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Abstract
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(Proc. Camb. Philos. 60:425-431, 1964), Chen (Linear Algebra Appl. 368:99-106, 2003)
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1 Introduction
Let C"™*" (R™*") be the set of all complex (real) matrices and let M, be the positive definite
Hermitian matrices. Let Z"" = {A = (a;) € R"" 1 a;; < 0,i #},i,j € {1,2,...,n}}. For any
A = (ay) € C"™", its associated matrix is defined by A" = (), where o;; = |a;l, o = —|ay]
(i #)). For A = (a;), B = (b) € C"™*", the Hadamard product of A and Bis A o B = (a;b;) €
C™*" while their Fan product A * B = (¢;) is defined by ¢; = a;;b;; and ¢;; = —a;;b;; for i 7.

If A = (a;) € C"™", then the k x k leading principal submatrix of A is denoted by A,
(ke{1,2,...,n}). A, denotes the principal submatrix of A, with indices in @ C {1,2,...,n}.
A € R"" s called an M-matrixif A € Z"*" and detA; > 0 (Vk € {1,2,...,n}),and we denote
itby A € M,,. A matrix A € C"*" is called an H-matrix if A" is an M-matrix, and we denote
itby A € H,.

Lynn [1], Theorem 3.1, proved the following determinantal inequality for H-matrices: if
A, B € H,, then

n n
det(A o B) +detA’detB' > [ [ Ibal detA’ + [ [ || det B,

i=1 i=1

ie.

(1.1)

det(4 o B) > detA’ detB’ [z |l + [izs bl -1).
det A’ detB’

Chen [2], Theorem 2.7, obtained a determinantal inequality for positive definite matri-
ces: if A = (a;), B = (by) € M}, then

(1.2)

z detAr_; by detBi_
det(AoB)zdetAdetB]_[(”kk N1 | Ok GOt By 1_1),
k=2

detA, | detBy
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Lin [3] recently proved that a similar result to the block positive definite matrices holds
for the block Hadamard product.

Ando [4], Theorem 5.3, has given the following result: if A = (a;), B = (b;) are M-
matrices, then

det(A * B) + detA - detB

> (ﬁ a,»,») -detB + detA - (ﬁ bu),
i=1

i=1

o dii 1 bii
det(A x B) > detA detB [Tira + iy -1). (1.3)
detA detB

In this paper, we will present some determinantal inequalities for matrices which are
generalizations of (1.1), (1.2), and (1.3).

2 Main results and some remarks
We give some lemmas before we present the main theorems of this paper.

Lemma 1 ([4], Corollary 4.1.2) Let A = (a;) € R™" be an M-matrix. If o; € {1,2,...,n}
(i=1,2,3,...,N) satisfies ; Noj = ¢ for i # j and szl oj={1,2,...,n}, then

N
detA < [ [ det(Aq,).
i=1
In particular,
n
detA < 1_[61”‘. (2.1)
i=1

Lemma 2 ([1], Theorem 3.1) IfA, B are H-matrices and C = A o B, then C is H-matrix.

Lemma 3 ([5], Theorem 5.2.1) If A, B are positive definite matrices and C = A o B, then C
is positive definite matrix.

Lemma 4 ([6]) IfA, B are M-matrices and C = A x B, then C is M-matrix.

Now we present the main results.
First of all, we give a determinantal inequality for the Hadamard product of finite number
of H-matrices as follows:

Theorem 5 IfA; = (a’fl),Az = (a'él), iy Ap = (@) (k1 =1,...,n) are H-matrices, then

det(Ajo---0A4,,) >det(A;---4,,)

§ (HZ& AN —(m—1)>. (2.2)

detA] detA!,
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Proof By Lemma 2, it is straightforward to observe that the Hadamard product A; o --- o

A, is an H-matrix. Use induction on k. When k = 2, the result is (1.1). Suppose that (2.2)
holds when k =m —1

det(Aj o+ 0A,1) > det(A]---A),_)

X <H:‘=1 |ﬂi‘_| +oe 71_[:[:1 -1 —(m - 2)>.

detA] detA), ,

When k = m, we need to show

det(A;0---0A,) > det(A’l LA )

m
n aii n dii
X nl:1|1|+“‘+nl:1|M|—(Vl’l—1) .
detA] detA!,

By (1.1), we have

det((A10---0Au 1) 0A,) > det((A]0---0Al, )AL)
% (H?_1(|“¥|'“|“Zl ) + [T || _1)'

det(Ajo---0A,, ;) detA!,

By the inductive assumption, the above inequality is

det(Ajo---0A,) > det(A]---A),_,)detA],

X <n?=1 o oot Myl (m— 2))

detA] detA),

% n?:l(laii e |a3’1—1 ) + H?:l |ﬂi’t’t| -1 (2 3)
det(Ajo---0A, ;)  detA, ' '
Let
n g o
a= (Hz:l' /ll Tt Hz:l' ,m—l —(WI—Z)),
detA] detA],
_ H?:l(mii ) + [T |, | _1
det(Ajo---0A), ;) detA], '
By (2.1), we have
[T |”;i| ,
TdetAl >1, j=1,...,m,
]
l_[?=1(laii| e |ﬂﬁ1—1 ) -1
det(Ajo---0Al, )~ ’
and so



Fu and Liu Journal of Inequalities and Applications (2016) 2016:262 Page 4 of 7

Thus by ab > a + b — 1 for a,b > 1, the above inequality (2.3) is

det(Aj0---0A,,) >det(A] A, )detA], xaxb
> det(A}---A),) X (@+b-1)
> det(A}---A,)
X 1_[1 1|ﬂ . +1_[;q=1|aif1| —(m—l) .
det A} detA!,
This completes the proof. O

Remark 6 The above inequality in Theorem 5 is a generalization of the inequality (1.1).

