# RESEARCH





(1)

# Liouville type theorems for the system of fractional nonlinear equations in $R_{+}^{n}$

Zhaohui Dai<sup>1</sup>, Linfen Cao<sup>1\*</sup> and Pengyan Wang<sup>2</sup>

\*Correspondence: linfencao6@163.com <sup>1</sup>College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, P.R. China Full list of author information is available at the end of the article

# Abstract

In this paper we consider the following system of fractional nonlinear equations in the half space  $R_+^n$ :

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u_1(x) = x_n^{\gamma} u_1^{\alpha_1}(x) u_2^{\beta_1}(x), & x \in R_+^n, \\ (-\Delta)^{\frac{\alpha}{2}} u_2(x) = x_n^{\gamma} u_1^{\alpha_2}(x) u_2^{\beta_2}(x), & x \in R_+^n, \\ u_1(x) = u_2(x) = 0, & x \notin R_+^n, \end{cases}$$

where  $\gamma \geq 0, 0 < \alpha < 2, \alpha_i, \beta_i > 0, i = 1, 2.$ 

First, we use the Kelvin transform and the method of moving planes in integral forms to prove that (1) is equivalent to the following system of integral equations with  $1 < \alpha_i + \beta_i \le \frac{n + \alpha + 2\gamma}{n - \alpha}$ :

$$\begin{cases} u_1(x) = \int_{R_+^n} G(x, y) y_n^{\gamma} u_1^{\alpha_1}(y) u_2^{\beta_1}(y) \, dy, & x \in R_+^n, \\ u_2(x) = \int_{R_+^n} G(x, y) y_n^{\gamma} u_1^{\alpha_2}(y) u_2^{\beta_2}(y) \, dy, & x \in R_+^n, \end{cases}$$
(2)

where G(x, y) is the Green's function associated with  $(-\Delta)^{\frac{\alpha}{2}}$  in  $\mathbb{R}^{n}_{+}$ .

Then we continue work on integral systems (2) to establish Liouville type theorems, *i.e.* the nonexistence of positive solutions in the subcritical case and the critical case,  $1 < \alpha_i + \beta_i \leq \frac{n+\alpha+2\gamma}{n-\alpha}$ .

**Keywords:** the fractional Laplacian; Green's function; method of moving planes in integral forms; Liouville theorem; Kelvin transform

# **1** Introduction

In recent years, there has been a great deal of interests in using the fractional Laplacian to model diverse physical phenomena, such as anomalous diffusion and quasi-geostrophic flows, turbulence and water waves, molecular dynamics, and relativistic quantum mechanics of stars (see [1-6], and the references therein). The fractional Laplacian in  $\mathbb{R}^n$  is a nonlocal operator, taking the form

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = C_{n,\alpha} \ PV. \ \int_{\mathbb{R}^n} \frac{u(x) - u(z)}{|x - z|^{n + \alpha}} \, dz,$$
(1.1)

© 2016 Dai et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.



where  $0 < \alpha < 2$ , *P.V.* stands for the Cauchy principal value. This operator is well defined in *S*, the Schwartz space of rapidly decreasing  $C^{\infty}$  functions in  $\mathbb{R}^n$ . One can extend this operator to a wider space  $\mathcal{L}_{\alpha}$  of distributions as follows.

Let

$$\mathcal{L}_{\alpha} = \left\{ u: \mathbb{R}^n \to \mathbb{R} \mid \int_{\mathbb{R}^n} \frac{|u(x)|}{1+|x|^{n+\alpha}} \, dx < \infty \right\}.$$

For  $u \in \mathcal{L}_{\alpha}$ , we define  $(-\Delta)^{\frac{\alpha}{2}}u(x)$  as a distribution:

$$\langle (-\Delta)^{\frac{\alpha}{2}}u(x),\phi\rangle = \langle u,(-\Delta)^{\frac{\alpha}{2}}\phi\rangle, \quad \forall \phi \in \mathcal{S}.$$

Zhang and Cheng [7] considered the positive solutions of the following single equation in  $\mathbb{R}^n$ :

$$(-\Delta)^{\frac{\alpha}{2}}u(x) = x_n^{\gamma}u^p(x), \quad u(x) > 0, x \in \mathbb{R}^n.$$
(1.2)

They showed the following.

**Proposition 1.1** ([7]) Assume  $p > \frac{n}{n-\alpha}$  and  $\gamma \ge 0$ , if  $u(x) \in L^{\frac{n(p-1)}{\alpha}}(\mathbb{R}^n_+)$  is a non-negative solution of equation (1.2), then  $u(x) \equiv 0$ .

**Proposition 1.2** ([7]) Assume  $1 and <math>\gamma \ge 0$ , if u(x) is a locally bounded nonnegative solution of the equation (1.2), then  $u(x) \equiv 0$ . In particular, when  $\frac{n+\alpha}{n-\alpha} \le p \le \frac{n+\alpha+2\gamma}{n-\alpha}$ , we only require  $u(x) \in L^{\frac{n(p-1)}{\alpha}}(\mathbb{R}^n_+)$ .

Motivated by [7], in this paper we consider the Dirichlet problem for the following pseudo differential system in  $R_+^n$ :

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u_1 = x_n^{\gamma} u_1^{\alpha_1}(x) u_2^{\beta_1}(x), & x \in \mathbb{R}_+^n, \\ (-\Delta)^{\frac{\alpha}{2}} u_2 = x_n^{\gamma} u_1^{\alpha_2}(x) u_2^{\beta_2}(x), & x \in \mathbb{R}_+^n, \\ u_1(x) = u_2(x) = 0, & x \notin \mathbb{R}_+^n, \end{cases}$$
(1.3)

where  $\gamma \ge 0$ ,  $0 < \alpha < 2$ ,  $\alpha_i$ ,  $\beta_i > 0$ , i = 1, 2.

First, we use the maximum principle and the Liouville theorem in  $R_+^n$  in [6] to show that the positive solutions of problem (1.3) satisfy the following integral equations under some weak integrability condition:

$$\begin{cases} u_1(x) = c_1 x_n^{\frac{\alpha}{2}} + \int_{\mathbb{R}^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_1}(y) u_2^{\beta_1}(y) \, dy, & x \in \mathbb{R}^n_+, \\ u_2(x) = c_2 x_n^{\frac{\alpha}{2}} + \int_{\mathbb{R}^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_2}(y) u_2^{\beta_2}(y) \, dy, & x \in \mathbb{R}^n_+, \end{cases}$$
(1.4)

where

$$G(x,y) = \frac{A_{n,\alpha}}{|x-y|^{n-\alpha}} \int_0^{\frac{4x_n y_n}{|x-y|^2}} \frac{b^{\frac{\alpha}{2}-1}}{(1+b)^{\frac{n}{2}}} db$$
(1.5)

is the Green's function associated with  $(-\Delta)^{\frac{\alpha}{2}}$  in  $\mathbb{R}^n_+$  and  $A_{n,\alpha}$  is a constant depending on n and  $\alpha$ .

Then we use Kelvin transform and the method of moving planes in integral forms to prove that  $c_1$  and  $c_2$  must be 0. We derive that (1.3) is equivalent to the following integral equations under some locally integrable conditions:

$$\begin{cases} u_1(x) = \int_{R^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_1}(y) u_2^{\beta_1}(y) \, dy, & x \in R^n_+, \\ u_2(x) = \int_{R^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_2}(y) u_2^{\beta_2}(y) \, dy, & x \in R^n_+. \end{cases}$$
(1.6)

In the subcritical case and critical case:  $1 < \alpha_i + \beta_i \le \frac{n+\alpha+2\gamma}{n-\alpha}$ , we continue work on the integral systems (1.6) to show the nonexistence of positive solutions. That is, we have the following result.

**Theorem 1.1** Assume that  $u(x) = (u_1(x), u_2(x))$  is a positive solution of equations (1.3). If  $|u| \in L^{\frac{n(\alpha_i+\beta_i-1)}{\alpha}}_{\text{loc}}(R^n_+) \cap L^{\infty}_{\text{loc}}(R^n_+)$ , then in the case  $1 < \alpha_i + \beta_i \leq \frac{n+\alpha+2\gamma}{n-\alpha}$ , u(x) is also a solution of integral equations (1.6), and vice versa.

Next, we establish the Liouville theorem for the integral equations as follows.

**Theorem 1.2** Assume that  $\alpha_i + \beta_i > \frac{n}{n-\alpha}$  and  $\gamma \ge 0$ , if  $|u| \in L^{\frac{n(\alpha_i + \beta_i - 1)}{\alpha}}(R^n_+)$  is a nonnegative solution of the system of the integral equations (1.6), then  $u(x) \equiv 0$ .

**Theorem 1.3** Assume that  $u(x) = (u_1(x), u_2(x))$  is a nonnegative solution of equations (1.6). If  $|u| \in L^{\frac{n(\alpha_i+\beta_i-1)}{\alpha}}_{\text{loc}}(\mathbb{R}^n_+) \cap L^{\infty}_{\text{loc}}(\mathbb{R}^n_+)$  and  $1 < \alpha_i + \beta_i \leq \frac{n+\alpha+2\gamma}{n-\alpha}$ , we have  $u(x) \equiv 0$ .

**Remark 1** In this paper we use the new method in [6] to prove Theorem 1.1, we believe that this new approach can be applied to a variety of other situations.

## 2 Equivalence between the two systems

The proof of Theorem 1.1 is based on the following maximum principle and the Liouville theorem.

**Proposition 2.1** ([8]) Let  $\Omega$  be a bounded open set, and let f(x) be a lower-semicontinuous function in  $\overline{\Omega}$  such that  $(-\Delta)^{\frac{\alpha}{2}} f(x) \ge 0$  in  $\Omega$  and  $f(x) \ge 0$  in  $\mathbb{R}^n \setminus \Omega$ . Then  $f(x) \ge 0$  in  $\mathbb{R}^n$ .

