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Abstract
In this paper we consider the following system of fractional nonlinear equations in
the half space Rn+:

⎧
⎪⎨

⎪⎩

(–�)
α
2 u1(x) = xγn u

α1
1 (x)uβ1

2 (x), x ∈ Rn+,

(–�)
α
2 u2(x) = xγn u

α2
1 (x)uβ2

2 (x), x ∈ Rn+,

u1(x) = u2(x) = 0, x /∈ Rn+,

()

where γ ≥ 0, 0 < α < 2, αi , βi > 0, i = 1, 2.
First, we use the Kelvin transform and the method of moving planes in integral

forms to prove that (1) is equivalent to the following system of integral equations with
1 < αi + βi ≤ n+α+2γ

n–α :

{
u1(x) =

∫

Rn+
G(x, y)yγn u

α1
1 (y)uβ1

2 (y)dy, x ∈ Rn+,

u2(x) =
∫

Rn+
G(x, y)yγn u

α2
1 (y)uβ2

2 (y)dy, x ∈ Rn+,
()

where G(x, y) is the Green’s function associated with (–�)
α
2 in Rn+.

Then we continue work on integral systems (2) to establish Liouville type theorems,
i.e. the nonexistence of positive solutions in the subcritical case and the critical case,
1 < αi + βi ≤ n+α+2γ

n–α .

Keywords: the fractional Laplacian; Green’s function; method of moving planes in
integral forms; Liouville theorem; Kelvin transform

1 Introduction
In recent years, there has been a great deal of interests in using the fractional Laplacian to
model diverse physical phenomena, such as anomalous diffusion and quasi-geostrophic
flows, turbulence and water waves, molecular dynamics, and relativistic quantum me-
chanics of stars (see [–], and the references therein). The fractional Laplacian in Rn is a
nonlocal operator, taking the form

(–�)
α
 u(x) = Cn,α P.V.

∫

Rn

u(x) – u(z)
|x – z|n+α

dz, (.)
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where  < α < , P.V. stands for the Cauchy principal value. This operator is well defined
in S , the Schwartz space of rapidly decreasing C∞ functions in Rn. One can extend this
operator to a wider space Lα of distributions as follows.

Let

Lα =
{

u : Rn → R
∣
∣
∣

∫

Rn

|u(x)|
 + |x|n+α

dx < ∞
}

.

For u ∈Lα , we define (–�) α
 u(x) as a distribution:

〈
(–�)

α
 u(x),φ

〉
=

〈
u, (–�)

α
 φ

〉
, ∀φ ∈ S .

Zhang and Cheng [] considered the positive solutions of the following single equation
in Rn:

(–�)
α
 u(x) = xγ

n up(x), u(x) > , x ∈ Rn. (.)

They showed the following.

Proposition . ([]) Assume p > n
n–α

and γ ≥ , if u(x) ∈ L
n(p–)

α (Rn
+) is a non-negative

solution of equation (.), then u(x) ≡ .

Proposition . ([]) Assume  < p ≤ n+α+γ

n–α
and γ ≥ , if u(x) is a locally bounded non-

negative solution of the equation (.), then u(x) ≡ . In particular, when n+α
n–α

≤ p ≤ n+α+γ

n–α
,

we only require u(x) ∈ L
n(p–)

α (Rn
+).

Motivated by [], in this paper we consider the Dirichlet problem for the following
pseudo differential system in Rn

+:

⎧
⎪⎪⎨

⎪⎪⎩

(–�) α
 u = xγ

n uα
 (x)uβ

 (x), x ∈ Rn
+,

(–�) α
 u = xγ

n uα
 (x)uβ

 (x), x ∈ Rn
+,

u(x) = u(x) = , x /∈ Rn
+,

(.)

where γ ≥ ,  < α < , αi, βi > , i = , .
First, we use the maximum principle and the Liouville theorem in Rn

+ in [] to show that
the positive solutions of problem (.) satisfy the following integral equations under some
weak integrability condition:

⎧
⎨

⎩

u(x) = cx
α

n +

∫

Rn
+

G(x, y)yγ
n uα

 (y)uβ
 (y) dy, x ∈ Rn

+,

u(x) = cx
α

n +

∫

Rn
+

G(x, y)yγ
n uα

 (y)uβ
 (y) dy, x ∈ Rn

+,
(.)

where

G(x, y) =
An,α

|x – y|n–α

∫ xnyn
|x–y|



b α
 –

( + b) n


db (.)

is the Green’s function associated with (–�) α
 in Rn

+ and An,α is a constant depending on
n and α.
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Then we use Kelvin transform and the method of moving planes in integral forms to
prove that c and c must be . We derive that (.) is equivalent to the following integral
equations under some locally integrable conditions:

⎧
⎨

⎩

u(x) =
∫

Rn
+

G(x, y)yγ
n uα

 (y)uβ
 (y) dy, x ∈ Rn

+,

u(x) =
∫

Rn
+

G(x, y)yγ
n uα

 (y)uβ
 (y) dy, x ∈ Rn

+.
(.)

In the subcritical case and critical case:  < αi + βi ≤ n+α+γ

n–α
, we continue work on the

integral systems (.) to show the nonexistence of positive solutions. That is, we have the
following result.

Theorem . Assume that u(x) = (u(x), u(x)) is a positive solution of equations (.). If

|u| ∈ L
n(αi+βi–)

α

loc (Rn
+) ∩ L∞

loc(Rn
+), then in the case  < αi + βi ≤ n+α+γ

n–α
, u(x) is also a solution of

integral equations (.), and vice versa.

Next, we establish the Liouville theorem for the integral equations as follows.

Theorem . Assume that αi + βi > n
n–α

and γ ≥ , if |u| ∈ L
n(αi+βi–)

α (Rn
+) is a nonnegative

solution of the system of the integral equations (.), then u(x) ≡ .

