The ratio log-concavity of the Cohen numbers

Eric H Liu ${ }^{1 *}$ (D) and Lily J Jin²

"Correspondence:
liuhai@suibe.edu.cn
${ }^{1}$ School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, 201620, P.R. China
Full list of author information is available at the end of the article

Abstract

Let U_{n} denote the nth Cohen number. Some combinatorial properties for U_{n} have been discovered. In this paper, we prove the ratio log-concavity of U_{n} by establishing the lower and upper bounds for $\frac{U_{n}}{U_{n-1}}$.

MSC: 05A20; 11B83 Keywords: the Cohen number; log-concavity; ratio log-concavity

1 Introduction

An infinite sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is said to be log-concave (respectively, log-convex) if for any positive integer n,

$$
\left.a_{n}^{2} \geq a_{n+1} a_{n-1} \quad \text { (respectively, } a_{n}^{2} \leq a_{n+1} a_{n-1}\right)
$$

Furthermore, a positive sequence $\left\{a_{n}\right\}_{n=0}^{\infty}$ is said to be ratio log-concave if the sequence $\left\{\frac{a_{n+1}}{a_{n}}\right\}_{n=0}^{\infty}$ is log-concave. The aim of this paper is to prove the ratio log-concavity of the Cohen numbers. The nth Cohen number was first introduced by Cohen [1] which is defined by

$$
\begin{equation*}
U_{n}=h(n) U_{n-1}+g(n) U_{n-2} \quad(n \geq 2) \tag{1.1}
\end{equation*}
$$

with $U_{0}=1$ and $U_{1}=12$, where

$$
\begin{equation*}
h(n)=\frac{3(2 n-1)\left(3 n^{2}-3 n+1\right)\left(15 n^{2}-15 n+4\right)}{n^{5}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
g(n)=\frac{3(n-1)^{3}(3 n-4)(3 n-2)}{n^{5}} . \tag{1.3}
\end{equation*}
$$

In [2], Zudilin proved that $D_{n} U_{n}$ is an integer where D_{n} is the least common multiple of $1,2, \ldots, n$. Moreover, he conjectured some stronger inclusions that were finally proved by
© Liu and Jin 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Krattenthaler and Rivoal [3]. In particular, they proved that

$$
U_{n}=\sum_{i, j}\binom{n}{i}^{2}\binom{n}{j}^{2}\binom{n+j}{n}\binom{n+j-i}{n}\binom{2 n-i}{i}
$$

where the binomial coefficients $\binom{a}{b}$ are zero if $b<0$ or $a<b$; see also [4].
Recently, the combinatorial properties of U_{n} were considered. Employing a criterion due to Xia and Yao [5], it is easy to prove the log-convexity of U_{n}. Chen and Xia [6] proved the 2-log-convexity of U_{n}, that is,

$$
\left(U_{n-1} U_{n+1}-U_{n}^{2}\right)\left(U_{n+1} U_{n+3}-U_{n+2}^{2}\right)>\left(U_{n} U_{n+2}-U_{n+1}^{2}\right)^{2}
$$

In this paper, we prove the ratio log-concavity of U_{n}. The main results of the paper can be stated as follows.

Theorem 1.1 The sequence $\left\{U_{n}\right\}_{n=0}^{\infty}$ is ratio log-concave, namely, for $n \geq 2$,

$$
\begin{equation*}
\frac{U_{n}^{2}}{U_{n-1}^{2}}>\frac{U_{n+1}}{U_{n}} \frac{U_{n-1}}{U_{n-2}} \tag{1.4}
\end{equation*}
$$

2 Lower and upper bounds for $\frac{U_{n}}{U_{n-1}}$

In order to prove Theorem 1.1, we first establish the lower and upper bounds for $\frac{U_{n}}{U_{n-1}}$.
Lemma 2.1 For $n \geq 5$,

$$
\begin{equation*}
l(n)<\frac{U_{n}}{U_{n-1}}, \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
l(n)=135+78 \sqrt{3}-\frac{675+390 \sqrt{3}}{2 n}+\frac{9,737 \sqrt{3}+16,848}{48 n^{2}}-\frac{3,497 \sqrt{3}+6,045}{32 n^{3}} . \tag{2.2}
\end{equation*}
$$