**Proposition 2.2** ([8]) If  $f(x) \in \mathcal{L}_{\alpha}$  and  $(-\Delta)^{\frac{\alpha}{2}} f(x) \geq 0$  in an open set, then f(x) is lower semicontinuous in  $\Omega$ .

**Theorem 2.1** ([9]) Let  $0 < \alpha < 2$ ,  $u \in \mathcal{L}_{\alpha}$ . Assume *u* is a nonnegative solution of

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u(x) = 0, & x \in \mathbb{R}^{n}_{+}, \\ u(x) \equiv 0, & x \notin \mathbb{R}^{n}_{+}. \end{cases}$$
(2.1)

Then we have either

$$u(x) \equiv 0x \in \mathbb{R}^n \quad or \quad u(x) = \begin{cases} Cx_n^{\frac{\alpha}{2}}, & x \in \mathbb{R}^n_+, \\ 0, & x \notin \mathbb{R}^n_+, \end{cases}$$

for some positive constant C.

*Proof* Assume  $u(x) \in \mathcal{L}_{\alpha}$  is a positive solution of the system of the fractional nonlinear PDEs system:

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} u_i(x) = x_n^{\gamma} u_1^{\alpha_i}(x) u_2^{\beta_i}(x), & x \in \mathbb{R}_+^n, \\ u_i(x) = 0, & x \notin \mathbb{R}_+^n, \end{cases}$$
(2.2)

where  $i = 1, 2, \gamma \ge 0, 0 < \alpha < 2, \alpha_i, \beta_i > 0$ . We first show that

$$\int_{\mathbb{R}^{n}_{+}} G(x, y) y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy < \infty.$$
(2.3)

Set  $P_R := (0, ..., 0, R) \in R^n_+$ ,  $B^+_R(P_R) := \{x \in R^n : |x - P_R| < R\}$ , the ball of radius *R* centered at  $P_R$ . Let

$$v_i^R(x) = \int_{B_R^+(P_R)} G_R(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy, \tag{2.4}$$

where  $G_R(x, y)$ , the Green's function on the ball  $B_R^+(P_R)$ , was given in [10],

$$G_R(x,y) = \frac{A_{n,\alpha}}{|x-y|^{n-\alpha}} \left[ 1 - \frac{B_{n,\alpha}}{(s_R + t_R)^{\frac{(n-2)}{2}}} \int_0^{\frac{s_R}{t_R}} \frac{(s_R - t_R b)^{\frac{(n-2)}{2}}}{b^{\frac{\alpha}{2}}(1+b)} \, db \right], \quad x,y \in B_R^+(P_R),$$

here  $s_R = \frac{|x-y|^2}{R^2}$ ,  $t_R = (1 - \frac{|x-P_R|^2}{R^2})(1 - \frac{|y-P_R|^2}{R^2})$ ,  $A_{n,\alpha}$ , and  $B_{n,\alpha}$  are constants depending on n and  $\alpha$ .

From the local bounded-ness assumption on *u*, one can see that, for each R > 0,  $v_i^R(x)$  is well defined and is continuous. Moreover,

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} v_i^R(x) = x_n^{\gamma} u_1^{\alpha_i}(x) u_2^{\beta_i}(x), & x \in B_R^+(P_R), \\ v_i^R(x) = 0, & x \notin B_R^+(P_R). \end{cases}$$
(2.5)

Let  $w_i^R(x) = u_i(x) - v_i^R(x)$ , by (2.2) and (2.5), we derive

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} w_i^R(x) = 0, & x \in B_R^+(P_R), \\ w_i^R(x) \ge 0, & x \notin B_R^+(P_R). \end{cases}$$
(2.6)

Applying the maximum principle (see Proposition 2.1), we derive that

$$w_i^R(x) \ge 0, \quad \forall x \in B_R^+(P_R).$$

$$(2.7)$$

It is easy to prove that

$$v_i^R(x) \to v_i(x) = \int_{\mathcal{R}^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy, \quad \text{as } R \to \infty.$$
 (2.8)

Obviously,

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} v_i(x) = x_n^{\gamma} u_1^{\alpha_i}(x) u_2^{\beta_i}(x), & x \in \mathbb{R}_+^n, \\ v_i(x) \equiv 0, & x \notin \mathbb{R}_+^n. \end{cases}$$
(2.9)

Denote  $w_i(x) = u_i(x) - v_i(x)$ . Using (2.2), (2.7), (2.8), and (2.9), we have

$$\begin{cases} (-\Delta)^{\frac{\alpha}{2}} w_i(x) = 0, & w_i(x) \ge 0, x \in R_+^n, \\ w_i(x) \equiv 0, & x \notin R_+^n. \end{cases}$$

Applying the Liouville theorem (see Theorem 2.1), we deduce that either

$$w_i(x) \equiv 0, \quad x \in \mathbb{R}^n \quad \text{or} \quad w_i(x) \equiv c_i x_n^{\frac{\alpha}{2}}, \quad \forall x \in \mathbb{R}^n_+, i = 1, 2,$$

for some positive constants  $c_i > 0$ , then we could write  $w_i = c_i x_n^{\frac{\alpha}{2}}$ ,  $c_i \ge 0$ . That is, the solutions of (2.2) satisfy

$$u_i(x) = c_i x_n^{\frac{\alpha}{2}} + \int_{\mathcal{R}_+^n} G(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy, \quad x \in \mathcal{R}_+^n, i = 1, 2,$$
(2.10)

where  $c_i \ge 0$ , G(x, y) is defined in (1.5).

Next we need to prove  $c_i$  must be zero for i = 1, 2. To this end, we employ a certain type of Kelvin transform and the method of moving planes in integral forms.

For  $z^0 = \{z_1^0, \dots, z_{n-1}^0, 0\} \in \partial R_+^n$ , let  $\bar{u}_i^{z^0}(x) = \bar{u}_i(x) = \frac{1}{|x-z^0|^{n-\alpha}} u_i(\frac{x-z^0}{|x-z^0|^2} + z^0)$ , be the Kelvin transform of  $u_i(x)$  centered at  $z^0$ .

Through a straightforward calculation by (2.10), we derive

$$\bar{u}_i(x) = \frac{c_i x_n^{\frac{\alpha}{2}}}{|x-z^0|^{n-\alpha}} + \frac{1}{|x-z^0|^{n-\alpha}} \int_{\mathbb{R}^n_+} G\left(\frac{x-z^0}{|x-z^0|^2} + z^0, y\right) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy.$$

Let  $y = \frac{z-z^0}{|z-z^0|^2} + z^0$ , then  $dy = \frac{1}{|z-z^0|^{2n}} dz$ ,

$$\begin{split} \bar{u}_{i}(x) &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \frac{1}{|x-z^{0}|^{n-\alpha}} \int_{R_{+}^{n}} G(x,z) |x-z^{0}|^{n-\alpha} |z-z^{0}|^{n-\alpha} \\ &\times \frac{|\frac{z_{n}}{|z-z^{0}|^{2}}|^{\gamma} u_{1}^{\alpha_{i}}(\frac{z-z^{0}}{|z-z^{0}|^{2}} + z^{0}) u_{2}^{\beta_{i}}(\frac{z-z^{0}}{|z-z^{0}|^{2}} + z^{0})}{|z-z^{0}|^{n-\alpha}} dz \\ &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \int_{R_{+}^{n}} G(x,z) \frac{z_{n}^{\gamma}}{|z-z^{0}|^{n+\alpha+2\gamma}} \frac{u_{1}^{\alpha_{i}}(\frac{z-z^{0}}{|z-z^{0}|^{2}} + z^{0})}{|z-z^{0}|^{(n-\alpha)\alpha_{i}}} \\ &\times \frac{u_{2}^{\beta_{i}}(\frac{z-z^{0}}{|z-z^{0}|^{(n-\alpha)\beta_{i}}} + z^{0})}{|z-z^{0}|^{(n-\alpha)\alpha_{i}}} |z-z^{0}|^{(n-\alpha)\beta_{i}} dz \\ &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \int_{R_{+}^{n}} G(x,z) \frac{z_{n}^{\gamma}\bar{u}_{1}^{\alpha_{i}}(z)\bar{u}_{2}^{\beta_{i}}(z)}{|z-z^{0}|^{n+2\gamma+\alpha-(n-\alpha)(\alpha_{i}+\beta_{i})}} dz \\ &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \int_{R_{+}^{n}} G(x,y) \frac{y_{n}^{\gamma}\bar{u}_{1}^{\alpha_{i}}(y)\bar{u}_{2}^{\beta_{i}}(y)}{|y-z^{0}|^{\delta}} dy, \quad \forall x \in R_{+}^{n} \backslash B_{\epsilon}(z^{0}), \end{split}$$

where  $\epsilon > 0$ ,  $\delta = n + \alpha + 2\gamma - (n - \alpha)(\alpha_i + \beta_i)$ .

Then we have  $\delta = 0$  *i.e.*  $\alpha_i + \beta_i = \frac{n+\alpha+2\gamma}{n-\alpha}$ , it is called critical case. When  $\delta > 0$ , we have  $1 < \alpha_i + \beta_i < \frac{n+\alpha+2\gamma}{n-\alpha}$  and it is called the subcritical case. In this section, we consider these two cases  $1 < \alpha_i + \beta_i \le \frac{n+\alpha+2\gamma}{n-\alpha}$ , then we have  $\delta \ge 0$ .