Theorem . Assume that u(x) = (u(x), u(x)) is a nonnegative solution of equations (.).

If |u| ∈ L
n(αi+βi–)

α

loc (Rn
+) ∩ L∞

loc(Rn
+) and  < αi + βi ≤ n+α+γ

n–α
, we have u(x) ≡ .

Remark  In this paper we use the new method in [] to prove Theorem ., we believe
that this new approach can be applied to a variety of other situations.

2 Equivalence between the two systems
The proof of Theorem . is based on the following maximum principle and the Liouville
theorem.

Proposition . ([]) Let � be a bounded open set, and let f (x) be a lower-semicontinuous
function in �̄ such that (–�) α

 f (x) ≥  in � and f (x) ≥  in Rn \ �. Then f (x) ≥  in Rn.

Proposition . ([]) If f (x) ∈ Lα and (–�) α
 f (x) ≥  in an open set, then f (x) is lower

semicontinuous in �.

Theorem . ([]) Let  < α < , u ∈Lα . Assume u is a nonnegative solution of

⎧
⎨

⎩

(–�) α
 u(x) = , x ∈ Rn

+,

u(x) ≡ , x /∈ Rn
+.

(.)

Then we have either

u(x) ≡ x ∈ Rn or u(x) =

⎧
⎨

⎩

Cx
α

n , x ∈ Rn

+,

, x /∈ Rn
+,

for some positive constant C.
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Proof Assume u(x) ∈ Lα is a positive solution of the system of the fractional nonlinear
PDEs system:

⎧
⎨

⎩

(–�) α
 ui(x) = xγ

n uαi
 (x)uβi

 (x), x ∈ Rn
+,

ui(x) = , x /∈ Rn
+,

(.)

where i = , , γ ≥ ,  < α < , αi, βi > .
We first show that

∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy < ∞. (.)

Set PR := (, . . . , , R) ∈ Rn
+, B+

R(PR) := {x ∈ Rn : |x – PR| < R}, the ball of radius R centered at
PR. Let

vR
i (x) =

∫

B+
R(PR)

GR(x, y)yγ
n uαi

 (y)uβi
 (y) dy, (.)

where GR(x, y), the Green’s function on the ball B+
R(PR), was given in [],

GR(x, y) =
An,α

|x – y|n–α

[

 –
Bn,α

(sR + tR)
(n–)



∫ sR
tR



(sR – tRb)
(n–)



b α
 ( + b)

db
]

, x, y ∈ B+
R(PR),

here sR = |x–y|
R , tR = ( – |x–PR|

R )( – |y–PR|
R ), An,α , and Bn,α are constants depending on n

and α.
From the local bounded-ness assumption on u, one can see that, for each R > , vR

i (x) is
well defined and is continuous. Moreover,

⎧
⎨

⎩

(–�) α
 vR

i (x) = xγ
n uαi

 (x)uβi
 (x), x ∈ B+

R(PR),

vR
i (x) = , x /∈ B+

R(PR).
(.)

Let wR
i (x) = ui(x) – vR

i (x), by (.) and (.), we derive
⎧
⎨

⎩

(–�) α
 wR

i (x) = , x ∈ B+
R(PR),

wR
i (x) ≥ , x /∈ B+

R(PR).
(.)

Applying the maximum principle (see Proposition .), we derive that

wR
i (x) ≥ , ∀x ∈ B+

R(PR). (.)

It is easy to prove that

vR
i (x) → vi(x) =

∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy, as R → ∞. (.)

Obviously,
⎧
⎨

⎩

(–�) α
 vi(x) = xγ

n uαi
 (x)uβi

 (x), x ∈ Rn
+,

vi(x) ≡ , x /∈ Rn
+.

(.)
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Denote wi(x) = ui(x) – vi(x). Using (.), (.), (.), and (.), we have

⎧
⎨

⎩

(–�) α
 wi(x) = , wi(x) ≥ , x ∈ Rn

+,

wi(x) ≡ , x /∈ Rn
+.

Applying the Liouville theorem (see Theorem .), we deduce that either

wi(x) ≡ , x ∈ Rn or wi(x) ≡ cix
α

n , ∀x ∈ Rn

+, i = , ,

for some positive constants ci > , then we could write wi = cix
α

n , ci ≥ . That is, the solu-

tions of (.) satisfy

ui(x) = cix
α

n +

∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy, x ∈ Rn

+, i = , , (.)

where ci ≥ , G(x, y) is defined in (.).
Next we need to prove ci must be zero for i = , . To this end, we employ a certain type

of Kelvin transform and the method of moving planes in integral forms.
For z = {z

 , . . . , z
n–, } ∈ ∂Rn

+, let ūz
i (x) = ūi(x) = 

|x–z|n–α ui( x–z

|x–z| + z), be the Kelvin
transform of ui(x) centered at z.

Through a straightforward calculation by (.), we derive

ūi(x) =
cix

α

n

|x – z|n–α
+


|x – z|n–α

∫

Rn
+

G
(

x – z

|x – z| + z, y
)

yγ
n uαi

 (y)uβi
 (y) dy.