Proof We are ready to prove Lemma 2.1 by induction on n. It is easy to check that (2.1) is true when $n=5$ and $n=6$. Suppose that Lemma 2.1 holds when $n=m \geq 5$, that is,

$$
\begin{equation*}
l(m)<\frac{U_{m}}{U_{m-1}} \tag{2.3}
\end{equation*}
$$

In order to prove Lemma 2.1, it suffices to prove that this lemma holds when $n=m+2$, that is,

$$
\begin{equation*}
l(m+2)<\frac{U_{m+2}}{U_{m+1}} \tag{2.4}
\end{equation*}
$$

Based on (1.1) and (2.3),

$$
\begin{align*}
\frac{U_{m+2}}{U_{m+1}} & =h(m+2)+g(m+2) \frac{1}{\frac{U_{m+1}}{U_{m}}}=h(m+2)+g(m+2) \frac{1}{h(m+1)+g(m+1) \frac{U_{m-1}}{U_{m}}} \\
& >h(m+2)+g(m+2) \frac{1}{h(m+1)+\frac{g(m+1)}{l(m)}}, \tag{2.5}
\end{align*}
$$

where $h(n), g(n)$, and $l(n)$ are defined by (1.2), (1.3), and (2.2), respectively. Thanks to (2.5),

$$
\begin{align*}
& \frac{U_{m+2}}{U_{m+1}}-l(m+2) \\
& \quad>h(m+2)+g(m+2) \frac{1}{h(m+1)+\frac{g(m+1)}{l(m)}}-l(m+2) \\
& \quad=\frac{13(542,921-313,428 \sqrt{3}) \alpha(m)}{830,059,024(m+2)^{5} \beta(m)}, \tag{2.6}
\end{align*}
$$

where $\alpha(m)$ and $\beta(m)$ are defined by

$$
\begin{aligned}
\alpha(m)= & 121,396,132,260 m^{9}-257,880,671,236 \sqrt{3} m^{8}+675,703,429,830 m^{8} \\
& +2,176,536,150,666 m^{7}-1,330,058,753,240 \sqrt{3} m^{7}+4,927,389,297,804 m^{6} \\
& -2,983,584,697,467 \sqrt{3} m^{6}-4,066,074,230,366 \sqrt{3} m^{5} \\
& +7,060,751,181,826 m^{5}-3,674,684,488,924 \sqrt{3} m^{4} \\
& +6,286,428,416,954 m^{4}+3,481,214,050,452 m^{3} \\
& -2,206,793,212,277 \sqrt{3} m^{3}+1,169,733,232,808 m^{2}-845,639,850,544 \sqrt{3} m^{2} \\
& -187,272,537,764 \sqrt{3} m+218,478,614,224 m \\
& -18,263,322,480 \sqrt{3}+17,360,076,864
\end{aligned}
$$

and

$$
\begin{aligned}
\beta(m)= & 864 m^{8}-96 m^{6}-468 \sqrt{3} m^{6}+468 \sqrt{3} m^{5}-810 m^{5}-2,206,269 \sqrt{3} m^{4} \\
& +3,821,499 m^{4}+6,665,166 m^{3}-3,848,598 \sqrt{3} m^{3}-2,680,756 \sqrt{3} m^{2} \\
& +4,642,290 m^{2}-875,459 \sqrt{3} m+1,515,969 m+194,220-112,164 \sqrt{3} .
\end{aligned}
$$

By (2.6) and the fact that $\alpha(m) \beta(m)>0$ for $m \geq 5$, we obtain (2.4). This completes the proof of Lemma 2.1 by induction.

