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1 Introduction
For the classical linear regression model Y = Xβ + ε, we are interested in the problem
of variable selection and estimation, where Y = (y, y, . . . , yn)T is the response vector, X =
(X, X, . . . , Xp) = (x, x, . . . , xn)T = (xij)n×p is an n×p design matrix, and ε = (ε, ε, . . . , εn)T

is a random vector. The main topic is how to estimate the coefficients vector β ∈ Rp when
p increases with sample size n and many elements of β equal zero. We can transfer this
problem into a minimization of a penalized least squares objective function

β̂ = arg min
β

Q(β), Q(β) = ‖Y – Xβ‖ + λ

p∑

j=

|βj|ζ ,

where ‖ · ‖ is the l norm of the vector, λ is a tuning parameter. For ζ > , β̂ is called the
bridge estimator proposed by Frank and Friedman []. There are two well-known special
cases of the bridge estimator. If ζ = , it is the ridge estimator in Hoerl and Kennard []; if
ζ = , it is the Lasso estimator by Tibshirani [], which does not possess the oracle property
in Fan and Li []. For  < ζ ≤ , Knight and Fu [] studied the asymptotic distributions of
bridge estimators when the number of covariates is fixed and provided a theoretical jus-
tification for the use of bridge estimators to select variables. The bridge estimators can
distinguish between the covariates whose coefficients are exactly zero and the covariates
whose coefficients are nonzero. There is much statistical literature about penalization-
based methods. Some examples include the SCAD by Fan and Li [], the elastic net by
Zou and Hastie [], the adaptive lasso by Zou [], the Dantzig selector by Candes and
Tao [] and the non-concave MCP penalty by Zhang []. For bridge estimation, Huang et
al. [] extended the results of Knight and Fu [] to infinite dimensional parameters and
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showed that for  < ζ <  the bridge estimator can correctly select covariates with nonzero
coefficients and under appropriate conditions the bridge estimator enjoys the oracle prop-
erty. Subsequently, Wang et al. [] studied the consistency of the bridge estimator for a
generalized linear model.

In this paper, we consider the following penalized model:

β̂ = arg min
β

Q(β), Q(β) = ‖Y – Xβ‖ + λ

p∑

j=

ω̃j|βj|ζ , (.)

where ω̃ = (ω̃, ω̃, . . . , ω̃p)T is a given vector of weights. Usually, if we let the initial esti-
mator β̃ = (β̃, β̃, . . . , β̃p)T be the non-penalized MLE, then ω̃j = |β̃j|–, j = , , . . . , p. β̂ is
called the adaptive bridge estimator. We propose and study the adaptive bridge estimator
method (abridge for short). We derive some theoretical properties of the adaptive bridge
estimator for the case when p can increase to infinity with n. Under some conditions, with
the choice of the tuning parameter, we show that the adaptive bridge estimator enjoys the
oracle property; that is, the adaptive bridge estimator can correctly select covariates with
nonzero coefficients with probability converging to one and that the estimator of nonzero
coefficients has the same asymptotic distribution that it would have if the zero coefficients
were known in advance.

As far as we know, there is no literature to discuss the properties of an adaptive bridge,
so our results make up for this. Compared with the results in Huang et al. [] and Wang
et al. [], the condition (A) (see Section ) imposed on the true coefficients is much
weaker. Moreover, in Wang et al. [] one needs the true coefficients to meet the additional
condition called covering number. Besides, Huang et al. [] and Wang et al. [] both
use the LQA algorithm to obtain the estimator. The shortcoming of the LQA algorithm
is that if we delete one variable in some step of the iteration, this variable will have no
chance to appear in the final model. In order to improve this algorithm, we employ the
MM algorithm to improve the stability.

The rest of the paper is organized as follows. In Section , we introduce notations and
assumptions which will be needed in the our results and present the main results. Section 
presents some simulation results. The conclusion and the proofs of the main results are
arranged in Sections  and .