Let y = z–z

|z–z| + z, then dy = 
|z–z|n dz,

ūi(x) =
cix

α

n

|x – z|n–α
+


|x – z|n–α

∫

Rn
+

G(x, z)
∣
∣x – z∣∣n–α∣

∣z – z∣∣n–α

×
| zn
|z–z| |γ uαi

 ( z–z

|z–z| + z)uβi
 ( z–z

|z–z| + z)
|z – z|n dz

=
cix

α

n

|x – z|n–α
+

∫

Rn
+

G(x, z)
zγ

n

|z – z|n+α+γ

uαi
 ( z–z

|z–z| + z)
|z – z|(n–α)αi

×
uβi

 ( z–z

|z–z| + z)
|z – z|(n–α)βi

∣
∣z – z∣∣(n–α)αi

∣
∣z – z∣∣(n–α)βi dz

=
cix

α

n

|x – z|n–α
+

∫

Rn
+

G(x, z)
zγ

n ūαi
 (z)ūβi

 (z)
|z – z|n+γ +α–(n–α)(αi+βi)

dz

=
cix

α

n

|x – z|n–α
+

∫

Rn
+

G(x, y)
yγ

n ūαi
 (y)ūβi

 (y)
|y – z|δ dy, ∀x ∈ Rn

+\Bε

(
z), (.)

where ε > , δ = n + α + γ – (n – α)(αi + βi).
Then we have δ =  i.e. αi + βi = n+α+γ

n–α
, it is called critical case. When δ > , we have

 < αi + βi < n+α+γ

n–α
and it is called the subcritical case. In this section, we consider these

two cases  < αi + βi ≤ n+α+γ

n–α
, then we have δ ≥ .
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Now we introduce some basic notations in the method of moving planes. For a given real
number λ, denote �λ = {x = (x, . . . , xn) ∈ Rn

+ | x < λ}, Tλ = {x = (x, . . . , xn) ∈ Rn
+ | x = λ}.

Let xλ = (λ– x, x, . . . , xn) be the reflection of the point x = (x, . . . , xn) about the plane Tλ,
and ūλ

i (x) = ūi(xλ), w̄λ
i (x) = ūλ

i (x) – ūi(x).
For x, y ∈ �λ, x 
= y, by [], we have

G(x, y) = G
(
xλ, yλ

)
> G

(
x, yλ

)
= G

(
xλ, y

)
. (.)

Obviously, we have

ūi(x) =
cix

α

n

|x – z|n–α
+

∫

Rn
+

G(x, y)
yγ

n ūαi
 (y)ūβi

 (y)
|y – z|δ dy

=
cix

α

n

|x – z|n–α
+

∫

�λ

G(x, y)
yγ

n ūαi
 (y)ūβi

 (y)
|y – z|δ dy

+
∫

�λ

G
(
xλ, y

)yγ
n ūαi

 (yλ)ūβi
 (yλ)

|yλ – z|δ dy,

ūλ
i (x) =

cix
α

n

|xλ – z|n–α
+

∫

�λ

G
(
xλ, y

)yγ
n ūαi

 (y)ūβi
 (y)

|y – z|δ dy

+
∫

�λ

G(x, y)
yγ

n ūαi
 (yλ)ūβi

 (yλ)
|yλ – z|δ dy.

By an elementary calculation, we derive

ūi(x) – ūλ
i (x) =

cix
α

n

|x – z|n–α
–

cix
α

n

|xλ – z|n–α

+
∫

�λ

[
G(x, y) – G

(
xλ, y

)]
yγ

n

[
ūαi

 (y)ūβi
 (y)

|y – z|δ –
ūαi

 (yλ)ūβi
 (yλ)

|yλ – z|δ
]

dy

≤
∫

�λ

[
G(x, y) – G

(
xλ, y

)]
yγ

n

[
ūαi

 (y)ūβi
 (y)

|y – z|δ –
ūαi

 (yλ)ūβi
 (yλ)

|yλ – z|δ
]

dy

≤
∫

�λ

[
G(x, y) – G

(
xλ, y

)]yγ
n [ūαi

 (y)ūβi
 (y) – ūαi

 (yλ)ūβi
 (yλ)]

|y – z|δ dy. (.)

The proof consists of two steps. In step , we will show that, for λ sufficiently negative,

w̄λ
i (x) = ūλ

i (x) – ūi(x) ≥ , a.e. ∀x ∈ �λ.

In step , we deduce that Tλ can be moved to the right all the way to z
 . Furthermore, we

obtain w̄z

≡ , ∀x ∈ �z


.

Step . (Prepare to move the plane from near x = –∞.) In this step, we will show that,
for λ sufficiently negative, ε >  sufficiently small

ūλ
i (x) ≥ ūi(x), a.e. ∀x ∈ �λ\Bε

((
z)λ), (.)
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where (z)λ is the reflection of z about the plane Tλ. Define λ
i = {x ∈ �λ\Bε((z)λ) |

ūλ
i (x) < ūi(x)}, the sets where the inequalities (.) are violated. We will prove that λ

i
are empty, where i = , .

Without loss of generality, we consider ū. Denote �λ
i = {x ∈ �λ\Bε((z)λ) | ūαi

 (xλ) ×
ūβi

 (xλ) < ūαi
 (x)ūβi

 (x)}, for y ∈ �λ
 , we may assume that ū(y) > ūλ

 (y) and ū(y) ≤ ūλ
(y).

Define

w̄λ
i (y) =

⎧
⎨

⎩

, for ūi(y) < ūλ
i (y),

ūi(y) – ūλ
i (y), for ūi(y) > ūλ

i (y),

and w̄λ(y) = (w̄λ
 (y), w̄λ

(y)). By the expression of G(x, y), it is easy to see

G(x, y) ≤ An,α

|x – y|n–α
. (.)

Applying the mean value theorem, combining (.) and (.), we have, for x ∈ λ
i ,

ūi(x) – ūλ
i (x) ≤

∫

�λ

G(x, y)
yγ

n [ūαi
 (y)ūβi

 (y) – ūαi
 (yλ)ūβi

 (yλ)]
|y – z|δ dy

≤
∫

�λ
i

G(x, y)
yγ

n [ūαi
 (y)ūβi

 (y) – ūαi
 (yλ)ūβi

 (yλ)]
|y – z|δ dy

=
∫

�λ
i

G(x, y)
yγ

n {[ūαi
 (y) – ūαi

 (yλ)]ūβi
 (y) + ūαi

 (y)[ūβi
 (y) – uβi

 (yλ)]}
|y – z|δ dy

≤ c
∫

�λ
i

G(x, y)
yγ

n [ūαi
 (y) – ūαi

 (yλ)]ūβi
 (y)

|y – z|δ dy

≤ c
∫

�λ
i

G(x, y)
yγ

n ψ
αi–
 (y)[ū(y) – ū(yλ)]ūβi

 (y)
|y – z|δ dy

≤ c
∫

�λ
i


|x – y|n–α

yγ
n ūαi–

 (y)[ū(y) – ū(yλ)]ūβi
 (y)

|y – z|δ dy. (.)

