrb1)gi XN 5 82X x ¢ 62)(2)
(«

+1y by — mpb) g1x6NB\ R’g2X6NB\ R)()

= E1(2) + E2(2) + E3(2) + E4(2) + E5(2) + Es(2) + E7(2).

For Ej(z), it is easy to see that

ﬁ lefa,z (b1 - b1(2)1,22) (2) | 1 (2) = CM ) ([b1, Loz, £2) ).

It follows from Holder’s inequality that

ﬁ /R |(51(2) = ma(61)) o s (01,82)(D)| d(@) < Cllb s Mooy (Loag1,22)) (3)
Therefore

|mp(E))| < |mp(Ia2(br - b1(2)g1,2))| + |mr((b1(2) — me(B1))Ia2(g1,82))|
< C{My6)([b1,102)81: &) (%) + 161 |- M 6) (L2 (€1, 22)) () }.

For Es(z), denote s1 = /p1, s = pa, 1-1 +o -« and L =L + L Notmg that R is a

14 81 S1 Pl

doubling ball, by Theorem 1.9, one obtains

(R

|mp(Ey)| < C (6

4,2 (b1 — mrb1)g1 X6 5 X6/5R: €2 X615R) L)

< Cr(6R) ™| (b1 — mrb1)gi XN Xe/5R 151 o 182 X6/5R 122 1)

1 " 1/v1 ” 1/p;
= C—M(6R)1/v </%R |by — mgb | dM(Z)) (/gRLgl(Z)‘ d,u(z))
1/p2
" o)
x (/%ngz(Z)l 14(2)

1 1/v
Cl —— by —mpby|"t d
< (/L(6R) /%R| 1 — b | M(Z)>
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2

I/pj
’ H(W/ 5@ du Z)>

j=1

< Clbu )M @ (M D 0o ().
Also one deduces

|mr(Es)| + [m(Es)| < Cllby||Mye Bgi ()M 2 go ().

For E5, as z € R, noting that R is a doubling ball, it follows from (i) of Definition 1.5, Lem-
mas 2.2-2.3, and the conditions of A that

|b1(31) — mrbr |2 ()1 g2 (v2) d(yr) dia(y2)
B5(2)] = C/6NB /X\ R [0 A, dx,y:)] >

= C/ |&2(72)| dpa(y2) Z/ b1 (y1) — mrbillg1 () i)

spie-18r  (Mz,5 x 6/20g))>

o]

—jm(1-a/2)
<c fﬁ e 0] duom Y6

j-1

x/ 1 |b1(y1) — mrbrl|lg1 ()| de(yn)
6or M5 x SII2  [1(z,5 x 6 Slg)]-o"

1

I = —jm(l-a/2)
< C[A(z, AL /6NB|g2()/2)| du(h);6 j

1
X -
(2,5 x 6 L))"

X [/.6 |b1()/1) _mggR(bl)Hgl()ﬁ”d,u(yl)
&R 5

+/.6 |m6fgk(bl)_mRb1||g1()/1)|dM(y1):|
68R

1
= Cheln—n

1 b b Pid 1/p;
) [(Mﬁdgk} 1) = Mg (b)) /L(yl))

! n Up1
: ([)\(z,6/+1§1R)]1ap1/z /U.%RL&(%)I ;,L(yl)>

‘ 1
+]||b1||*[k(z,5 ” 6/§lR)]H‘/2 /ng|g1()’1)|dM0’1):|

NBR

< Clbi LMy 2 a1 () Z

d 6—jm(l—a/2)
/6 o) M(yz);

Az, 6lR)]l —al2

‘ [ [ g0 )+ [ |g2<y2>|dw2>]

a/z) X [giplg202) dulys)
< Clbll.M,, gl()Z B
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(5 x 611B) 17T Mz,5 x 6/15) "
A(z,5 x 6/*11p) Az, 60z)

Ol M ) e [ lea)| o)