2 Main results
For convenience of the statement, we first give some notations. Let β = (β,β, . . . ,βp)T

be the true parameter, J = {j : βj �= , j = , , . . . , p}, J = {j : βj = , j = , , . . . , p}, the car-
dinality of the set J is denoted by q and h = min{|βj| : j ∈ J}. Without loss of gener-
ality, we assume that the first q coefficients of covariates (denoted by X()) are nonzero,
X() be covariates with zero coefficients, β = (βT

(),β
T
())

T , β̂ = (β̂T
(), β̂

T
())

T correspond-
ingly. Actually, p, q, X, Y , β , and λ are related to the sample size n, we omit n for conve-
nience. In this paper, we only consider the statistical properties of the adaptive bridge
for the case of p < n; consequently we put p = O(nc ), q = O(nc ), λ = O(n–δ), where
 ≤ c < c < , δ > . Here we use the terminology in Zhao and Yu [] , and we define
β̂ =s β if and only if sgn(β̂) = sgn(β), where we denote the sign of a p ×  vector β as
sgn(β) = (sgn(β), sgn(β), . . . , sgn(βp))T . For any symmetric matrix Z, denote by λmin(Z)
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and λmax(Z) the minimum and maximum eigenvalue of Z, respectively. Denote XT X
n := D

and D =
( D D

D D

)
, where D = 

n XT
()X().

Next, we state some assumptions which will be needed in the following results.

(A) The error term ε is i.i.d. with E(ε) =  and E(εk) < +∞, where k > . For the special
case we denote E(ε) = σ .

(A) There exists a positive constant M such that h ≥ Mnα , where max{– 
 , c–

 , –
–ζ

} <
α < min{c – δ, c–δ–ζ

+ζ
} and δ + α + 

ζ < c.
(A) Suppose τ and τ are the minimum and maximum eigenvalues of the matrix D.

There exist constants τ and τ such that  < τ ≤ τ ≤ τ ≤ τ, and the eigenvalues
of 

n XT var(Y )X are bounded.
(A) Let gi be the transpose of the ith row vector of X(), such that limn→∞ n– 

 max≤i≤n gT
i ×

gi = .

It is worth mentioning that condition (A) is much weaker than those in the literature
where it is commonly assumed that the error term has Gaussian tail probability distri-
bution. In this paper we allow ε to have a heavy tail. The regularity condition (A) is a
common assumption for the nonzero coefficients, which can ensure that all important
covariates could be included in the finally selected model. Condition (A) means that the
matrix 

n XT
()X() is strictly positive definite. For condition (A), we will use it to prove the

asymptotic normality of the estimators of the nonzero coefficients. In fact, if the nonzero
coefficients have an upper bound, then we can easily verify condition (A).

2.1 Consistency of the estimation
Theorem . (Consistency of the estimation) If  < ζ < , and conditions (A)-(A) hold,
then there exists a local minimizer β̂ of Q(β), such that ‖β̂ – β‖ = Op(n

δ+α–c
ζ ).

Remark . By condition (A), we know that c – δ – α >  and the estimator consistency
refers to the order of sample size and tuning parameter. Theorem . extends the previous
results.

2.2 Oracle property of the estimation
Theorem . (Oracle property) If  < ζ < , and conditions (A)-(A) hold, then the adap-
tive bridge estimator satisfies the following properties.

() (Selection consistency) limn→∞ P{β̂ =s β} = ;

() (Asymptotic normality)
√

ns–uT (β̂() – β())
d−→ N(, ), where s = σ uT D–

 u for
any q ×  vector u and ‖u‖ ≤ .

Remark . By Theorems . and ., we can easily see that the adaptive bridge is able to
consistently identify the true model.

3 Simulation results
In this section we evaluate the performance of the adaptive bridge estimator proposed in
(.) by simulation studies. Set ζ = / and simulate the data by the model Y = Xβ + ε,
ε ∼ N(,σ ), where σ = , β() = (–., –., –., , , , –, –, –)T . The design matrix
X is generated by a p-dimensional multivariate normal distribution with mean zero and a
covariance matrix whose (i, j)th component is ρ |i–j|, where we let ρ = . and ., respec-
tively. The following examples are considered.
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Example . The sample size n =  and the covariates number p = .

Example . The sample size n =  and the covariates number p = .

Example . The sample size n =  and the covariates number p = .