Lemma 2.2 For $n \geq 5$,

$$
\begin{equation*}
\frac{U_{n}}{U_{n-1}}<u(n), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
u(n)=135+78 \sqrt{3}-\frac{675+390 \sqrt{3}}{2 n}+\frac{9,737 \sqrt{3}+16,848}{48 n^{2}}-\frac{6,994 \sqrt{3}+6,045}{64 n^{3}} . \tag{2.8}
\end{equation*}
$$

Proof We also prove Lemma 2.2 by induction on n. It is easy to verify that (2.7) holds for $n=5$ and $n=6$. Assume that Lemma 2.2 is true for $n=m \geq 5$, that is,

$$
\begin{equation*}
\frac{U_{m}}{U_{m-1}}<u(m) \tag{2.9}
\end{equation*}
$$

where $u(m)$ is defined by (2.8). In order to prove Lemma 2.2, it suffices to prove that Lemma 2.2 is true when $n=m+2$, namely,

$$
\begin{equation*}
\frac{U_{m+2}}{U_{m+1}}<u(m+2) . \tag{2.10}
\end{equation*}
$$

Based on (1.1) and (2.9),

$$
\begin{align*}
\frac{U_{m+2}}{U_{m+1}} & =h(m+2)+g(m+2) \frac{1}{\frac{U_{m+1}}{U_{m}}} \\
& =h(m+2)+g(m+2) \frac{1}{h(m+1)+g(m+1) \frac{U_{m-1}}{U_{m}}} \\
& <h(m+2)+g(m+2) \frac{1}{h(m+1)+\frac{g(m+1)}{u(m)}} \tag{2.11}
\end{align*}
$$

where $h(n), g(n)$, and $u(n)$ are defined by (1.2), (1.3), and (2.8), respectively. Thanks to (2.11),

$$
\begin{align*}
& \frac{U_{m+2}}{U_{m+1}}-u(m+2) \\
& \quad<h(m+2)+g(m+2) \frac{1}{h(m+1)+\frac{g(m+1)}{u(m)}}-u(m+2) \\
& \quad=\frac{13(2,340-1,351 \sqrt{3}) \varphi(m)}{192(m+2)^{5} \psi(m)}<0, \tag{2.12}
\end{align*}
$$

where $\varphi(m)$ and $\psi(m)$ are defined by

$$
\begin{aligned}
\varphi(m)= & 3,760,473,600 m^{10}+24,236,858,880 m^{9}-7,725,471,840 \sqrt{3} m^{9} \\
& +84,297,090,576 m^{8}-46,822,426,128 \sqrt{3} m^{8}-123,822,624,402 \sqrt{3} m^{7} \\
& +204,386,453,088 m^{7}-194,450,024,349 \sqrt{3} m^{6}+336,953,792,124 m^{6} \\
& -203,475,797,950 \sqrt{3} m^{5}+365,977,131,864 m^{5}+260,362,891,056 m^{4} \\
& -147,457,384,610 \sqrt{3} m^{4}-73,568,487,135 \sqrt{3} m^{3}+119,994,653,508 m^{3} \\
& -24,169,674,728 \sqrt{3} m^{2}+34,436,526,528 m^{2}+5,563,246,416 m \\
& -4,710,672,460 \sqrt{3} m+382,180,032-412,780,368 \sqrt{3}
\end{aligned}
$$

and

$$
\begin{aligned}
\psi(m)= & 1,728 m^{8}-936 \sqrt{3} m^{6}-192 m^{6}+2,205,033,030 m^{5}-1,273,076,064 \sqrt{3} m^{5} \\
& +5,520,229,623 m^{4}-3,187,105,038 \sqrt{3} m^{4}-3,317,697,396 \sqrt{3} m^{3} \\
& +5,746,420,422 m^{3}-1,787,669,312 \sqrt{3} m^{2}+3,096,333,090 m^{2} \\
& +860,545,413 m-496,836,418 \sqrt{3} m-56,805,528 \sqrt{3}+98,389,980 .
\end{aligned}
$$

By (2.12) and the fact that $\varphi(m) \psi(m)>0$ for $m \geq 5$, we arrive at (2.10). This completes the proof of Lemma 2.2 by induction.

3 Proof of Theorem 1.1

In this section, we present a proof of Theorem 1.1.