< K b1 LMy 2 ()M .2 ().
Therefore
|mr(Es)| < CKER byl M R g ()M 2 o (x).
Similar to the estimate of mig(Es),
|mr(Es)| + [mr(Er)| < CKS 161 1M g ()M 3 ().
By (1.10), it yields

G < C[Ibull b2 ll:My6) (La2(€1£2)) (%) + 1151 1My 6) ([D2, L2 (81, 82) ) (%)
+ b2l Moo (b1, La2)(81,€2)) @) + 1B | b2 [l M g1 (R ML 2 3 ()]

For G, and Gas, they are similar to Gy, thus

Gz < C[b1ll 162 1My 6) (L2 (g1, £2)) (%) + 161 1xM 1 6) ([b2, 1,2] (€1, £2)) (%)
116211 M) (161, 10,2) 1,€2)) (%) + 16111 12 1. M D 1 ()M D 3 ()]

For G3 to G, in the same way as E5(z), it yields
Gs + G + G + Gg < Cliby 4 1ba 1. MY D01 ()M D 5 (). (2.10)

Thus (2.6) is obtained from (2.9) to (2.10) and (2.2) is proved. Also, one obtains (2.3) and
(2.4) in a similar way to (2.2). Here the details is omitted. Thus Lemma 2.4 is proved. [

Proof of Theorem 1.10 Set0<a<2,1<p1,p2<oo,0<é:P—l+——a<1 l1<r<gq,

fi € L7 (), g € LP2(u), by, by € RBMO(u). Noticing that |g(x)| < Ng(x), recalling the
boundedness of M%)Z)) and M, ), for p > 5 and r < g, and using Holder’s inequality, it
follows from Lemmas 2.1-2.4 and Theorem 1.9 that

| (b1, b2, L) (€1,20) | 1o
< [N (181, b, 21 (1,22)) [ o
< M (b1, b, L) €1,82)) | 1o
< Clblc1ba [ My 6) (Tor2(€1,82)) || 1o
+ Cllbill | Mooy (162,702 €1.82)) | 1o

+ Cliba [ My 6) (b1, L21(€1,€2)) | 14,



Gong et al. Journal of Inequalities and Applications (2016) 2016:275

(/2 (a/2)
+ Clbu bl | MO D @M g

| a0
< Cllbulllb2ll<lig e o llgz 22 o
+Clib |« [bz,fa,z](gbgz)||m(m
+ Cliba |l ]| (b1, Lo21(21,82) |
< Clbullliballliglln o llga 12 o
+ Cllou [ M (b2, 1 2)(21,82)) | 1o
+ Cllball | M*) (b1, £ 2)(€1,82)) | 1o
< 161111521 llga 1271 0 €2 N1 272 )
+ Cllbu ]| M6 (Te2(81,82)) | 1o

+ Cllb1 I« ||Mp01[/25)) Ma/z )82 ”Lq

+ Clballs | Mo 6) (Fe2(€1,82)) | 1o

+ Cllball. | MR qma e @2 a0

= Cliblllb2 11 gl e oy g2 1272 o) -
This proves Theorem 1.10. g

3 Applications
In this section, we apply Theorem 1.9 and Theorem 1.10 to the study of a fractional integral

operator.

Lemma 3.1 ([15]) Suppose diam(X) = oo, @ € (0,1), p € (1,1/), and 1/q =1/p — «. If A
satisfies the e-weak reverse doubling condition, for some € € (0, min{o,1 — «,1/g}), then

I Tef lag) < Clif e
where T, is defined by

- )
Taf )= /x 007w, e O

Theorem 3.2 Under the same conditions as that in Lemma 3.1, the results of Theorem 1.9
and Theorem 1.10 hold true, on replacing Ig there by T, .

4 Conclusion

In this paper, we prove that multilinear fractional integral operators and commuta-
tors, generated by multilinear fractional integrals, with an RBMO(u) function on non-
homogeneous metric measure spaces, are bounded in Lebesgue spaces. The results are
established for both the homogeneous spaces and the non-doubling measure spaces.
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