Second, we achieve a determinantal inequality for the Hadamard product of positive
definite matrices as follows:

Theorem 7 IfA; (i=1,...,m) (m > 2) are n X n positive definite matrices, the Hadamard
product of A; = (aft) and Aj = (a}l-‘) (i #) is denoted by A; o Aj, and Agk) is the k x k (k =
1,2,...,n) leading principal submatrix of A;, then

det(A;0---0A4,,) >det(4,---4,,)

n o (u-1) i (n-1)
ay" det A} ay det A, )
x|| et -(m-1)). (2.4)
( detAW det A

n=2

Proof By Lemma 3, it is straightforward to see that the Hadamard product Ajo--- 0 Ay,
is a positive definite matrix. Use induction on m. When k = 2, the result is (1.2). Suppose
that (2.4) holds when k = m — 1. We have

det(Al O--- OAm—l) > det(A1 .. 'Am—l)

n i (n-1) o (n-1)
a; detA a, '~ detA
X||<%++m_17)m_l—(m—2)>

W\ detAl" detA™,
When k = m, we need to show

det(Ajo---0A,,) >det(A;---A,,)

= (alt detAﬁ“ - a* det A%V

X m) 4+ o0+ o —(Wl—l)
2 det Ay det A

n=

By (1.2), we have

det((A1 0+ 0Ay1)0Ay)

> det((A10-+ 0 Ay 1)An)

8 ﬁ((a{”‘ ceat Ydet(Ay o0 Ay )BT all det A% ~ 1>'

+
e det(A;0--- 04, 1) detAY)
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By the inductive assumption, the above inequality is such that

det(A1 O« OAm—l) detA,,

X n <(ﬂim e ﬂi’ﬁﬂdet(fll 0 0Ay )WY aylt detAiﬁf_l) - 1)
2

+
i det(Al O--- OAW[—l)(M) dCtA%)

> det(A1 .- 'Am—l) detA,,

= (alt detAﬁ“_l) ay" detA(Q"_l) ablt detAEﬁf__ll)
w T Wttt T w2
uoa N detA) detAy* detA,.’;
y ﬁ((ai“’“ cealt ) det(Ayo -0 Ay )WY N a* det AV ~ 1) (2.5)
s det(Ay 0 -0 Ay g)® det A
Let
a det AYV g det AV al" det AUV
A = w w Tt w -~ m=2)
detA; detAy detA, ',
b - (@ ---abt )det(Ayo---0 Ay )Y . a* det ALY
g det(Ay0---0 A, )W det AL
By Fischer’s inequality [5], p.506, we have
al detAS‘H) )
ﬁ 1= 1, ooy, m,
detA4;”
(@ ---aht )det(Ayo--- 0 Ay )Y >0
det(A10---0A,_)®W =7
and so
a,,b,>1.
Thus by a,,b,, > a, + b, —1for a,,b, > 1, the above inequality (2.5) is
det(Ajo0---0A,)
n
> det(Ay -+ Apr) det Ay x [ [ @by
n=2
n
> det(A; -+ Ap) x [ [(@y + by —1)
n=2
n UL (n-1) s (n-1)
a; detA a, detA
zdet(Al“‘Am)H<% U %_( _1))
w2 detA}" detA);
This completes the proof. O

Remark 8 The inequality in Theorem 7 is a generalization of the inequality (1.2).
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Finally, a result on Fan product of M-matrices is obtained in the following theorem.
Theorem 9 IfA; = (alld),Az = (agl oAy = (aﬁ) (k,l=1,...,n) are M-matrices, then

det(A; *---%xA,) >det(4;---A4,,)

y (1'[?1 ai oy Hidy (m —1)>. (2.6)

detA; detA,,

Proof By Lemma 4, it is straightforward to see that the Hadamard product A; * - - - x A,, is
an M-matrix. Use induction on k. When k = 2, the result is (1.3). Let k = m —1, (2.6) holds:

det(Al O--- OAm—l) > det(A1 . 'Am—l)

[T 4 [T @
= - = m _ _2 .
x ( deid; T dea,, 2

When k = m, we need to show

det(A; *---%xA,) >det(4;---A,,)

no i no i
% i:1“1+...+ni:1“m_(m_1) )
detA; detA,,

By (1.3), we have

det((Ag -+ % Ayy) % Ap) > det((Ag * - % Ap1)A)

u ) S
« < [Tmar - ayy) + [T 2 _1)'

det(A; x---xA,_1) detA,

By the inductive assumption, the above inequality is

det(A; *---%A,,) > det(A;---A,,_1)detA,,
% (nilﬂl et [T @ (m—2)>

detA; ) detA,,1

% H;’:I(dii ey + [T, 1) 2.7)
det(A; % ---%A,_1) detA,
Let
4= [[ma P [T @ —(m-2)),
detA; detA,,1
_ [Tiat - ay, + [T _1

det(Al o---0 Am—l) detAm ’

By (2.1), we have

—ELT 5, j=1,..,m,

M ai)
det(A 0---0A, ) —
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Sobyab>a+b-1fora,b> 1, the above inequality (2.7) is

det(A; *---%xA,) >det(4;---A,,)

n il n ii
X Lﬂl+...+M_(m_l) .
detA; detA,,

This completes the proof. O

Remark 10 The inequality in Theorem 9 is a generalization of the inequality (1.3).
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