Noticing �λ
i ⊆ λ

j for some j, applying the Hardy-Littlewood-Sobolev inequality and the
Hölder inequality we obtain for any q > n

n–α
,

‖w̄λ‖Lq(λ) ≤ c
∥
∥
∥
∥

yγ
n |ū|αi+βi–

|y – z|δ w̄λ

∥
∥
∥
∥

L
nq

n+αq (λ)
≤ c

∥
∥
∥
∥

yγ
n |ū|αi+βi–

|y – z|δ
∥
∥
∥
∥

L
n
α (λ)

‖w̄λ‖Lq(λ), (.)

where λ = λ
 ∪ λ

 . Since γ ≥ , we can easily see that yγ
n is bounded in each bounded

domain � ⊂ Rn
+. Therefore, by our assumption |u| ∈ L

n(αi+βi–)
α

loc (Rn
+), i.e. |u|αi+βi– ∈ L

n
α

loc(Rn
+),

we derive

yγ
n |u|αi+βi– ∈ L

n
α

loc
(
Rn

+
)
. (.)

Hence, we obtain

∫

�̂

[
yγ

n |ū|αi+βi–(y)
|y – z|δ

] n
α

dy =
∫

�

(
yγ

n |u|αi+βi–(y)
) n

α dy < ∞ (.)
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for any domain � that is a positive distance away from the z and �̂ is the image of �

about the Kelvin transform. By (.), for λ sufficiently negative and for ε >  sufficiently
small, c‖ yγ

n |ū|αi+βi–

|y–z|δ ‖L
n
α (λ) can be made very small. Combining this with (.), we arrive at

‖w̄λ‖Lq(λ) = , and λ
i must be of measure zero. Hence (.) holds.

Step . (Move the plane to the limiting position to derive symmetry.)
Inequality (.) provides a starting point to move the plane Tλ. Now we start to move

the plane Tλ along the x direction as long as (.) holds. Define

λ = sup
{
λ ≤ z

 | ūμ
i (x) ≥ ūi(x), a.e. ∀x ∈ �μ,μ ≤ λ

}
.

We prove that λ = z
 . On the contrary, suppose that λ < z

 . We will show that ū(x) is
symmetric about the plane Tλ , that is,

ū(x) ≡ ūλ (x), a.e. ∀x ∈ �λ\Bε

((
z)λ). (.)

Suppose (.) is not true, then, for such λ < z
 , for all i = , , we have

ūλ
i (x) > ūi(x) a.e. x ∈ �λ\Bε

((
z)λ). (.)

In fact, by (.), we have two cases for all i = , ; one is

ūλ
i (y) > ūi(y) on a set of positive measure, i =  and . (.)

For the other case, without loss of generality, we may assume that ūλ
 (z) > ū(z) and

ūλ
 (z) = ū(z). (.)

For the first case, (.) is proved. For the other case, we have

ūαi
 (y)ūβi

 (y) – ūαi


(
yλ

)
ūβi


(
yλ

)
< . (.)

Combining (.) with (.), we obtain

 = ūi(zi) – ūλ
i (zi) <

∫

�λ

[
G(zi, y) – G

(
zi

λ, y
)]yγ

n [ūαi
 (y)ūβi

 (y) – ūαi
 (yλ )ūβi

 (yλ )]
|y – z|δ dy < .

This is impossible. Hence (.) holds. Next based on (.), we will verify that the plane
can be moved further to the right. More precisely, there exists a ζ >  such that, for all
λ ∈ [λ,λ + ζ ) ūλ

i (x) ≥ ūi(x), a.e. ∀x ∈ �λ\Bε(z)λ . By inequality (.), we have

‖w̄λ‖Lq(λ) ≤
{∫

λ

(
yγ

n |ū|αi+βi–(y)
|y – z|δ

) n
α

dy
} α

n
‖w̄λ‖Lq(λ). (.)

Equation (.) ensures that one can choose η sufficiently small so that, for all λ in [λ,λ +
η),

c
{∫

λ

(
yγ

n |ū|αi+βi–(y)
|y – z|δ

) n
α

dy
} α

n
≤ 


. (.)

We postpone the proof of this inequality (.) for a moment.
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Now combining (.) and (.), we have ‖w̄λ‖Lq(λ) = , and λ must be of measure
zero. Hence, for these values of λ > λ, we have w̄λ(x) ≥ , a.e. ∀x ∈ �λ\Bε((z)λ), ε > .
This contradicts the definition of λ. Therefore (.) must hold. That is, if λ < z

 , then
we must have

ūi(x) ≡ ūλ
i (x), a.e. ∀x ∈ �λ\Bε

((
z)λ). (.)

Recall that, by our assumption, ci >  and

ūi (x) =
ci x

α

n

|x – z|n–α
+

∫

Rn
+

G(x, y)
yγ

n ūα
 (y)ūβ

 (y)
|y – z|δ dy. (.)

It follows that ūi is singular at z, hence by (.), ūi must also be singular at (z)λ. This
is impossible, because z is the only singularity of ū. Hence, we must have λ = z

 . Since ε

is an arbitrary positive number, we have actually derived that

ūλ
i (x) ≥ ūi(x), a.e. ∀x ∈ �λ ,λ = z

 .