Lemma 3.1 For $n \geq 5$,

$$
\begin{equation*}
\frac{U_{n+1} U_{n-1}}{U_{n}^{2}}<f(n) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
f(n)=\frac{\left(144 n^{2}-216 n+298-39 \sqrt{3}\right)(2 n-1)^{2}}{\left(144 n^{2}-504 n+658-39 \sqrt{3}\right)(2 n+1)^{2}} . \tag{3.2}
\end{equation*}
$$

Proof Let $h(n)$ and $g(n)$ be defined by (1.2) and (1.3), respectively. It is easy to verify that, for $n \geq 5$,

$$
\begin{equation*}
h^{2}(n+1)+4 f(n) g(n+1)=\frac{3 a(n)}{\left(144 n^{2}-504 n+658-39 \sqrt{3}\right)(n+1)^{10}(2 n+1)^{2}}>0 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{aligned}
a(n)= & 14,017,536 n^{14}+35,043,840 n^{13}-3,796,416 \sqrt{3} n^{12}+3,796,416 n^{12} \\
& -22,767,264 \sqrt{3} n^{11}-35,430,048 n^{11}-63,335,220 \sqrt{3} n^{10}+136,740,296 n^{10} \\
& -108,042,324 \sqrt{3} n^{9}+585,572,912 n^{9}+1,001,472,846 n^{8}-125,838,297 \sqrt{3} n^{8} \\
& -105,379,248 \sqrt{3} n^{7}+1,047,661,216 n^{7}-65,023,608 \sqrt{3} n^{6}+749,372,512 n^{6} \\
& -29,770,650 \sqrt{3} n^{5}+381,561,324 n^{5}+139,393,232 n^{4}-10,033,296 \sqrt{3} n^{4} \\
& +35,929,568 n^{3}-2,426,892 \sqrt{3} n^{3}-399,789 \sqrt{3} n^{2}+6,231,942 n^{2} \\
& +654,864 n-40,248 \sqrt{3} n+31,584-1,872 \sqrt{3} .
\end{aligned}
$$

Moreover, it is easy to check that, for $n \geq 0$,

$$
\begin{align*}
& 2 f(n) l(n)-h(n+1) \\
& \quad=\frac{\sqrt{3} b(n)}{48 n^{3}\left(144 n^{2}-504 n+658+39 \sqrt{3}\right)(2 n+1)^{2}(n+1)^{5}}>0 \tag{3.4}
\end{align*}
$$

and

$$
\begin{align*}
& (2 f(n) l(n)-h(n+1))^{2}-\left(h^{2}(n+1)+4 f(n) g(n+1)\right) \\
& \quad=\frac{(1,351+780 \sqrt{3})(2 n-1)^{2}\left(144 n^{2}-216 n+298-39 \sqrt{3}\right) c(n)}{384 n^{6}\left(144 n^{2}-504 n+658+39 \sqrt{3}\right)(2 n+1)^{4}(n+1)^{5}}>0 \tag{3.5}
\end{align*}
$$

where

$$
\begin{aligned}
b(n)= & 4,313,088 n^{12}-10,048,896 n^{10}-1,168,128 \sqrt{3} n^{10}+2,134,080 \sqrt{3} n^{9} \\
& +18,944,640 n^{9}+25,025,104 n^{8}-18,411,096 \sqrt{3} n^{8}-23,385,908 n^{7}
\end{aligned}
$$

$$
\begin{aligned}
& -52,175,844 \sqrt{3} n^{7}-856,596 n^{6}-24,604,446 \sqrt{3} n^{6}+30,202,523 n^{5} \\
& +8,838,489 \sqrt{3} n^{5}-10,242,333 \sqrt{3} n^{4}-14,907,529 n^{4}-17,776,278 n^{3} \\
& -10,403,322 \sqrt{3} n^{3}+6,462,024 \sqrt{3} n^{2}+11,237,434 n^{2}+2,501,109 \sqrt{3} n \\
& +4,336,111 n-2,419,053-1,392,261 \sqrt{3}
\end{aligned}
$$

and

$$
\begin{aligned}
c(n)= & 59,719,680 n^{12}-106,074,695,808 n^{11}+61,088,601,600 \sqrt{3} n^{11} \\
& -46,198,518,912 \sqrt{3} n^{10}+80,016,457,536 n^{10}+143,774,162,864 n^{9} \\
& -82,704,126,024 \sqrt{3} n^{9}+283,349,090,856 \sqrt{3} n^{8}-491,163,569,992 n^{8} \\
& -1,030,144,421,232 n^{7}+594,612,735,990 \sqrt{3} n^{7}+478,140,044,616 \sqrt{3} n^{6} \\
& -827,484,760,322 n^{6}+199,910,945,130 \sqrt{3} n^{5}-346,327,459,907 n^{5} \\
& -74,608,485,009 n^{4}+42,928,060,188 \sqrt{3} n^{4}-6,144,385,390 n^{3} \\
& +3,678,965,082 \sqrt{3} n^{3}-499,917,028 n^{2}+293,762,352 \sqrt{3} n^{2}-191,636,367 n \\
& +71,139,198 \sqrt{3} n-55,991,052 \sqrt{3}+115,716,159 .
\end{aligned}
$$