Now we introduce some basic notations in the method of moving planes. For a given real number  $\lambda$ , denote  $\Sigma_{\lambda} = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid x_1 < \lambda\}, T_{\lambda} = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n_+ \mid x_1 = \lambda\}.$ Let  $x^{\lambda} = (2\lambda - x_1, x_2, \dots, x_n)$  be the reflection of the point  $x = (x_1, \dots, x_n)$  about the plane  $T_{\lambda}$ , and  $\bar{u}_i^{\lambda}(x) = \bar{u}_i(x^{\lambda}), \bar{w}_i^{\lambda}(x) = \bar{u}_i^{\lambda}(x) - \bar{u}_i(x).$ 

For  $x, y \in \Sigma_{\lambda}$ ,  $x \neq y$ , by [5], we have

$$G(x,y) = G(x^{\lambda}, y^{\lambda}) > G(x, y^{\lambda}) = G(x^{\lambda}, y).$$
(2.12)

Obviously, we have

$$\begin{split} \bar{u}_{i}(x) &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \int_{R_{+}^{n}} G(x,y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y-z^{0}|^{\delta}} \, dy \\ &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x-z^{0}|^{n-\alpha}} + \int_{\Sigma_{\lambda}} G(x,y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y-z^{0}|^{\delta}} \, dy \\ &+ \int_{\Sigma_{\lambda}} G(x^{\lambda},y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})}{|y^{\lambda}-z^{0}|^{\delta}} \, dy, \\ \bar{u}_{i}^{\lambda}(x) &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x^{\lambda}-z^{0}|^{n-\alpha}} + \int_{\Sigma_{\lambda}} G(x^{\lambda},y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y-z^{0}|^{\delta}} \, dy \\ &+ \int_{\Sigma_{\lambda}} G(x,y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})}{|y^{\lambda}-z^{0}|^{\delta}} \, dy. \end{split}$$

By an elementary calculation, we derive

$$\begin{split} \bar{u}_{i}(x) - \bar{u}_{i}^{\lambda}(x) &= \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x - z^{0}|^{n - \alpha}} - \frac{c_{i}x_{n}^{\frac{\alpha}{2}}}{|x^{\lambda} - z^{0}|^{n - \alpha}} \\ &+ \int_{\Sigma_{\lambda}} \left[ G(x, y) - G(x^{\lambda}, y) \right] y_{n}^{\gamma} \left[ \frac{\bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} - \frac{\bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})}{|y^{\lambda} - z^{0}|^{\delta}} \right] dy \\ &\leq \int_{\Sigma_{\lambda}} \left[ G(x, y) - G(x^{\lambda}, y) \right] y_{n}^{\gamma} \left[ \frac{\bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} - \frac{\bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})}{|y^{\lambda} - z^{0}|^{\delta}} \right] dy \\ &\leq \int_{\Sigma_{\lambda}} \left[ G(x, y) - G(x^{\lambda}, y) \right] \frac{y_{n}^{\gamma} [\bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})]}{|y - z^{0}|^{\delta}} dy. \end{split}$$
(2.13)

The proof consists of two steps. In step 1, we will show that, for  $\lambda$  sufficiently negative,

$$\bar{w}_i^{\lambda}(x) = \bar{u}_i^{\lambda}(x) - \bar{u}_i(x) \ge 0, \quad \text{a.e. } \forall x \in \Sigma_{\lambda}.$$

In step 2, we deduce that  $T_{\lambda}$  can be moved to the right all the way to  $z_1^0$ . Furthermore, we obtain  $\bar{w}_{z_1^0} \equiv 0$ ,  $\forall x \in \Sigma_{z_1^0}$ .

Step 1. (Prepare to move the plane from near  $x_1 = -\infty$ .) In this step, we will show that, for  $\lambda$  sufficiently negative,  $\epsilon > 0$  sufficiently small

$$\bar{u}_{i}^{\lambda}(x) \geq \bar{u}_{i}(x), \quad \text{a.e. } \forall x \in \Sigma_{\lambda} \setminus B_{\epsilon}\left(\left(z^{0}\right)^{\lambda}\right),$$

$$(2.14)$$

where  $(z^0)^{\lambda}$  is the reflection of  $z^0$  about the plane  $T_{\lambda}$ . Define  $\Gamma_i^{\lambda} = \{x \in \Sigma_{\lambda} \setminus B_{\epsilon}((z^0)^{\lambda}) \mid \overline{u}_i^{\lambda}(x) < \overline{u}_i(x)\}$ , the sets where the inequalities (2.14) are violated. We will prove that  $\Gamma_i^{\lambda}$  are empty, where i = 1, 2.

Without loss of generality, we consider  $\bar{u}_1$ . Denote  $\Sigma_i^{\lambda} = \{x \in \Sigma_{\lambda} \setminus B_{\epsilon}((z^0)^{\lambda}) \mid \bar{u}_1^{\alpha_i}(x^{\lambda}) \times \bar{u}_2^{\beta_i}(x^{\lambda}) < \bar{u}_1^{\alpha_i}(x)\bar{u}_2^{\beta_i}(x)\}$ , for  $y \in \Sigma_1^{\lambda}$ , we may assume that  $\bar{u}_1(y) > \bar{u}_1^{\lambda}(y)$  and  $\bar{u}_2(y) \leq \bar{u}_2^{\lambda}(y)$ . Define

$$\bar{w}_i^{\lambda}(y) = \begin{cases} 0, & \text{for } \bar{u}_i(y) < \bar{u}_i^{\lambda}(y), \\ \bar{u}_i(y) - \bar{u}_i^{\lambda}(y), & \text{for } \bar{u}_i(y) > \bar{u}_i^{\lambda}(y), \end{cases}$$

and  $\bar{w}^{\lambda}(y) = (\bar{w}_1^{\lambda}(y), \bar{w}_2^{\lambda}(y))$ . By the expression of G(x, y), it is easy to see

$$G(x,y) \le \frac{A_{n,\alpha}}{|x-y|^{n-\alpha}}.$$
(2.15)

Applying the mean value theorem, combining (2.13) and (2.15), we have, for  $x \in \Gamma_i^{\lambda}$ ,

$$\begin{split} \bar{u}_{i}(x) - \bar{u}_{i}^{\lambda}(x) &\leq \int_{\Sigma_{\lambda}} G(x,y) \frac{y_{n}^{\nu} [\bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})]}{|y - z^{0}|^{\delta}} dy \\ &\leq \int_{\Sigma_{i}^{\lambda}} G(x,y) \frac{y_{n}^{\nu} [\bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) \bar{u}_{2}^{\beta_{i}}(y^{\lambda})]}{|y - z^{0}|^{\delta}} dy \\ &= \int_{\Sigma_{i}^{\lambda}} G(x,y) \frac{y_{n}^{\nu} \{ [\bar{u}_{1}^{\alpha_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) ] \bar{u}_{2}^{\beta_{i}}(y) + \bar{u}_{1}^{\alpha_{i}}(y) [\bar{u}_{2}^{\beta_{i}}(y) - u_{2}^{\beta_{i}}(y^{\lambda})] \}}{|y - z^{0}|^{\delta}} dy \\ &\leq c \int_{\Sigma_{i}^{\lambda}} G(x,y) \frac{y_{n}^{\nu} [\bar{u}_{1}^{\alpha_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y^{\lambda}) ] \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} dy \\ &\leq c \int_{\Sigma_{i}^{\lambda}} G(x,y) \frac{y_{n}^{\nu} \psi_{1}^{\alpha_{i}-1}(y) [\bar{u}_{1}(y) - \bar{u}_{1}(y^{\lambda})] \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} dy \\ &\leq c \int_{\Sigma_{i}^{\lambda}} \frac{1}{|x - y|^{n - \alpha}} \frac{y_{n}^{\nu} \bar{u}_{1}^{\alpha_{i}-1}(y) [\bar{u}_{1}(y) - \bar{u}_{1}(y^{\lambda})] \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} dy. \end{split}$$
(2.16)

Noticing  $\Sigma_i^{\lambda} \subseteq \Gamma_j^{\lambda}$  for some *j*, applying the Hardy-Littlewood-Sobolev inequality and the Hölder inequality we obtain for any  $q > \frac{n}{n-\alpha}$ ,

$$\|\bar{w}_{\lambda}\|_{L^{q}(\Gamma_{\lambda})} \leq c \left\| \frac{y_{n}^{\gamma} |\bar{u}|^{\alpha_{i}+\beta_{i}-1}}{|y-z^{0}|^{\delta}} \bar{w}_{\lambda} \right\|_{L^{\frac{nq}{n+\alpha q}}(\Gamma_{\lambda})} \leq c \left\| \frac{y_{n}^{\gamma} |\bar{u}|^{\alpha_{i}+\beta_{i}-1}}{|y-z^{0}|^{\delta}} \right\|_{L^{\frac{n}{\alpha}}(\Gamma_{\lambda})} \|\bar{w}_{\lambda}\|_{L^{q}(\Gamma_{\lambda})},$$
(2.17)

where  $\Gamma_{\lambda} = \Gamma_{1}^{\lambda} \cup \Gamma_{2}^{\lambda}$ . Since  $\gamma \geq 0$ , we can easily see that  $y_{n}^{\gamma}$  is bounded in each bounded domain  $\Omega \subset \mathbb{R}_{+}^{n}$ . Therefore, by our assumption  $|u| \in L_{\text{loc}}^{\frac{n(\alpha_{i}+\beta_{i}-1)}{\alpha}}(\mathbb{R}_{+}^{n})$ , *i.e.*  $|u|^{\alpha_{i}+\beta_{i}-1} \in L_{\text{loc}}^{\frac{n}{\alpha}}(\mathbb{R}_{+}^{n})$ , we derive

$$y_n^{\gamma} |\boldsymbol{u}|^{\alpha_i + \beta_i - 1} \in L^{\frac{n}{\alpha}}_{\text{loc}}(R^n_+).$$
(2.18)

Hence, we obtain

$$\int_{\widehat{\Omega}} \left[ \frac{y_n^{\gamma} |\bar{u}|^{\alpha_i + \beta_i - 1}(y)}{|y - z^0|^{\delta}} \right]^{\frac{n}{\alpha}} dy = \int_{\Omega} \left( y_n^{\gamma} |u|^{\alpha_i + \beta_i - 1}(y) \right)^{\frac{n}{\alpha}} dy < \infty$$

$$(2.19)$$

Step 2. (Move the plane to the limiting position to derive symmetry.)