Entirely similarly, we can move the plane from near x = +∞ to the left and obtain ūλ
i (x) ≤

ūi(x), a.e. ∀x ∈ �λ , λ = z
 . Therefore we have w̄λ (x) ≡ , a.e. ∀x ∈ �λ , λ = z

 .
Now we prove inequality (.). For any small η > , ∀ε > , we can choose R sufficiently

large so that

(∫

(Rn
+\Bε(z))\BR

[
yγ

n |ū|αi+βi–(y)
|y – z|δ dy

] n
α
) α

n
≤ η. (.)

For any τ > , define Eτ
i = {x ∈ (�λ\Bε((z)λ )) ∩ BR() | ūλ

i (x) – ūi(x) > τ }, and Fτ
i =

{(�λ\Bε((z)λ )) ∩ BR()}\Eτ
i . Obviously, limτ→μ(Fτ

i ) = .
For λ > λ, let Dλ = {(�λ\Bε((z)λ))\(�λ\Bε((z)λ )) ∩ BR()}.
It is easy to see that

{
λ

i ∩ BR()
} ⊂ (

λ
i ∩ Eτ

i
) ∪ Fτ

i ∪ Dλ. (.)

For λ sufficiently close to λ, μ(Dλ) is very small. We will show that μ(λ
i ∩ Eτ

i ) is suffi-
ciently small as λ close to λ.

In fact, w̄λ
i (x) = ūλ

i (x)– ūi(x) = ūλ
i (x)– ūλ

i (x)+ ūλ
i (x)– ūi(x) < , ∀x ∈ (λ

i ∩Eτ
i ). Therefore,

ūλ
i (x) – ūλ

i (x) > ūλ
i (x) – ūλ

i (x) > τ , ∀x ∈ (λ
i ∩ Eτ

i ). It follows that

(
λ

i ∩ Eτ
i
) ⊂ Hτ

i =
{

x ∈ BR() | ūλ
i (x) – ūλ

i (x) > τ
}

. (.)

By the well-known Chebyshev inequality, for fixed τ , as λ is close to λ, μ(Eτ
i ) can be

sufficiently small. By (.) and (.), we derive that μ(λ
i ∩ BR()) can be made as small

as we wish. Combining this with (.), we deduce that (.) holds.
Since we can choose any direction that is perpendicular to the xn-axis as the x direc-

tion, we have actually shown that the Kelvin transform of the solution ū(x) is rotationally
symmetric about the line parallel to the xn-axis and passing through z. Now we take any
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two points X and X, with Xl = (x′l, xn) ∈ Rn– × [,∞), l = , . Let z be the projection of
X̄ = X+X

 on ∂Rn
+. Set Y l = Xl–z

|Xl–z| + z, l = , . From the above arguments, it is easy to see
ū(Y ) = ū(Y ), hence u(X) = u(X). This implies that ui is independent of x′ = (x, . . . , xn–).
That is, ui = ui(xn), and we will show that this will contradict the finiteness of the integral
∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy. To continue, we need the following lemma.

Lemma . ([]) If t
s is sufficiently small, then ∀x = (x′, xn), y = (y′, yn) ∈ Rn

+, one can derive
that

cn,α

s n–α


· t α


s α


≤ G(x, y) ≤ Cn,α

s n–α


· t α


s α


, i.e. G(x, y) ∼ t α


s n


.

Here s = |x – y|, t = xnyn, cn,α , and Cn,α stand for different positive constants that only
depend on n and α.

Set x = (x′, xn), y = (y′, yn) ∈ Rn– × (, +∞), r = |x′ – y′| and a = |xn – yn|. If ui = ui(xn)
is a solution of

ui(x) =
∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy, (.)

then, for each fixed x ∈ Rn
+, letting R be large enough, by elementary calculations, we have

+∞ > ui(xn) =
∫ ∞


yγ

n uαi
 (yn)uβi

 (yn)
∫

Rn–
G(x, y) dy′ dyn

≥ C
∫ ∞

R
yγ

n uαi
 (yn)uβi

 (yn)y
α

n

∫

Rn–\BR()


|x – y|n dy′ dyn

≥ C
∫ ∞

R
yγ

n uαi
 (yn)uβi

 (yn)y
α

n–
n

∫ ∞

R

r

(r + a) n


dr dyn

≥ C
∫ ∞

R
yγ

n uαi
 (yn)uβi

 (yn)y
α

n


|xn – yn|

∫ ∞

R
a

τ n–

(τ  + ) n


dτ dyn

≥ C
∫ ∞

R
uαi

 (yn)uβi
 (yn)yγ + α

 –
n dyn. (.)

Equation (.) implies that there exists a sequence {yk
n} → ∞ as k → ∞, such that

uαi


(
yk

n
)
uβi


(
yk

n
)(

yk
n
)γ + α

 → . (.)

Similarly to (.), for any x = (, xn) ∈ Rn
+, we derive that

+∞ > ui(xn) ≥ C

∫ ∞


yγ

n uαi
 (yn)uβi

 (yn)y
α

n


|xn – yn| dynx

α

n . (.)

Let xn = R be sufficiently large. By (.), we deduce that

+∞ > ui(xn) ≥ C

∫ 


yγ

n uαi
 (yn)uβi

 (yn)y
α

n


|xn – yn| dynx

α

n

≥ C

R
(R)

α


∫ 


yγ

n uαi
 (yn)uβi

 (yn)y
α

n dyn ≥ C(R)

α
 – = Cx

α
 –
n . (.)
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Then by (.) and (.), for xn = R sufficiently large, we also obtain

ui(xn) ≥ C

∫

R


R
yγ

n uαi
 (yn)uβi

 (yn)y
α

n


|xn – yn| dynx

α

n

≥ C

∫

R


R
yγ

n Cαi+βi
 y(αi+βi)( α

 –)
n y

α

n


|xn – yn| dynx

α

n

≥ CCαi+βi
 R(αi+βi)( α

 –)+γ (R)
α



R

∫

R


R
y

α

n dyn

:= AR(αi+βi)( α
 –)+γ +α := Ax(αi+βi)( α

 –)+γ +α
n .