It follows from (3.3)-(3.5) that, for $n \geq 0$,

$$
2 f(n) l(n)-h(n+1)>\sqrt{h^{2}(n+1)+4 f(n) g(n+1)}
$$

and thus

$$
\begin{equation*}
l(n)>\frac{h(n+1)+\sqrt{h^{2}(n+1)+4 f(n) g(n+1)}}{2 f(n)} . \tag{3.6}
\end{equation*}
$$

In view of (2.1) and (3.6),

$$
\begin{equation*}
\frac{U_{n}}{U_{n-1}}>\frac{h(n+1)+\sqrt{h^{2}(n+1)+4 f(n) g(n+1)}}{2 f(n)}, \tag{3.7}
\end{equation*}
$$

which implies that, for $n \geq 5$,

$$
\begin{equation*}
f(n)\left(\frac{U_{n}}{U_{n-1}}\right)^{2}-h(n+1) \frac{U_{n}}{U_{n-1}}-g(n+1)>0 . \tag{3.8}
\end{equation*}
$$

Thanks to (1.1),

$$
\begin{equation*}
f(n) U_{n}^{2}-U_{n-1} U_{n+1}=U_{n}^{2}\left(f(n)\left(\frac{U_{n}}{U_{n-1}}\right)^{2}-h(n+1) \frac{U_{n}}{U_{n-1}}-g(n+1)\right) . \tag{3.9}
\end{equation*}
$$

Lemma 3.1 follows from (3.8) and (3.9). This completes the proof.
Lemma 3.2 For $n \geq 5$,

$$
\begin{equation*}
\frac{U_{n+1} U_{n-1}}{U_{n}^{2}}>f(n+1), \tag{3.10}
\end{equation*}
$$

where $f(n)$ is defined by (3.2).

Proof It is easy to check that, for $n \geq 5$,

$$
\begin{align*}
& h^{2}(n+1)+4 f(n+1) g(n+1) \\
& \quad=\frac{3(2 n+1)^{2} d(n)}{(n+1)^{10}\left(144 n^{2}-216 n+298-39 \sqrt{3}\right)(2 n+3)^{2}}>0 \tag{3.11}
\end{align*}
$$

and

$$
\begin{align*}
& 2 f(n+1) l(n)-h(n+1) \\
& \quad=\frac{\sqrt{3}(2 n+1) e(n)}{48 n^{3}\left(144 n^{2}-216 n+298-39 \sqrt{3}\right)(2 n+3)^{2}(n+1)^{5}}>0, \tag{3.12}
\end{align*}
$$

where

$$
\begin{aligned}
& d(n)= 3,504,384 n^{12}+19,274,112 n^{11}+45,630,000 n^{10}-949,104 \sqrt{3} n^{10} \\
&-6,640,920 \sqrt{3} n^{9}+71,887,752 n^{9}+109,395,878 n^{8}-20,342,049 \sqrt{3} n^{8} \\
&+166,770,736 n^{7}-36,215,400 \sqrt{3} n^{7}-41,834,832 \sqrt{3} n^{6}+203,641,520 n^{6} \\
&-32,969,274 \sqrt{3} n^{5}+177,081,116 n^{5}+106,446,904 n^{4}-18,035,004 \sqrt{3} n^{4} \\
&-6,785,376 \sqrt{3} n^{3}+43,438,424 n^{3}+11,552,574 n^{2}-1,684,917 \sqrt{3} n^{2} \\
&-249,912 \sqrt{3} n+1,816,272 n+128,736-16,848 \sqrt{3}, \\
& e(n)=2,156,544 n^{11}+7,547,904 n^{10}+9,532,224 n^{9}-584,064 \sqrt{3} n^{9} \\
&-6,029,856 \sqrt{3} n^{8}+6,413,472 n^{8}-17,305,116 \sqrt{3} n^{7}+3,738,488 n^{7} \\
&-849,238 n^{6}-23,508,972 \sqrt{3} n^{6}-7,884,539 n^{5}-19,078,677 \sqrt{3} n^{5} \\
&-15,177,045 n^{4}-13,428,969 \sqrt{3} n^{4}-21,962,902 n^{3}-13,234,830 \sqrt{3} n^{3} \\
&-11,506,974 \sqrt{3} n^{2}-20,028,320 n^{2}-5,355,441 \sqrt{3} n-9,314,279 n \\
&-1,663,701-957,021 \sqrt{3} .
\end{aligned}
$$