Inequality (2.14) provides a starting point to move the plane  $T_{\lambda}$ . Now we start to move the plane  $T_{\lambda}$  along the  $x_1$  direction as long as (2.14) holds. Define

$$\lambda_0 = \sup \{ \lambda \le z_1^0 \mid \bar{u}_i^{\mu}(x) \ge \bar{u}_i(x), \text{ a.e. } \forall x \in \Sigma_{\mu}, \mu \le \lambda \}.$$

We prove that  $\lambda_0 = z_1^0$ . On the contrary, suppose that  $\lambda_0 < z_1^0$ . We will show that  $\bar{u}(x)$  is symmetric about the plane  $T_{\lambda_0}$ , that is,

$$\bar{u}(x) \equiv \bar{u}^{\lambda_0}(x), \quad \text{a.e. } \forall x \in \Sigma_{\lambda_0} \setminus B_{\epsilon}\left(\left(z^0\right)^{\lambda_0}\right). \tag{2.20}$$

Suppose (2.20) is not true, then, for such  $\lambda_0 < z_1^0$ , for all i = 1, 2, we have

$$\bar{u}_i^{\lambda_0}(x) > \bar{u}_i(x) \quad \text{a.e. } x \in \Sigma_{\lambda_0} \setminus B_{\epsilon}\left(\left(z^0\right)^{\lambda_0}\right). \tag{2.21}$$

In fact, by (2.14), we have two cases for all i = 1, 2; one is

$$\bar{u}_i^{\lambda_0}(y) > \bar{u}_i(y)$$
 on a set of positive measure,  $i = 1$  and 2. (2.22)

For the other case, without loss of generality, we may assume that  $\bar{u}_1^{\lambda_0}(z_1) > \bar{u}_1(z_1)$  and

$$\bar{u}_2^{\lambda_0}(z_2) = \bar{u}_2(z_2). \tag{2.23}$$

For the first case, (2.21) is proved. For the other case, we have

$$\bar{u}_{1}^{\alpha_{i}}(y)\bar{u}_{2}^{\beta_{i}}(y) - \bar{u}_{1}^{\alpha_{i}}(y^{\lambda_{0}})\bar{u}_{2}^{\beta_{i}}(y^{\lambda_{0}}) < 0.$$
(2.24)

Combining (2.23) with (2.24), we obtain

$$0 = \bar{u}_i(z_i) - \bar{u}_i^{\lambda_0}(z_i) < \int_{\Sigma_{\lambda_0}} \left[ G(z_i, y) - G(z_i^{\lambda}, y) \right] \frac{y_n^{\gamma} [\bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y) - \bar{u}_1^{\alpha_i}(y^{\lambda_0}) \bar{u}_2^{\beta_i}(y^{\lambda_0})]}{|y - z^0|^{\delta}} \, dy < 0.$$

This is impossible. Hence (2.21) holds. Next based on (2.21), we will verify that the plane can be moved further to the right. More precisely, there exists a  $\zeta > 0$  such that, for all  $\lambda \in [\lambda_0, \lambda_0 + \zeta) \ \bar{u}_i^{\lambda}(x) \ge \bar{u}_i(x)$ , a.e.  $\forall x \in \Sigma_{\lambda} \setminus B_{\epsilon}(z^0)^{\lambda_0}$ . By inequality (2.17), we have

$$\|\bar{w}_{\lambda}\|_{L^{q}(\Gamma_{\lambda})} \leq \left\{ \int_{\Gamma_{\lambda}} \left( \frac{y_{n}^{\gamma} |\bar{u}|^{\alpha_{i}+\beta_{i}-1}(y)}{|y-z^{0}|^{\delta}} \right)^{\frac{n}{\alpha}} dy \right\}^{\frac{\alpha}{n}} \|\bar{w}_{\lambda}\|_{L^{q}(\Gamma_{\lambda})}.$$

$$(2.25)$$

Equation (2.19) ensures that one can choose  $\eta$  sufficiently small so that, for all  $\lambda$  in [ $\lambda_0$ ,  $\lambda_0$  +  $\eta$ ),

$$c\left\{\int_{\Gamma_{\lambda}} \left(\frac{y_{n}^{\gamma}|\bar{u}|^{\alpha_{i}+\beta_{i}-1}(y)}{|y-z^{0}|^{\delta}}\right)^{\frac{n}{\alpha}}dy\right\}^{\frac{\alpha}{n}} \leq \frac{1}{2}.$$
(2.26)

We postpone the proof of this inequality (2.26) for a moment.

Now combining (2.25) and (2.26), we have  $\|\bar{w}_{\lambda}\|_{L^{q}(\Gamma_{\lambda})} = 0$ , and  $\Gamma_{\lambda}$  must be of measure zero. Hence, for these values of  $\lambda > \lambda_{0}$ , we have  $\bar{w}_{\lambda}(x) \ge 0$ , a.e.  $\forall x \in \Sigma_{\lambda_{0}} \setminus B_{\epsilon}((z^{0})^{\lambda}), \epsilon > 0$ . This contradicts the definition of  $\lambda_{0}$ . Therefore (2.20) must hold. That is, if  $\lambda_{0} < z_{1}^{0}$ , then we must have

$$\bar{u}_i(x) \equiv \bar{u}_i^{\lambda}(x), \quad \text{a.e. } \forall x \in \Sigma_{\lambda_0} \setminus B_{\epsilon}\left(\left(z^0\right)^{\lambda_0}\right). \tag{2.27}$$

Recall that, by our assumption,  $c_{i_0} > 0$  and

$$\bar{u}_{i_0}(x) = \frac{c_{i_0} x_n^{\frac{\alpha}{2}}}{|x - z^0|^{n - \alpha}} + \int_{\mathbb{R}^n_+} G(x, y) \frac{y_n^{\gamma} \bar{u}_1^{\alpha_1}(y) \bar{u}_2^{\beta_1}(y)}{|y - z^0|^{\delta}} \, dy.$$
(2.28)

It follows that  $\bar{u}_{i_0}$  is singular at  $z^0$ , hence by (2.27),  $\bar{u}_{i_0}$  must also be singular at  $(z^0)^{\lambda}$ . This is impossible, because  $z^0$  is the only singularity of  $\bar{u}$ . Hence, we must have  $\lambda_0 = z_1^0$ . Since  $\epsilon$  is an arbitrary positive number, we have actually derived that

$$\bar{u}_i^{\lambda_0}(x) \geq \bar{u}_i(x), \quad \text{a.e. } \forall x \in \Sigma_{\lambda_0}, \lambda_0 = z_1^0.$$

Entirely similarly, we can move the plane from near  $x_1 = +\infty$  to the left and obtain  $\bar{u}_i^{\lambda_0}(x) \le \bar{u}_i(x)$ , a.e.  $\forall x \in \Sigma_{\lambda_0}$ ,  $\lambda_0 = z_1^0$ . Therefore we have  $\bar{w}_{\lambda_0}(x) \equiv 0$ , a.e.  $\forall x \in \Sigma_{\lambda_0}$ ,  $\lambda_0 = z_1^0$ .

Now we prove inequality (2.26). For any small  $\eta > 0$ ,  $\forall \varepsilon > 0$ , we can choose *R* sufficiently large so that

$$\left(\int_{(R^n_+\setminus B_\varepsilon(z^0))\setminus B_R} \left[\frac{y^{\gamma}_n |\bar{u}|^{\alpha_i+\beta_i-1}(\gamma)}{|y-z^0|^{\delta}} \, dy\right]^{\frac{n}{\alpha}}\right)^{\frac{\alpha}{\alpha}} \le \eta.$$
(2.29)

For any  $\tau > 0$ , define  $E_i^{\tau} = \{x \in (\Sigma_{\lambda_0} \setminus B_{\varepsilon}((z^0)^{\lambda_0})) \cap B_R(0) \mid \overline{u}_i^{\lambda_0}(x) - \overline{u}_i(x) > \tau\}$ , and  $F_i^{\tau} = \{(\Sigma_{\lambda_0} \setminus B_{\varepsilon}((z^0)^{\lambda_0})) \cap B_R(0)\} \setminus E_i^{\tau}$ . Obviously,  $\lim_{\tau \to 0} \mu(F_i^{\tau}) = 0$ .

For  $\lambda > \lambda_0$ , let  $D_{\lambda} = \{(\Sigma_{\lambda} \setminus B_{\varepsilon}((z^0)^{\lambda}))) \setminus (\Sigma_{\lambda_0} \setminus B_{\varepsilon}((z^0)^{\lambda_0})) \cap B_R(0)\}.$ 

It is easy to see that

$$\left\{\Gamma_i^{\lambda} \cap B_R(0)\right\} \subset \left(\Gamma_i^{\lambda} \cap E_i^{\tau}\right) \cup F_i^{\tau} \cup D_{\lambda}.$$
(2.30)

For  $\lambda$  sufficiently close to  $\lambda_0$ ,  $\mu(D_{\lambda})$  is very small. We will show that  $\mu(\Gamma_i^{\lambda} \cap E_i^{\tau})$  is sufficiently small as  $\lambda$  close to  $\lambda_0$ .

