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Abstract
In this paper, a new S-type eigenvalue localization set for a tensor is derived by
dividing N = {1, 2, . . . ,n} into disjoint subsets S and its complement. It is proved that
this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324,
2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra
Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral
radius of nonnegative tensors and the minimum H-eigenvalue of strongM-tensors
are established, and we prove that these bounds are tighter than those obtained by Li
et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl.
2014:114, 2014).
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1 Introduction
Eigenvalue problems of higher order tensors have become an important topic in the ap-
plied mathematics branch of numerical multilinear algebra, and they have a wide range
of practical applications, such as best-rank one approximation in data analysis [], higher
order Markov chains [], molecular conformation [], and so forth. In recent years, tensor
eigenvalues have caused concern of lots of researchers [, , , –].

One of many practical applications of eigenvalues of tensors is that one can identify the
positive (semi-)definiteness for an even-order real symmetric tensor by using the smallest
H-eigenvalue of a tensor, consequently, one can identify the positive (semi-)definiteness
of the multivariate homogeneous polynomial determined by this tensor; for details, see
[, , ].

However, as mentioned in [, , ], it is not easy to compute the smallest H-
eigenvalue of tensors when the order and dimension are very large, we always try to give a
set including all eigenvalues in the complex. Some sets including all eigenvalues of tensors
have been presented by some researchers [–, –]. In particular, if one of these sets
for an even-order real symmetric tensor is in the right-half complex plane, then we can
conclude that the smallest H-eigenvalue is positive, consequently, the corresponding ten-
sor is positive definite. Therefore, the main aim of this paper is to study the new eigenvalue
inclusion set for tensors called the new S-type eigenvalue inclusion set, which is sharper
than some existing ones.
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For a positive integer n, N denotes the set N = {, , . . . , n}. The set of all real numbers is
denoted by R, and C denotes the set of all complex numbers. Here, we call A = (ai···im ) a
complex (real) tensor of order m dimension n, denoted by C

[m,n](R[m,n]), if ai···im ∈ C(R),
where ij ∈ N for j = , , . . . , m [].

Let A ∈R
[m,n], and x ∈C

n. Then

Axm– :=

( n∑
i,...,im=

aii···im xi · · ·xim

)
≤i≤n

,

a pair (λ, x) ∈C× (Cn/{}) is called an eigenpair of A [] if

Axm– = λx[m–],

where x[m–] = (xm–
 , xm–

 , . . . , xm–
n )T []. Furthermore, we call (λ, x) an H-eigenpair, if

both λ and x are real [].
A real tensor of order m dimension n is called the unit tensor [], denoted by I , if its

entries are δi···im for i, . . . , im ∈ N , where

δi···im =

{
, if i = · · · = im,
, otherwise.

An m-order n-dimensional tensor A is called nonnegative [, , , , ], if each entry
is nonnegative. We call a tensor A a Z-tensor, if all of its off-diagonal entries are non-
positive, which is equivalent to writing A = sI – B, where s >  and B is a nonnegative
tensor (B ≥ ), denoted by Z the set of m-order and n-dimensional Z-tensors. A Z-tensor
A = sI –B is an M-tensor if s ≥ ρ(B), and it is a nonsingular (strong) M-tensor if s > ρ(B)
[, ].

The tensor A is called reducible if there exists a nonempty proper index subset J ⊂
N such that aii···im = , ∀i ∈ J, ∀i, . . . , im /∈ J. If A is not reducible, then we call A is
irreducible []. The spectral radius ρ(A) [] of the tensor A is defined as

ρ(A) = max
{|λ| : λ is an eigenvalue of A

}
.

Denote by τ (A) the minimum value of the real part of all eigenvalues of the nonsingular
M-tensor A []. A real tensor A = (ai···im ) is called symmetric [–, , , ] if

ai···im = aπ (i···im), ∀π ∈ �m,

where �m is the permutation group of m indices.
Let A = (ai···im ) ∈R

[m,n]. For i, j ∈ N , j �= i, denote

Ri(A) =
n∑

i,...,im=

aii···im , Rmax(A) = max
i∈N

Ri(A), Rmin(A) = min
i∈N

Ri(A),

ri(A) =
∑

δii ···im =

|aii···im |, rj
i(A) =

∑
δii ···im =,
δji ···im =

|aii···im | = ri(A) – |aij···j|.
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Recently, much literature has focused on the bounds of the spectral radius of nonnega-
tive tensor in [, , , , –, , ]. In addition, in [], He and Huang obtained the
upper and lower bounds for the minimum H-eigenvalue of nonsingular M-tensors. Wang
and Wei [] presented some new bounds for the minimum H-eigenvalue of nonsingular
M-tensors, and they showed those are better than the ones in [] in some cases. As appli-
cations of the new S-type eigenvalue inclusion set, the other main results of this paper is to
provide sharper bounds for the spectral radius of nonnegative tensors and the minimum
H-eigenvalue of nonsingular M-tensors, which improve some existing ones.

Before presenting our results, we review the existing results that relate to the eigenvalue
inclusion sets for tensors. In , Qi [] generalized the Geršgorin eigenvalue inclusion
theorem from matrices to real supersymmetric tensors, which can be easily extended to
general tensors [, ].