Continuing this way m times, for xn = R, we have

ui(xn) ≥ A(m,αi + βi,α,γ )x
(αi+βi)m( α

 –)+ (αi+βi)m–
αi+βi– (γ +α)

n . (.)

For any fixed α and γ in their respective domain, we choose m to be an integer greater
than –α–αγ +γ +

α+γ
and . That is,

m ≥ max

{⌈
–α – αγ + γ + 

α + γ

⌋

+ , 
}

, (.)

where �a� is the integer part of a.
We claim that, for such a choice of m, we have

τ (αi + βi) :=
[

(αi + βi)m
(

α


– 

)

+
(αi + βi)m – 
αi + βi – 

(α + γ )
]

(αi + βi) +
α


+ γ ≥ . (.)

We postpone the proof of (.) for a moment. Now by (.) and (.), we derive that

uαi+βi
i (xn)x

α
 +γ
n ≥ A(m,αi + βi,α,γ )xτ (αi+βi)

n ≥ A(m,αi + βi,α,γ ) > ,

for all xn sufficiently large. This contradicts (.). So there is no positive solution of (.).
This implies that u(x) must be constant. By our positive assumption on u, we have ui(x) =
bi > , i = , . Taking ui into (.), we have  = (–�) α

 ui(x) = xγ
n uαi

 (x)uβi
 (x) > . This is

impossible. Hence, in (.), ci must be zero, i = , .
Now it is left to verify (.). In fact, if we let

f (αi + βi) := τ (αi + βi)(αi + βi – )

= (αi + βi)m+
(

α


– 

)

+ (αi + βi)m+
(

α


+ γ + 

)

–
α


(αi + βi) –

α


– γ ,

then

f ′(αi + βi) = (αi + βi)m
[

(m + )
(

α


– 

)

(αi + βi) + (m + )
(

α


+ γ + 

)]

–
α


.

We show that f ′(αi + βi) > , for  < αi + βi ≤ n+α+γ

n–α
. Since αi + βi > , it suffices to show

(m + )( α
 – )(αi + βi) + (m + )( α

 +γ + ) ≥ α
 . Due to the fact α

 –  < , n ≥ , and αi + βi ≤
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n+α+γ

n–α
, we only need to verify that

(m + )
(

α


– 

)
 + α + γ

 – α
+ (m + )

(
α


+ γ + 

)

≥ α


,

which can be derived directly from (.).
On the other hand, assume that u(x) is a solution of the integral equation (.). Then,

for any φ ∈ C∞
 (Rn

+), we have

〈
(–�)

α
 ui,φ

〉
=

〈∫

Rn
+

G∞(x, y)yγ
n uαi

 (y)uβi
 (y) dy, (–�)

α
 φ(x)

〉

=
∫

Rn
+

{∫

Rn
+

G∞(x, y)yγ
n uαi

 (y)uβi
 (y) dy

}

(–�)
α
 φ(x) dx

=
∫

Rn
+

{∫

Rn
+

G∞(x, y)(–�)
α
 φ(x) dx

}

yγ
n uαi

 (y)uβi
 (y) dy

=
∫

Rn
+

{∫

Rn
+

δ(x – y)φ(x) dx
}

yγ
n uαi

 (y)uβi
 (y) dy

=
∫

Rn
+

yγ
n uαi

 (y)uβi
 (y)φ(y) dy =

〈
yγ

n uαi
 uβi

 ,φ
〉
.

Hence u also satisfies equations (.).
This completes the proof of Theorem .. �

3 Liouville theorems
3.1 The proof of Theorem 1.2
In this section, we will establish the nonexistence of the solutions to (.) by using the
method of moving planes base up in the positive xn direction.

For a given positive real number λ, define �̂λ = {x = (x, . . . , xn–, xn) ∈ Rn
+ |  < xn < λ},

T̂λ = {x = (x, . . . , xn–, xn) ∈ Rn
+ | xn = λ}.

Let xλ = (x, x, . . . , xn–, λ – xn) be the reflection of the point x = (x, . . . , xn) about the
plane T̂λ, set �c

λ = Rn
+\�̂λ the complement of �̂λ, and write uλ

i (x) = ui(xλ) and wλ
i (x) =

uλ
i (x) – ui(x).
The following two lemmas are the key ingredient in our integral estimate.

Lemma . ([]) (i) For any x, y ∈ �̂λ, x 
= y, we have

G
(
xλ, yλ

)
> max

{
G

(
xλ, y

)
, G

(
x, yλ

)}
,

G
(
xλ, yλ

)
– G(x, y) >

∣
∣G

(
xλ, y

)
– G

(
x, yλ

)∣
∣.

(ii) For any x ∈ �̂λ, y ∈ �C
λ , we have G(xλ, y) > G(x, y).

Lemma . For any x ∈ �̂λ, ui are the positive solution of (.), we have

ui(x) – uλ
i (x) ≤

∫

�̂λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)]
yγ

n
[
uαi

 (y)uβi
 (y) – uαi


(
yλ

)
uβi


(
yλ

)]
dy.
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Proof Let �̃λ be the reflection of �̂λ about the plane T̂λ. we have

ui(x) =
∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy

=
∫

�̂λ

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy

+
∫

�̂λ

G
(
x, yλ

)(
yλ

n
)γ uαi


(
yλ

)
uβi


(
yλ

)
dy +

∫

�c
λ\�̃λ

G(x, y)yγ
n uαi

λ (y)uβi
λ (y) dy,

ui
(
xλ

)
=

∫

�̂λ

G
(
xλ, y

)
yγ

n uαi
 (y)uβi

 (y) dy

+
∫

�̂λ

G
(
xλ, yλ

)(
yλ

n
)γ uαi


(
yλ

)
uβi


(
yλ

)
dy +

∫

�c
λ\�̃λ

G
(
xλ, y

)
yγ

n uαi
 (y)uβi

 (y) dy.