In fact,  $\bar{w}_i^{\lambda}(x) = \bar{u}_i^{\lambda}(x) - \bar{u}_i(x) = \bar{u}_i^{\lambda}(x) - \bar{u}_i^{\lambda_0}(x) + \bar{u}_i^{\lambda_0}(x) - \bar{u}_i(x) < 0, \forall x \in (\Gamma_i^{\lambda} \cap E_i^{\tau})$ . Therefore,  $\bar{u}_i^{\lambda_0}(x) - \bar{u}_i^{\lambda}(x) > \bar{u}_i^{\lambda}(x) - \bar{u}_i^{\lambda}(x) > \tau, \forall x \in (\Gamma_i^{\lambda} \cap E_i^{\tau})$ . It follows that

$$\left(\Gamma_i^{\lambda} \cap E_i^{\tau}\right) \subset H_i^{\tau} = \left\{ x \in B_R(0) \mid \bar{u}_i^{\lambda_0}(x) - \bar{u}_i^{\lambda}(x) > \tau \right\}.$$
(2.31)

By the well-known Chebyshev inequality, for fixed  $\tau$ , as  $\lambda$  is close to  $\lambda_0$ ,  $\mu(E_i^{\tau})$  can be sufficiently small. By (2.30) and (2.31), we derive that  $\mu(\Gamma_i^{\lambda} \cap B_R(0))$  can be made as small as we wish. Combining this with (2.29), we deduce that (2.26) holds.

Since we can choose any direction that is perpendicular to the  $x_n$ -axis as the  $x_1$  direction, we have actually shown that the Kelvin transform of the solution  $\bar{u}(x)$  is rotationally symmetric about the line parallel to the  $x_n$ -axis and passing through  $z^0$ . Now we take any

two points  $X^1$  and  $X^2$ , with  $X^l = (x'^l, x_n) \in \mathbb{R}^{n-1} \times [0, \infty)$ , l = 1, 2. Let  $z^0$  be the projection of  $\bar{X} = \frac{X^1 + X^2}{2}$  on  $\partial \mathbb{R}^n_+$ . Set  $Y^l = \frac{X^l - z^0}{|X^l - z^0|^2} + z^0$ , l = 1, 2. From the above arguments, it is easy to see  $\bar{u}(Y^1) = \bar{u}(Y^2)$ , hence  $u(X^1) = u(X^2)$ . This implies that  $u_i$  is independent of  $x' = (x_1, \dots, x_{n-1})$ . That is,  $u_i = u_i(x_n)$ , and we will show that this will contradict the finiteness of the integral  $\int_{\mathbb{R}^n_+} G(x, y) y_n' u_1^{\alpha_i}(y) u_2^{\beta_i}(y) dy$ . To continue, we need the following lemma.

**Lemma 2.1** ([5]) If  $\frac{t}{s}$  is sufficiently small, then  $\forall x = (x', x_n), y = (y', y_n) \in \mathbb{R}^n_+$ , one can derive that

$$\frac{c_{n,\alpha}}{s^{\frac{n-\alpha}{2}}} \cdot \frac{t^{\frac{\alpha}{2}}}{s^{\frac{\alpha}{2}}} \leq G(x,y) \leq \frac{C_{n,\alpha}}{s^{\frac{n-\alpha}{2}}} \cdot \frac{t^{\frac{\alpha}{2}}}{s^{\frac{\alpha}{2}}}, \quad i.e. \ G(x,y) \sim \frac{t^{\frac{\alpha}{2}}}{s^{\frac{\alpha}{2}}}.$$

Here  $s = |x - y|^2$ ,  $t = 4x_n y_n$ ,  $c_{n,\alpha}$ , and  $C_{n,\alpha}$  stand for different positive constants that only depend on n and  $\alpha$ .

Set  $x = (x', x_n)$ ,  $y = (y', y_n) \in \mathbb{R}^{n-1} \times (0, +\infty)$ ,  $r^2 = |x' - y'|^2$  and  $a^2 = |x_n - y_n|^2$ . If  $u_i = u_i(x_n)$  is a solution of

$$u_i(x) = \int_{R_+^n} G(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy, \tag{2.32}$$

then, for each fixed  $x \in R_+^n$ , letting *R* be large enough, by elementary calculations, we have

$$+\infty > u_{i}(x_{n}) = \int_{0}^{\infty} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) \int_{R^{n-1}} G(x, y) \, dy' \, dy_{n}$$

$$\geq C \int_{R}^{\infty} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} \int_{R^{n-1} \setminus B_{R}(0)} \frac{1}{|x-y|^{n}} \, dy' \, dy_{n}$$

$$\geq C \int_{R}^{\infty} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} \int_{R}^{\infty} \frac{r^{2}}{(r^{2}+a^{2})^{\frac{n}{2}}} \, dr \, dy_{n}$$

$$\geq C \int_{R}^{\infty} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} \frac{1}{|x_{n}-y_{n}|} \int_{\frac{R}{a}}^{\infty} \frac{\tau^{n-2}}{(\tau^{2}+1)^{\frac{n}{2}}} \, d\tau \, dy_{n}$$

$$\geq C \int_{R}^{\infty} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\gamma+\frac{\alpha}{2}-1} \, dy_{n}.$$
(2.33)

Equation (2.33) implies that there exists a sequence  $\{y_n^k\} \to \infty$  as  $k \to \infty$ , such that

$$u_1^{\alpha_i}(y_n^k)u_2^{\beta_i}(y_n^k)(y_n^k)^{\gamma+\frac{\alpha}{2}} \to 0.$$
(2.34)

Similarly to (2.33), for any  $x = (0, x_n) \in \mathbb{R}^n_+$ , we derive that

$$+\infty > u_i(x_n) \ge C_0 \int_0^\infty y_n^{\gamma} u_1^{\alpha_i}(y_n) u_2^{\beta_i}(y_n) y_n^{\frac{\alpha}{2}} \frac{1}{|x_n - y_n|} \, dy_n x_n^{\frac{\alpha}{2}}.$$
(2.35)

Let  $x_n = 2R$  be sufficiently large. By (2.35), we deduce that

$$+\infty > u_{i}(x_{n}) \geq C_{0} \int_{0}^{1} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} \frac{1}{|x_{n} - y_{n}|} dy_{n} x_{n}^{\frac{\alpha}{2}}$$
$$\geq \frac{C_{0}}{2R} (2R)^{\frac{\alpha}{2}} \int_{0}^{1} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} dy_{n} \geq C_{1} (2R)^{\frac{\alpha}{2}-1} = C_{1} x_{n}^{\frac{\alpha}{2}-1}.$$
(2.36)

Then by (2.35) and (2.36), for  $x_n = 2R$  sufficiently large, we also obtain

$$\begin{split} u_{i}(x_{n}) &\geq C_{0} \int_{\frac{R}{2}^{R}} y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y_{n}) u_{2}^{\beta_{i}}(y_{n}) y_{n}^{\frac{\alpha}{2}} \frac{1}{|x_{n} - y_{n}|} dy_{n} x_{n}^{\frac{\alpha}{2}} \\ &\geq C_{0} \int_{\frac{R}{2}^{R}} y_{n}^{\gamma} C_{1}^{\alpha_{i} + \beta_{i}} y_{n}^{(\alpha_{i} + \beta_{i})(\frac{\alpha}{2} - 1)} y_{n}^{\frac{\alpha}{2}} \frac{1}{|x_{n} - y_{n}|} dy_{n} x_{n}^{\frac{\alpha}{2}} \\ &\geq C_{0} C_{1}^{\alpha_{i} + \beta_{i}} R^{(\alpha_{i} + \beta_{i})(\frac{\alpha}{2} - 1) + \gamma} (2R)^{\frac{\alpha}{2}} \frac{2}{3R} \int_{\frac{R}{2}^{R}} y_{n}^{\frac{\alpha}{2}} dy_{n} \\ &\coloneqq AR^{(\alpha_{i} + \beta_{i})(\frac{\alpha}{2} - 1) + \gamma + \alpha} \coloneqq A_{1} x_{n}^{(\alpha_{i} + \beta_{i})(\frac{\alpha}{2} - 1) + \gamma + \alpha}. \end{split}$$

Continuing this way *m* times, for  $x_n = 2R$ , we have

$$u_i(x_n) \ge A(m,\alpha_i + \beta_i,\alpha,\gamma) x_n^{(\alpha_i + \beta_i)^m (\frac{\alpha}{2} - 1) + \frac{(\alpha_i + \beta_i)^m - 1}{\alpha_i + \beta_i - 1}(\gamma + \alpha)}.$$
(2.37)

For any fixed  $\alpha$  and  $\gamma$  in their respective domain, we choose *m* to be an integer greater than  $\frac{-\alpha^2 - \alpha\gamma + \gamma + 3}{\alpha + \gamma}$  and 1. That is,

$$m \ge \max\left\{ \left\lceil \frac{-\alpha^2 - \alpha\gamma + \gamma + 3}{\alpha + \gamma} \right\rfloor + 1, 1 \right\},\tag{2.38}$$

where  $\lceil a \rfloor$  is the integer part of *a*.