We connect the minorization-maximization (MM) algorithm by Hunter and Li [] and
the Newton-Raphson method to estimate the adaptive abridge (abridge), where the tuning
parameter is selected by -fold cross-validation. Meanwhile, we compare our results with
that from lasso [], adaptive lasso (alasso) and bridge methods. In order to evaluate the
performance of the estimators, we select four measures called L-loss, PE, C, and IC. L-
loss is median of ‖β̂ – β‖ to evaluate the estimation accuracy, and PE is the prediction
error defined by median of n–‖Y – Xβ̂‖. The other two measures are to qualify the per-
formance of model consistency, where C and IC refer to the average number of correctly
selected zero covariates and the average number of incorrectly selected zero covariates.
The numerical results are listed in Table  and Table , where υ equals the number of
zero coefficients in the true model and the numbers in parentheses are the corresponding
standard deviations which are obtained by  replicates.

Note that in every case the adaptive bridge outperforms the other methods in sparsity,
which can select the smaller model. For the adaptive bridge the prediction error is a little
higher than the other methods, but when consider the estimation accuracy, the adaptive

Table 1 Simulation results for ρ = 0.5

Setting Method L2-loss PE C IC

n = 200
p = 50
υ = 41

Lasso 0.5459 (0.1160) 0.8830 (0.1126) 28.4540 (5.3337) 0 (0)
Alasso 0.5442 (0.1149) 0.8790 (0.1099) 28.5300 (5.2421) 0 (0)
Bridge 0.4733 (0.1120) 0.8755 (0.1068) 28.2700 (5.0834) 0 (0)
Abridge 0.4617 (0.1155) 0.9005 (0.1038) 38.8380 (2.9903) 0 (0)

n = 500
p = 80
υ = 71

Lasso 0.3459 (0.0829) 0.9469 (0.0673) 56.1300 (6.3329) 0 (0)
Alasso 0.3476 (0.0830) 0.9465 (0.0686) 56.0360 (6.5269) 0 (0)
Bridge 0.2950 (0.0732) 0.9394 (0.0654) 52.7140 (6.7155) 0 (0)
Abridge 0.2745 (0.0728) 0.9661 (0.0630) 69.7160 (2.5994) 0 (0)

n = 800
p = 100
υ = 91

Lasso 0.2814 (0.0624) 0.9664 (0.0548) 74.4820 (7.1596) 0 (0)
Alasso 0.2817 (0.0620) 0.9687 (0.0552) 74.7180 (7.0409) 0 (0)
Bridge 0.2327 (0.0576) 0.9570 (0.0534) 69.4380 (8.8332) 0 (0)
Abridge 0.2160 (0.0569) 0.9839 (0.0514) 89.7680 (3.0359) 0 (0)

Table 2 Simulation results for ρ = 0.9

Setting Method L2-loss PE C IC

n = 200
p = 50
υ = 41

Lasso 1.0102 (0.2452) 0.8725 (0.1049) 27.2580 (4.6677) 0.0040 (0.0632)
Alasso 1.0123 (0.2475) 0.8800 (0.1024) 27.2460 (4.5851) 0.0040 (0.0632)
Bridge 0.8961 (0.2624) 0.8656 (0.1059) 25.0600 (5.3104) 0 (0)
Abridge 0.8468 (0.2843) 0.8965 (0.1092) 37.7800 (4.2298) 0.0260 (0.1593)

n = 500
p = 80
υ = 71

Lasso 0.6649 (0.1630) 0.9435 (0.0664) 52.9840 (5.7272) 0 (0)
Alasso 0.6671 (0.1620) 0.9388 (0.0667) 52.3420 (6.1499) 0 (0)
Bridge 0.5251 (0.1442) 0.9368 (0.0649) 50.0820 (7.7934) 0 (0)
Abridge 0.4837 (0.1377) 0.9646 (0.0651) 68.2320 (4.7732) 0 (0)

n = 800
p = 100
υ = 91

Lasso 0.5382 (0.1242) 0.9623 (0.0545) 70.4900 (6.5000) 0 (0)
Alasso 0.5371 (0.1259) 0.9614 (0.0544) 69.9680 (6.9009) 0 (0)
Bridge 0.4126 (0.1183) 0.9572 (0.0541) 66.6060 (9.6239) 0 (0)
Abridge 0.3580 (0.1087) 0.9818 (0.0520) 89.2840 (4.3161) 0 (0)
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bridge is still the winner, followed by bridge. We also find the interesting fact that with
the sample size n larger, the performance of correctly selecting the zero covariates for
the adaptive bridge is better whenever ρ = . or .. Meanwhile with n increasing, the
estimation accuracy performs better, but the prediction error is worse. Additionally, when
ρ increases, the prediction error increases, but the estimation accuracy decreases.