By Lemma ., we arrive at

ui(x) – ui
(
xλ

) ≤
∫

�̂λ

[
G(x, y) – G

(
xλ, y

)]
yγ

n uαi
 (y)uβi

 (y) dy

–
∫

�̂λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)](
yλ

n
)γ uαi


(
yλ

)
uβi


(
yλ

)
dy

=
∫

�̂λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)][
yγ

n uαi
 (y)uβi

 (y) –
(
yλ

n
)γ uαi


(
yλ

)
uβi


(
yλ

)]
dy

≤
∫

�̂λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)][
yγ

n uαi
 (y)uβi

 (y) –
(
yλ

n
)γ uαi


(
yλ

)
uβi


(
yλ

)]
dy

≤
∫

�̂λ

[
G

(
xλ, yλ

)
– G

(
x, yλ

)]
yγ

n
[
uαi

 (y)uβi
 (y) – uαi


(
yλ

)
uβi


(
yλ

)]
dy.

This completes the proof of Lemma .. �

In order to prove the Liouville theorem, Theorem ., we carry out the method of moving
planes in integral form in the positive xn direction.

The proof consists of two steps. In the first step, we start from the very low end of our
region Rn

+, i.e. near xn =  and show that, for λ sufficiently small,

wλ
i (x) = uλ

i (x) – ui(x) ≥ , a.e. ∀x ∈ �̂λ. (.)

In the second step, we will move our plane T̂λ up in the positive xn direction as long as the
inequality (.) holds and show that u(x) is monotone increasing in xn and thus derive a
contradiction.

Step . Define λ
i = {x ∈ �̂λ | uλ

i (x) < ui(x)}, i = ,  and �λ
i = {x ∈ �̂λ | uαi

 (xλ)uβi
 (xλ) <

uαi
 (x)uβi

 (x)}. We show that, for λ sufficiently small, λ
i must be measure zero. In fact, for

any x ∈ λ
i , by the mean value theorem similar to (.) and Lemma ., we obtain

ui(x) – uλ
i (x) ≤

∫

�λ
i

G
(
xλ, yλ

)
yγ

n
[
uαi

 (y)uβi
 (y) – uαi


(
yλ

)
uβi


(
yλ

)]
dy

=
∫

�λ
i

G
(
xλ, yλ

)
yγ

n
[(

uαi
 (y) – uαi


(
yλ

))
uβi

 (y) + uαi
 (y)

(
uβi

 (y) – uβi


(
yλ

))]
dy
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≤
∫

�λ
i

G
(
xλ, yλ

)
yγ

n
[
uαi

 (y) – uαi


(
yλ

)]
uβi

 (y) dy

≤ c
∫

�λ
i

G
(
xλ, yλ

)
yγ

n uαi–
 (y)

[
u(y) – u

(
yλ

)]
uβi

 (y) dy. (.)

By the expression of G(x, y), it is easy to see G(x, y) ≤ An,α
|x–y|n–α . From (.), we have

ui(x) – uλ
i (x) ≤ c

∫

�λ
i


|x – y|n–α

∣
∣yγ

n uαi+βi–(y)
∣
∣
∣
∣wλ(y)

∣
∣ (.)

≤ c
∫

�λ
i


|x – y|n–α

∣
∣uαi+βi–(y)

∣
∣
∣
∣wλ(y)

∣
∣. (.)

Notice that now γ is only a little larger than , so yn is bounded within �λ
i , and since γ ≥ ,

we get |yγ
n | ≤ C, hence we derive (.) from (.).

Noticing �λ
i ⊆ λ

j for some j, applying Hardy-Littlewood-Sobolev inequality and the
Hölder inequality we obtain, for any q > n

n–α
,

‖wλ‖Lq(λ) ≤ c
∥
∥|u|αi+βi–wλ

∥
∥

L
nq

n+αq (λ)
≤ c

∥
∥|u|αi+βi–∥∥

L
n
α (λ)‖wλ‖Lq(λ), (.)

where λ = λ
 ∪ λ

 .
Since |u| ∈ L

n(αi+βi–)
α (Rn

+), we can choose sufficiently small positive λ such that

c
∥
∥uαi+βi–∥∥

L
n
α (λ) = c

{∫

λ

|u| n(αi+βi–)
α (y) dy

} α
n

≤ 


. (.)

By (.) and (.), we derive ‖wλ‖Lq(λ) = , and λ
i must be of measure zero, hence (.)

holds. This provides us a starting point for moving the plane.
Step . Now we start from such small λ and move the plane T̂λ up as long as (.) holds.

Define

λ = sup
{
λ | wρ(x) ≥ ,ρ ≤ λ,∀x ∈ �̂ρ

}
.

We will prove

λ = +∞. (.)

Suppose to the contrary that λ < +∞, we will show that ui(x) is symmetric about the plane
T̂λ , i.e.

uλ
i (x) ≡ ui(x), a.e. ∀x ∈ �̂λ . (.)

This will contradict the strict positivity of ui(x). Suppose (.) does not hold. Then, for
such a λ, we have uλ

i (x) ≥ ui(x), but uλ
i (x) 
≡ ui(x) a.e. on �̂λ . We show that the plane can

be moved further up. More precisely, there exists an ε >  such that for all λ ∈ [λ,λ + ε)

uλ
i (x) ≥ ui(x), a.e. on �̂λ. (.)
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To verify this, we will again resort to inequality (.). If one can show that, for ε sufficiently
small so that, for all λ in [λ,λ + ε), we have

c
{∫

λ

|u| n(αi+βi–)
α (y) dy

} α
n

≤ 


, (.)

then by (.) and (.), we have ‖wλ‖Lq(λ) = , and therefore λ must be of measure
zero. Hence, for these values of λ > λ, we have (.). This contradicts the definition of λ.
Therefore (.) must hold.