We claim that, for such a choice of m, we have

$$\tau(\alpha_i + \beta_i) := \left[ (\alpha_i + \beta_i)^m \left(\frac{\alpha}{2} - 1\right) + \frac{(\alpha_i + \beta_i)^m - 1}{\alpha_i + \beta_i - 1} (\alpha + \gamma) \right] (\alpha_i + \beta_i) + \frac{\alpha}{2} + \gamma \ge 0.$$
 (2.39)

We postpone the proof of (2.39) for a moment. Now by (2.37) and (2.39), we derive that

$$u_i^{\alpha_i+\beta_i}(x_n)x_n^{\frac{\alpha_i}{2}+\gamma} \ge A(m,\alpha_i+\beta_i,\alpha,\gamma)x_n^{\tau(\alpha_i+\beta_i)} \ge A(m,\alpha_i+\beta_i,\alpha,\gamma) > 0,$$

for all  $x_n$  sufficiently large. This contradicts (2.34). So there is no positive solution of (2.32). This implies that u(x) must be constant. By our positive assumption on u, we have  $u_i(x) = b_i > 0$ , i = 1, 2. Taking  $u_i$  into (2.2), we have  $0 = (-\Delta)^{\frac{\alpha}{2}} u_i(x) = x_n^{\gamma} u_1^{\alpha_i}(x) u_2^{\beta_i}(x) > 0$ . This is impossible. Hence, in (2.10),  $c_i$  must be zero, i = 1, 2.

Now it is left to verify (2.39). In fact, if we let

$$\begin{split} f(\alpha_i + \beta_i) &:= \tau(\alpha_i + \beta_i)(\alpha_i + \beta_i - 1) \\ &= (\alpha_i + \beta_i)^{m+2} \left(\frac{\alpha}{2} - 1\right) + (\alpha_i + \beta_i)^{m+1} \left(\frac{\alpha}{2} + \gamma + 1\right) - \frac{\alpha}{2}(\alpha_i + \beta_i) - \frac{\alpha}{2} - \gamma, \end{split}$$

then

$$f'(\alpha_i + \beta_i) = (\alpha_i + \beta_i)^m \left[ (m+2)\left(\frac{\alpha}{2} - 1\right)(\alpha_i + \beta_i) + (m+1)\left(\frac{\alpha}{2} + \gamma + 1\right) \right] - \frac{\alpha}{2}.$$

We show that  $f'(\alpha_i + \beta_i) > 0$ , for  $1 < \alpha_i + \beta_i \le \frac{n + \alpha + 2\gamma}{n - \alpha}$ . Since  $\alpha_i + \beta_i > 1$ , it suffices to show  $(m+2)(\frac{\alpha}{2}-1)(\alpha_i + \beta_i) + (m+1)(\frac{\alpha}{2} + \gamma + 1) \ge \frac{\alpha}{2}$ . Due to the fact  $\frac{\alpha}{2} - 1 < 0$ ,  $n \ge 3$ , and  $\alpha_i + \beta_i \le \frac{\alpha}{2} - 1 < 0$ .

 $\frac{n+\alpha+2\gamma}{n-\alpha}$ , we only need to verify that

$$(m+2)\left(\frac{\alpha}{2}-1\right)\frac{3+\alpha+2\gamma}{3-\alpha}+(m+1)\left(\frac{\alpha}{2}+\gamma+1\right)\geq\frac{\alpha}{2},$$

which can be derived directly from (2.38).

On the other hand, assume that u(x) is a solution of the integral equation (1.6). Then, for any  $\phi \in C_0^{\infty}(\mathbb{R}^n_+)$ , we have

$$\begin{split} \left\langle (-\Delta)^{\frac{\alpha}{2}} u_{i}, \phi \right\rangle &= \left\langle \int_{\mathcal{R}^{n}_{+}} G_{\infty}(x, y) y_{n}^{\nu} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy, (-\Delta)^{\frac{\alpha}{2}} \phi(x) \right\rangle \\ &= \int_{\mathcal{R}^{n}_{+}} \left\{ \int_{\mathcal{R}^{n}_{+}} G_{\infty}(x, y) y_{n}^{\nu} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \right\} (-\Delta)^{\frac{\alpha}{2}} \phi(x) \, dx \\ &= \int_{\mathcal{R}^{n}_{+}} \left\{ \int_{\mathcal{R}^{n}_{+}} G_{\infty}(x, y) (-\Delta)^{\frac{\alpha}{2}} \phi(x) \, dx \right\} y_{n}^{\nu} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &= \int_{\mathcal{R}^{n}_{+}} \left\{ \int_{\mathcal{R}^{n}_{+}} \delta(x - y) \phi(x) \, dx \right\} y_{n}^{\nu} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &= \int_{\mathcal{R}^{n}_{+}} y_{n}^{\nu} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \phi(y) \, dy = \left\langle y_{n}^{\nu} u_{1}^{\alpha_{i}} u_{2}^{\beta_{i}}, \phi \right\rangle. \end{split}$$

Hence u also satisfies equations (1.3).

This completes the proof of Theorem 1.1.

# **3** Liouville theorems

# 3.1 The proof of Theorem 1.2

In this section, we will establish the nonexistence of the solutions to (1.6) by using the method of moving planes base up in the positive  $x_n$  direction.

For a given positive real number  $\lambda$ , define  $\hat{\Sigma}_{\lambda} = \{x = (x_1, \dots, x_{n-1}, x_n) \in \mathbb{R}^n_+ \mid 0 < x_n < \lambda\}, \hat{T}_{\lambda} = \{x = (x_1, \dots, x_{n-1}, x_n) \in \mathbb{R}^n_+ \mid x_n = \lambda\}.$ 

Let  $x^{\lambda} = (x_1, x_2, \dots, x_{n-1}, 2\lambda - x_n)$  be the reflection of the point  $x = (x_1, \dots, x_n)$  about the plane  $\hat{T}_{\lambda}$ , set  $\sum_{\lambda}^c = R_+^n \setminus \hat{\Sigma}_{\lambda}$  the complement of  $\hat{\Sigma}_{\lambda}$ , and write  $u_i^{\lambda}(x) = u_i(x^{\lambda})$  and  $w_i^{\lambda}(x) = u_i^{\lambda}(x) - u_i(x)$ .

The following two lemmas are the key ingredient in our integral estimate.

**Lemma 3.1** ([5]) (i) For any  $x, y \in \hat{\Sigma}_{\lambda}$ ,  $x \neq y$ , we have

$$G(x^{\lambda}, y^{\lambda}) > \max \{ G(x^{\lambda}, y), G(x, y^{\lambda}) \},\$$
  
$$G(x^{\lambda}, y^{\lambda}) - G(x, y) > |G(x^{\lambda}, y) - G(x, y^{\lambda})|.$$

(ii) For any 
$$x \in \hat{\Sigma}_{\lambda}$$
,  $y \in \Sigma_{\lambda}^{C}$ , we have  $G(x^{\lambda}, y) > G(x, y)$ .

**Lemma 3.2** For any  $x \in \hat{\Sigma}_{\lambda}$ ,  $u_i$  are the positive solution of (1.6), we have

$$u_i(x) - u_i^{\lambda}(x) \leq \int_{\hat{\Sigma}_{\lambda}} \left[ G(x^{\lambda}, y^{\lambda}) - G(x, y^{\lambda}) \right] y_n^{\gamma} \left[ u_1^{\alpha_i}(y) u_2^{\beta_i}(y) - u_1^{\alpha_i}(y^{\lambda}) u_2^{\beta_i}(y^{\lambda}) \right] dy.$$

*Proof* Let  $\tilde{\Sigma}_{\lambda}$  be the reflection of  $\hat{\Sigma}_{\lambda}$  about the plane  $\hat{T}_{\lambda}$ . we have

$$\begin{split} u_{i}(x) &= \int_{\mathbb{R}^{n}_{+}} G(x,y) y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &= \int_{\hat{\Sigma}_{\lambda}} G(x,y) y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &+ \int_{\hat{\Sigma}_{\lambda}} G(x,y^{\lambda}) (y_{n}^{\lambda})^{\gamma} u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \, dy + \int_{\Sigma_{\lambda}^{c} \setminus \tilde{\Sigma}_{\lambda}} G(x,y) y_{n}^{\gamma} u_{\lambda}^{\alpha_{i}}(y) u_{\lambda}^{\beta_{i}}(y) \, dy, \\ u_{i}(x^{\lambda}) &= \int_{\hat{\Sigma}_{\lambda}} G(x^{\lambda},y) y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &+ \int_{\hat{\Sigma}_{\lambda}} G(x^{\lambda},y^{\lambda}) (y_{n}^{\lambda})^{\gamma} u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \, dy + \int_{\Sigma_{\lambda}^{c} \setminus \tilde{\Sigma}_{\lambda}} G(x^{\lambda},y) y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy. \end{split}$$

By Lemma 3.1, we arrive at

$$\begin{split} u_{i}(x) - u_{i}(x^{\lambda}) &\leq \int_{\hat{\Sigma}_{\lambda}} \left[ G(x,y) - G(x^{\lambda},y) \right] y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) \, dy \\ &- \int_{\hat{\Sigma}_{\lambda}} \left[ G(x^{\lambda},y^{\lambda}) - G(x,y^{\lambda}) \right] (y_{n}^{\lambda})^{\gamma} u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \, dy \\ &= \int_{\hat{\Sigma}_{\lambda}} \left[ G(x^{\lambda},y^{\lambda}) - G(x,y^{\lambda}) \right] \left[ y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) - (y_{n}^{\lambda})^{\gamma} u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \right] \, dy \\ &\leq \int_{\hat{\Sigma}_{\lambda}} \left[ G(x^{\lambda},y^{\lambda}) - G(x,y^{\lambda}) \right] \left[ y_{n}^{\gamma} u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) - (y_{n}^{\lambda})^{\gamma} u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \right] \, dy \\ &\leq \int_{\hat{\Sigma}_{\lambda}} \left[ G(x^{\lambda},y^{\lambda}) - G(x,y^{\lambda}) \right] y_{n}^{\gamma} \left[ u_{1}^{\alpha_{i}}(y) u_{2}^{\beta_{i}}(y) - u_{1}^{\alpha_{i}}(y^{\lambda}) u_{2}^{\beta_{i}}(y^{\lambda}) \right] \, dy. \end{split}$$

This completes the proof of Lemma 3.2.