4 Conclusion
In this paper we have proposed the adaptive bridge estimator and presented some theoret-
ical properties of the adaptive bridge estimator. Under some conditions, with the choice
of the tuning parameter, we have showed that the adaptive bridge estimator enjoys the
oracle property. The effectiveness of the proposed method is demonstrated by numerical
results.

5 Proofs
Proof of Theorem . In view of the idea in Fan and Li [], we only need to prove that, for
any ε > , there exists a large constant C such that

lim inf
n→∞ P

{
inf‖u‖=C

Q(β + θu) > Q(β)
}

≥  – ε, (.)

which means that with a probability of at least  – ε there exists a local minimizer β̂ in the
ball {β + θu : ‖u‖ ≤ C}.

First, let θ = n
δ+α–c

ζ , then

Q(β + θu) – Q(β)

= θnuT
(

XT X
n

)
u – θuT XT (Y – Xβ) + λ

p∑

j=

ω̃j
(|βj + θu|ζ – |βj|ζ

)

≥ λmin

(
XT X

n

)
θn‖u‖ – nθuT XT (Y – Xβ)

n
– λ

p∑

j=

ω̃j|θ |ζ‖u‖ζ

:= T + T + T, (.)

where T = λmin( XT X
n )θn‖u‖, T = –nθuT XT (Y –Xβ)

n , and T = –λ
∑p

j= ω̃j|θ |ζ‖u‖ζ .
For T, set v = OP(nα) and by assumptions (A) and (A) we have

P
{∥∥∥∥

XT (Y – Xβ)
n

∥∥∥∥ ≥ Mv
}

≤ 
Mv E

[ p∑

j=

(

n

XT
j (Y – Xβ)

)
]

=


nMv tr

(

n

XT var(Y )X
)

→  (n → ∞).

Hence

|T| =
∥∥∥∥nθuT XT (Y – Xβ)

n

∥∥∥∥ ≤ n|θ |
∥∥∥∥

XT (Y – Xβ)
n

∥∥∥∥‖u‖

= n|θ |OP(v)‖u‖ = oP()‖u‖. (.)
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As for |T|, observe that ‖β̃ – β‖ = OP(( p
n )/), min |βj| ≤ max |β̃j – βj| + min |β̃j|, and

assumption (A), we can obtain

M ≤ n–α min |βj| ≤ n–α max |β̃j – βj| + n–α min |β̃j|

= n–αOP

((
p
n

)/)
+ n–α min |β̃j|.

This together with assumption (A) yields P{min |β̃j| ≥ 
 Mnα} →  (n → ∞).

For v = λp
Mnα , P{λ∑p

j= ω̃j| ≤ v} ≥ P{ λp
min |β̃j| ≤ v} = P{min |β̃j| ≥ λp

v
} →  (n → ∞), i.e.,

|λ∑p
j= ω̃j| = OP( λp

Mnα ). Now with assumption (A) we conclude that

|T| = OP

(
λp

Mnα

)
|θ |ζ ‖u‖ζ = OP()‖u‖ζ . (.)

When  < ζ <  and C is large enough, by (.) and (.) we see that (.) is determined
by T, so (.) holds. �

Proof of Theorem . () First of all, by the K-K-T condition we know that β̂ is the defined
adaptive bridge estimator, if the following holds:

⎧
⎨

⎩

∂‖Y –Xβ‖

∂βj
|βj=β̂j

= λζ ω̃j|β̂j|ζ– sgn(β̂j), β̂j �= ,
∂‖Y –Xβ‖

∂βj
|βj=β̂j

≤ λζ ω̃j|β̂j|ζ–, β̂j = .
(.)