The proof of the inequality (.) is similar to the argument of the inequality (.) in
Section  and the proof is standard.

By (.), we derive that ui(x) =  on the plane xn = λ, the symmetric image of the
boundary ∂Rn

+ with respect to the plane T̂λ . This contradicts our assumption ui(x) >  in
Rn

+. Therefore, (.) must be valid. Now we have proved that the positive solution of (.) is
monotone increasing with respect to xn, and this contradicts uαi+βi– ∈ L n

α (Rn
+). Therefore

the positive solutions of (.) do not exist.
This completes the proof of Theorem ..

3.2 The proof of Theorem 1.3
In this section, we will use a proper Kelvin type transforms and derive the nonexistence
of positive solutions for (.) in Rn

+ under much weaker conditions, i.e. the solution u of
(.) is only locally integrable and locally bounded.

With no explicit global integrability assumptions on the solution u, we cannot directly
carry out the method of moving planes on u. To overcome this difficulty, we employ Kelvin
type transforms.

For z ∈ Rn
+, let

ūi(x) =


|x – z|n–α
ui

(
x – z

|x – z| + z
)

(.)

be the Kelvin transform of ui(x) centered at z.

Through a straightforward calculation, we have ūi(x) =
∫

Rn
+

G(x, y) yγ
n ūαi

 (y)ūβi
 (y)

|y–z|δ dy, ∀x ∈
Rn

+\Bε(z), where δ = n + α + γ – (n – α)(αi + βi), ε > , i = , .

Proof of Theorem . in the subcritical case  < αi + βi < n+α+γ

n–α
:

ūi(x) =
∫

Rn
+

G(x, y)
yγ

n ūαi
 (y)ūβi

 (y)
|y – z|δ dy, ∀x ∈ Rn

+\Bε

(
z), (.)

where δ = n + α + γ – (n – α)(αi + βi) > , ε > .
This specific proof is the same as the proof of Theorem . and we omit here. �

Remark When we carry out the method of moving planes on equation (.), we derive
the fact ci =  and consequently obtain the equivalence. While applying the same method
on equation (.), surprisingly, we arrive at a Liouville type theorem for it.
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Proof of Theorem . in the critical case  < αi + βi = n+α+γ

n–α
:

ui(x) =
∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy. (.)

By the Kelvin transform of ui(x) we derive

ūi(x) =
∫

Rn
+

G(x, y)yγ
n ūαi

 (y)ūβi
 (y) dy. (.)

If u(x) is a solution of (.), then ū(x) is also a solution of (.). Therefore, by our as-

sumption |u| ∈ L
n(αi+βi–)

α

loc (Rn
+), we derive yγ

n |u|αi+βi– ∈ L
n
α

loc(Rn
+). then

∫

�̂

[
yγ

n ūαi+βi–(y)
] n

α dy =
∫

�

[
yγ

n uαi+βi–(y)
] n

α dy < ∞, (.)

where �̂ is the image of � about the Kelvin transform. Now we consider two possibilities.
Possibility . If there is a z = (z

 , . . . , z
n–, ) ∈ ∂Rn

+ such that ūi(x) is bounded near z,
then by (.), we obtain

ui(y) =


|y – z|n–α
ūi

(
y – z

|y – z| + z
)

.

And we further deduce

ui(y) = O
(


|y|n–α

)

, as |y| → ∞. (.)

Since αi + βi = n+α+γ

n–α
> n

n–α
and |u| ∈ L

n(αi+βi–)
α

loc (Rn
+), together with (.), we have

∫

Rn
+

u
n(αi+βi–)

α (y) dy ≤ c
∫

Rn
+



|y| n(αi+βi–)(n–α)
α

dy < ∞. (.)

In this situation, we still carry on the moving planes on u. Going through exactly the same
arguments as in the proof of Theorem ., we obtain the nonexistence of positive solutions
for (.).

Possibility . For all z = (z
 , . . . , z

n–, ) ∈ ∂Rn
+, ūi(x) is unbounded near z, we will carry

out the method of moving planes on ū(x) in Rn– to prove that it is rotationally symmetric
about the line passing through z and parallel to the xn-axis. From this, we will deduce
that u is independent of the first n –  variables x, . . . , xn–. That is u = u(xn), and we will
derive a contradiction with the finiteness of

∫

Rn
+

G(x, y)yγ
n uαi

 (y)uβi
 (y) dy.

For a given real number λ, the notations such as �λ, Tλ are the same as the ones in
Section . By (.), obviously we have

ūi(x) =
∫

�λ

G(x, y)yγ
n ūαi

 (y)ūβi
 (y) dy +

∫

�λ

G
(
xλ, y

)
yγ

n ūαi


(
yλ

)
ūβi


(
yλ

)
dy,

ūλ
i (x) =

∫

�λ

G
(
xλ, y

)
yγ

n ūαi
 (y)ūβi

 (y) dy +
∫

�λ

G(x, y)yγ
n ūαi


(
yλ

)
ūβi


(
yλ

)
dy.
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By elementary calculation we derive

ūi(x) – ūλ
i (x) =

∫

�λ

[
G(x, y) – G

(
xλ, y

)]
yγ

n
[
ūαi

 (y)ūβi
 (y) – ūαi


(
yλ

)
ūβi


(
yλ

)]
dy. (.)

We will move the plane Tλ along the direction of the x-axis to show that the solution
is rotationally symmetric about the line passing through z and parallel to the xn-axis.
The proof is the same as the proof of ci =  in Section , in fact we only need to apply
arguments of the inequality (.) to equation (.). Similarly, we derive that ui = ui(xn)
and any positive solution u of (.) must be u(x) ≡ . This implies that there is no positive
solution of (.) in the critical case.

This completes the proof of Theorem .. �
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