By (3.11) and (3.12),

$$
-\sqrt{h^{2}(n+1)+4 f(n+1) g(n+1)}<2 f(n+1) l(n)-h(n+1)
$$

and thus

$$
\begin{equation*}
\frac{h(n+1)-\sqrt{h^{2}(n+1)+4 f(n+1) g(n+1)}}{2 f(n+1)}<l(n) \tag{3.13}
\end{equation*}
$$

Furthermore, it is easy to check that, for $n \geq 0$,

$$
\begin{align*}
& 2 f(n+1) u(n)-h(n+1) \\
& \quad=\frac{\sqrt{3}(2 n+1) r(n)}{96 n^{3}\left(144 n^{2}-216 n+298-39 \sqrt{3}\right)(2 n+3)^{2}(n+1)^{5}}>0 \tag{3.14}
\end{align*}
$$

and

$$
\begin{align*}
& \left(h^{2}(n+1)+4 f(n+1) g(n+1)\right)-(2 f(n+1) u(n)-h(n+1))^{2} \\
& \quad=\frac{(32,424+13,481 \sqrt{3})\left(144 n^{2}+72 n+226-39 \sqrt{3}\right)(2 n+1)^{2} s(n)}{1,554,750,544,896 n^{6}(2 n+3)^{4}(n+1)^{5}\left(144 n^{2}-216 n+298-39 \sqrt{3}\right)^{2}}>0, \tag{3.15}
\end{align*}
$$

where

$$
\begin{aligned}
r(n)= & 4,313,088 n^{11}+15,095,808 n^{10}+19,064,448 n^{9}-1,168,128 \sqrt{3} n^{9} \\
& -10,318,752 \sqrt{3} n^{8}+12,826,944 n^{8}-24,164,472 \sqrt{3} n^{7}+7,476,976 n^{7} \\
& -3,113,006 n^{6}-17,735,964 \sqrt{3} n^{6}-23,548,993 n^{5}+13,865,916 \sqrt{3} n^{5} \\
& -48,035,715 n^{4}+37,763,112 \sqrt{3} n^{4}-65,143,754 n^{3}+29,313,600 \sqrt{3} n^{3} \\
& +8,226,612 \sqrt{3} n^{2}-54,201,940 n^{2}-712,452 \sqrt{3} n-23,579,413 n \\
& -4,034,667-547,872 \sqrt{3} \\
s(n)= & 10,074,783,530,926,080 n^{12}-7,734,966,108,060,672 \sqrt{3} n^{11} \\
& +26,936,680,137,670,656 n^{11}+26,619,191,006,206,464 n^{10} \\
& -23,315,086,010,211,840 \sqrt{3} n^{10}-33,744,534,523,380,928 \sqrt{3} n^{9} \\
& +41,557,278,922,739,904 n^{9}-43,703,007,806,729,856 \sqrt{3} n^{8} \\
& +98,524,492,003,096,704 n^{8}+111,734,337,079,096,644 n^{7} \\
& -47,522,128,660,057,480 \sqrt{3} n^{7}-24,419,890,979,639,584 \sqrt{3} n^{6} \\
& +24,142,153,127,323,080 n^{6}-69,518,699,851,789,311 n^{5} \\
& +24,355,619,096,164,226 \sqrt{3} n^{5}-90,260,471,288,625,639 n^{4} \\
& +57,503,789,690,970,194 \sqrt{3} n^{4}-66,508,795,463,791,122 n^{3} \\
& +46,318,086,975,242,316 \sqrt{3} n^{3}+17,867,770,385,080,772 \sqrt{3} n^{2} \\
& -35,327,233,535,891,622 n^{2}+2,975,211,060,929,562 \sqrt{3} n \\
& -11,558,904,059,737,827 n+111,646,193,915,178 \sqrt{3} \\
& -1,615,722,383,317,419 .
\end{aligned}
$$