Let û = β̂ – β and define V (u) =
∑n

j=(εi – XT
i u) + λ

∑p
j= ω̃j|uj + βj|ζ , then we obtain

û = arg minu V (u). Notice that
∑n

j=(εi – XT
i u) = –εT Xu + nuT Du + εTε, which yields

d[
∑n

j=(εi–XT
i u)]

du |u=û = –XTε + nDû := 
√

n[D(
√

nû) – E], where E = XT ε√
n . Together with

(.) and the fact {|û()| < |β()|} ⊂ {sgn(β̂()) = sgn(β())}, if û satisfies

D
√

nû() – E() =
–λ


√

n
ζW̄() and |û()| < |β()|,

where W̄ = (ω̃|û() + β|ζ– sgn(β), ω̃|û() + β|ζ– sgn(β), . . . , ω̃p|û() + βp|ζ– ×
sgn(βp))T , then we have sgn(β̂()) = sgn(β()) and β̂() = . Let

W̃ =
(
ω̃|β|ζ– sgn(β), ω̃|β|ζ– sgn(β), . . . , ω̃p|βp|ζ– sgn(βp)

)T ,

it follows that |D–
 E()| + λζ


√

n |D–
 W̃()| <

√
n|β()|. Denote A = {|D–

 |E() + λζ


√

n |D–
 W̃()| <√

n|β()|}, we conclude that P{sgn(β̂) = sgn(β)} ≥ P{A}, from which it follows that

P
{
sgn(β̂) �= sgn(β)

} ≤ P
{

Ac}

≤ P
{
|ξi| ≥ 


√

n|βi|,∃i ∈ J

}

+ P
{

λζ

n
|Zi| > |βi|,∃i ∈ J

}
:= I + I, (.)
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where ξ = (ξ, ξ, . . . , ξq)T = D–
 E(), Z = (Z, Z, . . . , Zq)T = D–

 W(). For I = P{|ξi| ≥


√

n|βi|,∃i ∈ J}, then E[(ξi)k] < ∞, ∀i ∈ J. So its tail probability satisfies P{|ξi| > t} =
O(t–k), ∀t > , which yields

I ≤ P
{
|ξi| ≥ 


√

nh,∃i ∈ J

}
= qO

((


√

nh

)–k)
→  (n → ∞). (.)

For I, notice that  – I = P{ λζ

n |Zi| ≤ |βi|,∃i ∈ J} and |Zi| ≤ ‖D–
 W̃()‖ ≤ 

τ
‖W̃()‖ ≤

√qhζ–


τ minj∈J |β̃j| , then we can get

 – I ≥ P
{ √qλζhζ–



τ minj∈J |β̃j|
≤ nh

}
= P

{
λζ ≤ nτh–ζ


√q

min
j∈J

|β̃j|
}

=  + Op() (n → ∞).

This follows that I →  (n → ∞). Together with (.) and (.), limn→∞ P{β̂ =s β} = 
holds. This completes the proof of the first part of Theorem ..

() Let W = (ω̃|β̂|ζ– sgn(β̂), ω̃|β̂|ζ– sgn(β̂), . . . , ω̃p|β̂p|ζ– sgn(β̂p))T , we can easily
get ∂‖Y –Xβ‖

∂βj
|β=β̂ = , j ∈ J, i.e., XT

()(Y – X()β̂()) = XT
()(X()β() – X()β̂() + ε) = λζ

 W(),

which yields D(β̂() – β()) =
XT

()ε

n – λζ

n W(). It follows from the first part of Theorem .
that limn→∞ P{D(β̂() – β()) =

XT
()ε

n – λζ

n W()} = , then we can see that, for any q × 
vector u and ‖u‖ ≤ ,

√
nuT (β̂() – β()) = n–/uT D–

 XT
()ε –

λζ


√

n
uT D–

 W() + OP(). (.)

Notice that

∣∣∣∣
λζ


√

n
uT D–

 W()

∣∣∣∣ ≤ λζ


√

nτ

‖β̂()‖ζ–

minj∈J |β̃j|
≤ λζMζ–

 q
ζ–

 nα(ζ–)– 


ζ–Mτ

= O
(
n


 c(ζ–)+α(ζ–)– 


)
,

where the second inequality holds because P{minj∈J |β̂j| ≥ 
 Mnα} →  (n → ∞), for

M > . By 
 c(ζ – ) + α(ζ – ) – 

 < , we obtain | λζ


√

n uT D–
 W()| = oP(), which together

with (.) yields

√
nuT (β̂() – β()) = n–/uT D–

 XT
()ε + oP(). (.)

Denote s = σ uT D–
 u and Fi = n– 

 s–uT D–
 gT

i , by assumption (A) and (.) we have√
ns–uT (β̂() –β()) =

∑n
i= Fiεi + oP()

d−→ N(, ). This completes the proof of the second
part of Theorem .. �
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