In order to prove the Liouville theorem, Theorem 1.2, we carry out the method of moving planes in integral form in the positive 
$$x_n$$
 direction.

The proof consists of two steps. In the first step, we start from the very low end of our region  $R_{+}^n$ , *i.e.* near  $x_n = 0$  and show that, for  $\lambda$  sufficiently small,

$$w_i^{\lambda}(x) = u_i^{\lambda}(x) - u_i(x) \ge 0, \quad \text{a.e. } \forall x \in \hat{\Sigma}_{\lambda}.$$
(3.1)

In the second step, we will move our plane  $\hat{T}_{\lambda}$  up in the positive  $x_n$  direction as long as the inequality (3.1) holds and show that u(x) is monotone increasing in  $x_n$  and thus derive a contradiction.

Step 1. Define  $\Gamma_i^{\lambda} = \{x \in \hat{\Sigma}_{\lambda} \mid u_i^{\lambda}(x) < u_i(x)\}, i = 1, 2 \text{ and } \Sigma_i^{\lambda} = \{x \in \hat{\Sigma}_{\lambda} \mid u_1^{\alpha_i}(x^{\lambda})u_2^{\beta_i}(x^{\lambda}) < u_1^{\alpha_i}(x)u_2^{\beta_i}(x)\}$ . We show that, for  $\lambda$  sufficiently small,  $\Gamma_i^{\lambda}$  must be measure zero. In fact, for any  $x \in \Gamma_i^{\lambda}$ , by the mean value theorem similar to (2.16) and Lemma 3.2, we obtain

$$\begin{aligned} u_i(x) - u_i^{\lambda}(x) &\leq \int_{\Sigma_i^{\lambda}} G(x^{\lambda}, y^{\lambda}) y_n^{\gamma} \Big[ u_1^{\alpha_i}(y) u_2^{\beta_i}(y) - u_1^{\alpha_i}(y^{\lambda}) u_2^{\beta_i}(y^{\lambda}) \Big] \, dy \\ &= \int_{\Sigma_i^{\lambda}} G(x^{\lambda}, y^{\lambda}) y_n^{\gamma} \Big[ \big( u_1^{\alpha_i}(y) - u_1^{\alpha_i}(y^{\lambda}) \big) u_2^{\beta_i}(y) + u_1^{\alpha_i}(y) \big( u_2^{\beta_i}(y) - u_2^{\beta_i}(y^{\lambda}) \big) \Big] \, dy \end{aligned}$$

$$\leq \int_{\Sigma_{i}^{\lambda}} G(x^{\lambda}, y^{\lambda}) y_{n}^{\gamma} [u_{1}^{\alpha_{i}}(y) - u_{1}^{\alpha_{i}}(y^{\lambda})] u_{2}^{\beta_{i}}(y) dy$$
  
$$\leq c \int_{\Sigma_{i}^{\lambda}} G(x^{\lambda}, y^{\lambda}) y_{n}^{\gamma} u_{1}^{\alpha_{i}-1}(y) [u_{1}(y) - u_{1}(y^{\lambda})] u_{2}^{\beta_{i}}(y) dy.$$
(3.2)

By the expression of G(x, y), it is easy to see  $G(x, y) \leq \frac{A_{n,\alpha}}{|x-y|^{n-\alpha}}$ . From (3.2), we have

$$1u_i(x) - u_i^{\lambda}(x) \le c \int_{\Sigma_i^{\lambda}} \frac{1}{|x - y|^{n - \alpha}} \left| y_n^{\gamma} u^{\alpha_i + \beta_i - 1}(y) \right| \left| w^{\lambda}(y) \right|$$
(3.3)

$$\leq c \int_{\Sigma_i^{\lambda}} \frac{1}{|x-y|^{n-\alpha}} \left| u^{\alpha_i + \beta_i - 1}(y) \right| \left| w^{\lambda}(y) \right|.$$
(3.4)

Notice that now  $\gamma$  is only a little larger than 0, so  $y_n$  is bounded within  $\Sigma_i^{\lambda}$ , and since  $\gamma \ge 0$ , we get  $|y_n^{\gamma}| \leq C$ , hence we derive (3.4) from (3.3).

Noticing  $\Sigma_i^{\lambda} \subseteq \Gamma_j^{\lambda}$  for some *j*, applying Hardy-Littlewood-Sobolev inequality and the Hölder inequality we obtain, for any  $q > \frac{n}{n-\alpha}$ ,

$$\|w_{\lambda}\|_{L^{q}(\Gamma_{\lambda})} \leq c \||u|^{\alpha_{i}+\beta_{i}-1}w_{\lambda}\|_{L^{\frac{nq}{n+\alpha q}}(\Gamma_{\lambda})} \leq c \||u|^{\alpha_{i}+\beta_{i}-1}\|_{L^{\frac{n}{\alpha}}(\Gamma_{\lambda})}\|w_{\lambda}\|_{L^{q}(\Gamma_{\lambda})},$$
(3.5)

where  $\Gamma_{\lambda} = \Gamma_{1}^{\lambda} \cup \Gamma_{2}^{\lambda}$ . Since  $|u| \in L^{\frac{n(\alpha_{i}+\beta_{i}-1)}{\alpha}}(\mathbb{R}^{n}_{+})$ , we can choose sufficiently small positive  $\lambda$  such that

$$c \left\| u^{\alpha_i + \beta_i - 1} \right\|_{L^{\frac{n}{\alpha}}(\Gamma_{\lambda})} = c \left\{ \int_{\Gamma_{\lambda}} |u|^{\frac{n(\alpha_i + \beta_i - 1)}{\alpha}}(y) \, dy \right\}^{\frac{\alpha}{n}} \le \frac{1}{2}.$$

$$(3.6)$$

By (3.5) and (3.6), we derive  $||w_{\lambda}||_{L^{q}(\Gamma_{\lambda})} = 0$ , and  $\Gamma_{i}^{\lambda}$  must be of measure zero, hence (3.1) holds. This provides us a starting point for moving the plane.

Step 2. Now we start from such small  $\lambda$  and move the plane  $\hat{T}_{\lambda}$  up as long as (3.1) holds. Define

$$\lambda_0 = \sup \{ \lambda \mid w_\rho(x) \ge 0, \rho \le \lambda, \forall x \in \hat{\Sigma}_\rho \}.$$

We will prove

$$\lambda_0 = +\infty. \tag{3.7}$$

Suppose to the contrary that  $\lambda_0 < +\infty$ , we will show that  $u_i(x)$  is symmetric about the plane  $\hat{T}_{\lambda_0}$ , *i.e.* 

$$u_i^{\lambda_0}(x) \equiv u_i(x), \quad \text{a.e. } \forall x \in \hat{\Sigma}_{\lambda_0}.$$
(3.8)

This will contradict the strict positivity of  $u_i(x)$ . Suppose (3.8) does not hold. Then, for such a  $\lambda_0$ , we have  $u_i^{\lambda_0}(x) \ge u_i(x)$ , but  $u_i^{\lambda_0}(x) \ne u_i(x)$  a.e. on  $\hat{\Sigma}_{\lambda_0}$ . We show that the plane can be moved further up. More precisely, there exists an  $\epsilon > 0$  such that for all  $\lambda \in [\lambda_0, \lambda_0 + \epsilon)$ 

$$u_i^{\lambda}(x) \ge u_i(x), \quad \text{a.e. on } \hat{\Sigma}_{\lambda}.$$
 (3.9)

To verify this, we will again resort to inequality (3.5). If one can show that, for  $\epsilon$  sufficiently small so that, for all  $\lambda$  in  $[\lambda_0, \lambda_0 + \epsilon)$ , we have

$$c\left\{\int_{\Gamma_{\lambda}}|u|^{\frac{n(\alpha_{i}+\beta_{i}-1)}{\alpha}}(y)\,dy\right\}^{\frac{\alpha}{n}}\leq\frac{1}{2},\tag{3.10}$$

then by (3.3) and (3.10), we have  $||w_{\lambda_0}||_{L^q(\Gamma_{\lambda})} = 0$ , and therefore  $\Gamma^{\lambda}$  must be of measure zero. Hence, for these values of  $\lambda > \lambda_0$ , we have (3.9). This contradicts the definition of  $\lambda_0$ . Therefore (3.8) must hold.

The proof of the inequality (3.10) is similar to the argument of the inequality (2.26) in Section 2 and the proof is standard.

By (3.8), we derive that  $u_i(x) = 0$  on the plane  $x_n = 2\lambda_0$ , the symmetric image of the boundary  $\partial R_+^n$  with respect to the plane  $\hat{T}_{\lambda_0}$ . This contradicts our assumption  $u_i(x) > 0$  in  $R_+^n$ . Therefore, (3.7) must be valid. Now we have proved that the positive solution of (1.6) is monotone increasing with respect to  $x_n$ , and this contradicts  $u^{\alpha_i + \beta_i - 1} \in L^{\frac{n}{\alpha}}(R_+^n)$ . Therefore the positive solutions of (1.6) do not exist.

This completes the proof of Theorem 1.2.

# 3.2 The proof of Theorem 1.3

In this section, we will use a proper Kelvin type transforms and derive the nonexistence of positive solutions for (1.6) in  $R_{+}^{n}$  under much weaker conditions, *i.e.* the solution *u* of (1.6) is only locally integrable and locally bounded.

With no explicit global integrability assumptions on the solution *u*, we cannot directly carry out the method of moving planes on *u*. To overcome this difficulty, we employ Kelvin type transforms.