Combining (3.11), (3.14), and (3.15) yields

$$
\begin{equation*}
u(n)<\frac{h(n+1)+\sqrt{h^{2}(n+1)+4 f(n+1) g(n+1)}}{2 f(n+1)} . \tag{3.16}
\end{equation*}
$$

It follows from (2.1), (2.7), (3.13), and (3.16) that, for $n \geq 5$,

$$
\begin{aligned}
& \frac{h(n+1)-\sqrt{h^{2}(n+1)+4 f(n+1) g(n+1)}}{2 f(n+1)} \\
& \quad<l(n)<\frac{P_{n}}{P_{n-1}}<u(n)<\frac{h(n+1)+\sqrt{h^{2}(n+1)+4 f(n+1) g(n+1)}}{2 f(n+1)},
\end{aligned}
$$

which yields

$$
\begin{equation*}
f(n+1)\left(\frac{U_{n}}{U_{n-1}}\right)^{2}-h(n+1) \frac{U_{n}}{U_{n-1}}-g(n+1)<0 \tag{3.17}
\end{equation*}
$$

In view of (1.1),

$$
\begin{equation*}
f(n+1) U_{n}^{2}-U_{n-1} U_{n+1}=P_{n}^{2}\left(f(n+1)\left(\frac{U_{n}}{U_{n-1}}\right)^{2}-h(n+1) \frac{U_{n}}{U_{n-1}}-g(n+1)\right) \tag{3.18}
\end{equation*}
$$

Lemma 3.2 follows from (3.17) and (3.18). This completes the proof.

Now, we turn to the proof of Theorem 1.1.

Proof of Theorem 1.1 Replacing n by $n-1$ in (3.10), we deduce that, for $n \geq 6$,

$$
\begin{equation*}
\frac{U_{n} U_{n-2}}{U_{n-1}^{2}}>f(n) . \tag{3.19}
\end{equation*}
$$

In view of (3.1) and (3.19), we deduce that, for $n \geq 6$,

$$
\begin{equation*}
\frac{U_{n}^{2}}{U_{n-1}^{2}}>\frac{U_{n+1}}{U_{n}} \frac{U_{n-1}}{U_{n-2}} \tag{3.20}
\end{equation*}
$$

It is easy to verify that (3.20) also holds for $2 \leq n \leq 5$. This completes the proof of Theorem 1.1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

${ }^{1}$ School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai, 201620, P.R China. ${ }^{2}$ School of Mathematics, Nanjing Normal University, Taizhou College, Taizhou, Jiangsu 225300, P.R. China.

Acknowledgements

This work was supported by the National Science Foundation of China (11526136)
Received: 27 August 2016 Accepted: 21 October 2016 Published online: 08 November 2016

References

1. Cohen, H: Accélération de la convergence de certaines récurrences linéaires. Sémin. Théor. Nombres 1980-1981, Exposé no. 16, 2 pages
2. Zudilin, W: An Apéry-like difference equation for Catalan's constant. Electron. J. Comb. 10, \#R14 (2003)
3. Krattenthaler, C, Rivoal, T: Hypergéométrie et fonction zêta de Riemann. In: Mem. Am. Math. Soc., vol. 186. Am. Math. Soc., Providence (2007)
4. Almkvist, G, Zudilin, W: Differential equations, mirror maps and zeta values. In: Yui, N, Yau, S-T, Lewis, JD (eds.) Mirror Symmetry V. AMS/IP Studies in Adv. Math., vol. 38, pp. 481-515. Am. Math. Soc., Providence (2007)
5. Xia, EXW, Yao, OXM: A criterion for the log-convexity of combinatorial sequences. Electron. J. Comb. 20(4), \#P3 (2013)
6. Chen, WYC, Xia, EXW: The 2-log-convexity of the Apéry numbers. Proc. Am. Math. Soc. 139, 391-400 (2011)