For  $z^0 \in \mathbb{R}^n_+$ , let

$$\bar{u}_i(x) = \frac{1}{|x - z^0|^{n - \alpha}} u_i \left( \frac{x - z^0}{|x - z^0|^2} + z^0 \right)$$
(3.11)

be the Kelvin transform of  $u_i(x)$  centered at  $z^0$ .

Through a straightforward calculation, we have  $\bar{u}_i(x) = \int_{\mathbb{R}^n_+} G(x, y) \frac{y_n^{\vee} \bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y)}{|y-z^0|^{\delta}} dy, \forall x \in \mathbb{R}^n_+ \setminus B_{\epsilon}(z^0)$ , where  $\delta = n + \alpha + 2\gamma - (n - \alpha)(\alpha_i + \beta_i), \epsilon > 0, i = 1, 2$ .

*Proof of Theorem* 1.3 *in the subcritical case*  $1 < \alpha_i + \beta_i < \frac{n+\alpha+2\gamma}{n-\alpha}$ :

$$\bar{u}_{i}(x) = \int_{R_{+}^{n}} G(x, y) \frac{y_{n}^{\gamma} \bar{u}_{1}^{\alpha_{i}}(y) \bar{u}_{2}^{\beta_{i}}(y)}{|y - z^{0}|^{\delta}} \, dy, \quad \forall x \in R_{+}^{n} \backslash B_{\epsilon}(z^{0}),$$
(3.12)

where  $\delta = n + \alpha + 2\gamma - (n - \alpha)(\alpha_i + \beta_i) > 0$ ,  $\epsilon > 0$ .

This specific proof is the same as the proof of Theorem 1.1 and we omit here.  $\hfill \Box$ 

**Remark** When we carry out the method of moving planes on equation (1.4), we derive the fact  $c_i = 0$  and consequently obtain the equivalence. While applying the same method on equation (1.6), surprisingly, we arrive at a Liouville type theorem for it.

*Proof of Theorem* 1.3 *in the critical case*  $1 < \alpha_i + \beta_i = \frac{n + \alpha + 2\gamma}{n - \alpha}$ :

$$u_i(x) = \int_{\mathcal{R}^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) \, dy.$$
(3.13)

By the Kelvin transform of  $u_i(x)$  we derive

$$\bar{u}_i(x) = \int_{\mathcal{R}^n_+} G(x, y) y_n^{\gamma} \bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y) \, dy.$$
(3.14)

If u(x) is a solution of (3.13), then  $\bar{u}(x)$  is also a solution of (3.14). Therefore, by our assumption  $|u| \in L^{\frac{n(\alpha_i+\beta_i-1)}{\alpha}}_{\text{loc}}(R^n_+)$ , we derive  $y_n^{\gamma}|u|^{\alpha_i+\beta_i-1} \in L^{\frac{n}{\alpha}}_{\text{loc}}(R^n_+)$ . then

$$\int_{\hat{\Omega}} \left[ y_n^{\gamma} \bar{u}^{\alpha_i + \beta_i - 1}(y) \right]^{\frac{n}{\alpha}} dy = \int_{\Omega} \left[ y_n^{\gamma} u^{\alpha_i + \beta_i - 1}(y) \right]^{\frac{n}{\alpha}} dy < \infty,$$
(3.15)

where  $\hat{\Omega}$  is the image of  $\Omega$  about the Kelvin transform. Now we consider two possibilities.

*Possibility* 1. If there is a  $z^0 = (z_1^0, ..., z_{n-1}^0, 0) \in \partial R_+^n$  such that  $\bar{u}_i(x)$  is bounded near  $z^0$ , then by (3.11), we obtain

$$u_i(y) = \frac{1}{|y-z^0|^{n-\alpha}} \bar{u}_i \left( \frac{y-z^0}{|y-z^0|^2} + z^0 \right).$$

And we further deduce

$$u_i(y) = O\left(\frac{1}{|y|^{n-\alpha}}\right), \quad \text{as } |y| \to \infty.$$
 (3.16)

Since  $\alpha_i + \beta_i = \frac{n+\alpha+2\gamma}{n-\alpha} > \frac{n}{n-\alpha}$  and  $|u| \in L^{\frac{n(\alpha_i+\beta_i-1)}{\alpha}}_{\text{loc}}(R^n_+)$ , together with (3.16), we have

$$\int_{\mathbb{R}^{n}_{+}} u^{\frac{n(\alpha_{i}+\beta_{i}-1)}{\alpha}}(y) \, dy \le c \int_{\mathbb{R}^{n}_{+}} \frac{1}{|y|^{\frac{n(\alpha_{i}+\beta_{i}-1)(n-\alpha)}{\alpha}}} \, dy < \infty.$$

$$(3.17)$$

In this situation, we still carry on the moving planes on *u*. Going through exactly the same arguments as in the proof of Theorem 1.2, we obtain the nonexistence of positive solutions for (3.13).

*Possibility* 2. For all  $z^0 = (z_1^0, ..., z_{n-1}^0, 0) \in \partial \mathbb{R}^n_+$ ,  $\bar{u}_i(x)$  is unbounded near  $z^0$ , we will carry out the method of moving planes on  $\bar{u}(x)$  in  $\mathbb{R}^{n-1}$  to prove that it is rotationally symmetric about the line passing through  $z^0$  and parallel to the  $x_n$ -axis. From this, we will deduce that u is independent of the first n - 1 variables  $x_1, ..., x_{n-1}$ . That is  $u = u(x_n)$ , and we will derive a contradiction with the finiteness of  $\int_{\mathbb{R}^n_+} G(x, y) y_n^{\gamma} u_1^{\alpha_i}(y) u_2^{\beta_i}(y) dy$ .

For a given real number  $\lambda$ , the notations such as  $\Sigma_{\lambda}$ ,  $T_{\lambda}$  are the same as the ones in Section 2. By (2.12), obviously we have

$$\begin{split} \bar{u}_i(x) &= \int_{\Sigma_{\lambda}} G(x,y) y_n^{\gamma} \bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y) \, dy + \int_{\Sigma_{\lambda}} G(x^{\lambda},y) y_n^{\gamma} \bar{u}_1^{\alpha_i}(y^{\lambda}) \bar{u}_2^{\beta_i}(y^{\lambda}) \, dy, \\ \bar{u}_i^{\lambda}(x) &= \int_{\Sigma_{\lambda}} G(x^{\lambda},y) y_n^{\gamma} \bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y) \, dy + \int_{\Sigma_{\lambda}} G(x,y) y_n^{\gamma} \bar{u}_1^{\alpha_i}(y^{\lambda}) \bar{u}_2^{\beta_i}(y^{\lambda}) \, dy. \end{split}$$

By elementary calculation we derive

$$\bar{u}_i(x) - \bar{u}_i^{\lambda}(x) = \int_{\Sigma_{\lambda}} \left[ G(x, y) - G(x^{\lambda}, y) \right] y_n^{\gamma} \left[ \bar{u}_1^{\alpha_i}(y) \bar{u}_2^{\beta_i}(y) - \bar{u}_1^{\alpha_i}(y^{\lambda}) \bar{u}_2^{\beta_i}(y^{\lambda}) \right] dy.$$
(3.18)

We will move the plane  $T_{\lambda}$  along the direction of the  $x_1$ -axis to show that the solution is rotationally symmetric about the line passing through  $z^0$  and parallel to the  $x_n$ -axis. The proof is the same as the proof of  $c_i = 0$  in Section 2, in fact we only need to apply arguments of the inequality (2.13) to equation (3.18). Similarly, we derive that  $u_i = u_i(x_n)$ and any positive solution u of (3.13) must be  $u(x) \equiv 0$ . This implies that there is no positive solution of (3.13) in the critical case.

This completes the proof of Theorem 1.3.

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

ZD participated in the method of moving plane studies in the paper and drafted the manuscript; LC carried out the Liouville type theorem, and PW carried out the evaluation of inequalities. All authors read and approved the final manuscript.

### Author details

<sup>1</sup> College of Mathematics and Information Science, Henan Normal University, Xinxiang, Henan 453007, P.R. China.
<sup>2</sup> Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710129, P.R. China.

### Acknowledgements

This work is partially supported by NSFC (No. U1304101 and No. 11671121) and HASTIT (No. 15HASTIT012).

### Received: 19 June 2016 Accepted: 13 October 2016 Published online: 26 October 2016

### References

- 1. Cao, L, Chen, W: Liouville type theorems for poly-harmonic Navier problems. Discrete Contin. Dyn. Syst. 33, 3937-3955 (2013)
- 2. Serra, E: Non radial positive solutions for the Hénon equation with critical growth. Calc. Var. 23, 301-326 (2005)
- Chen, W, Li, C, Ou, B: Qualitative properties of solutions for an integral equation. Discrete Contin. Dyn. Syst. 12, 347-354 (2005)
- Caffarelli, L, Vasseur, A: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. Math. 171, 1903-1930 (2010)
- Chen, W, Fang, Y, Yang, R: Liouville theorems involving the fractional Laplacian on a half space. Adv. Math. 274, 167-198 (2015)
- 6. Zhuo, R, Chen, W, Cui, X, Yuan, Z: Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete Contin. Dyn. Syst. **36**(2), 1125-1141 (2016)
- 7. Zhang, L, Cheng, T: Liouville theorems involving the fractional Laplacian on the upper half Euclidean space. Preprint
- Silvestre, L: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67-112 (2007)
- Zhang, L, Li, C, Chen, W, Cheng, T: A Liouville theorem for α-harmonic functions in R<sup>n</sup><sub>+</sub>. Discrete Contin. Dyn. Syst. 36(3), 1721-1736 (2016)
- 10. Kulczycki, T: Properties of Green function of symmetry stable processes. Probab. Math. Stat. 17, 339-364 (1997)