Lemma . ([]) Let A = (ai···im ) ∈C
[m,n], n ≥ . Then

σ (A) ⊆ 	(A) =
⋃
i∈N

	i(A),

where σ (A) is the set of all the eigenvalues of A and

	i(A) =
{

z ∈C : |z – ai···i| ≤ ri(A)
}

.

To get sharper eigenvalue inclusion sets than 	(A), Li et al. [] extended the Brauer
eigenvalue localization set of matrices [, ] and proposed the following Brauer-type
eigenvalue localization sets for tensors.

Lemma . ([]) Let A = (ai···im ) ∈C
[m,n], n ≥ . Then

σ (A) ⊆K(A) =
⋃

i,j∈N ,j �=i

Ki,j(A),

where

Ki,j(A) =
{

z ∈C :
(|z – ai···i| – rj

i(A)
)|z – aj···j| ≤ |aij···j|rj(A)

}
.

In addition, in order to reduce computations of determining the sets σ (A), Li et al. []
also presented the following S-type eigenvalue localization set by breaking N into disjoint
subsets S and S̄, where S̄ is the complement of S in N .

Lemma . ([]) Let A = (ai···im ) ∈C
[m,n], n ≥ , and S be a nonempty proper subset of N .

Then

σ (A) ⊆KS(A) =
( ⋃

i∈S,j∈S̄

Ki,j(A)
)

∪
( ⋃

i∈S̄,j∈S

Ki,j(A)
)

,

where Ki,j(A) (i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S) is defined as in Lemma ..

Based on the results of [], in the sequel, Li et al. [] exhibited a new tensor eigenvalue
inclusion set, which is proved to be tighter than the sets in Lemma ..
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Lemma . ([]) Let A = (ai···im ) ∈C
[m,n], n ≥ , and S be a nonempty proper subset of N .

Then

σ (A) ⊆ 
(A) =
⋃

i,j∈N ,j �=i



j
i(A),

where



j
i(A) =

{
z ∈C :

∣∣(z – ai···i)(z – aj···j) – aij···jaji···i
∣∣ ≤ |z – aj···j|rj

i(A) + |aij···j|ri
j (A)

}
.

In this paper, we continue this research on the eigenvalue inclusion sets for tensors;
inspired by the ideas of [, ], we obtain a new S-type eigenvalue inclusion set for ten-
sors. It is proved to be tighter than the tensor Geršgorin eigenvalue inclusion set 	(A) in
Lemma ., the Brauer eigenvalue localization set K(A) in Lemma ., the S-type eigen-
value localization set KS(A) in Lemma ., and the set 
(A) in Lemma .. As applica-
tions, we establish some new bounds for spectral radius of nonnegative tensors and the
minimum H-eigenvalue of strong M-tensors. Numerical examples are implemented to
illustrate this fact.

The remainder of this paper is organized as follows. In Section , we recollect some
useful lemmas on tensors which are utilized in the next sections. In Section ., a new S-
type eigenvalue inclusion set for tensors is given, and proved to be tighter than the existing
ones derived in Lemmas .-.. Based on the results of Section ., we propose a new
upper bound for the spectral radius of nonnegative tensors in Section .; comparison
results for this new bound and that derived in [] are also investigated in this section.
Section . is devoted to the exhibition of new upper and lower bounds for the minimum
H-eigenvalue of strong M-tensors, which are proved to be sharper than the ones obtained
by He and Huang []. Finally, some concluding remarks are given to end this paper in
Section .

2 Preliminaries
In this section, we start with some lemmas on tensors. They will be useful in the following
proofs.

Lemma . ([]) If A ∈ R
[m,n] is irreducible nonnegative, then ρ(A) is a positive eigen-

value with an entrywise positive eigenvector x, i.e., x > , corresponding to it.

Lemma . ([]) Let A ∈R
[m,n] be a nonnegative tensor. Then ρ(A) ≥ maxi∈N {ai···i}.

Lemma . ([]) Suppose that  ≤A < C . Then ρ(A) ≤ ρ(C).

Lemma . ([]) Let A be a strong M-tensor and denoted by τ (A) the minimum value of
the real part of all eigenvalues of A. Then τ (A) is an eigenvalue of A with a nonnegative
eigenvector. Moreover, if A is irreducible, then τ (A) is a unique eigenvalue with a positive
eigenvector.

Lemma . ([]) Let A be an irreducible strong M-tensor. Then τ (A) ≤ mini∈N {ai···i}.
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Lemma . ([]) A tensor A is semi-positive if and only if there exists x ≥  such that
Axm– > .

Lemma . ([]) A Z-tensor is a nonsingular M-tensor if and only if it is semi-positive.

Lemma . ([]) Let A,B ∈ Z, assume that A is an M-tensor and B ≥ A. Then B is an
M-tensor, and τ (A) ≤ τ (B).

3 Main results
3.1 A new S-type eigenvalue inclusion set for tensors
In this section, we propose a new S-type eigenvalue set for tensors and establish the com-
parisons between this new set with those in Lemmas .-..

Theorem . Let A = (ai···im ) ∈ C
[m,n] with n ≥ . And let S be a nonempty proper subset

of N . Then

σ (A) ⊆ ϒS(A) :=
( ⋃

i∈S,j∈S̄

ϒ
j
i (A)

)
∪

( ⋃
i∈S̄,j∈S

ϒ
j
i (A)

)
, ()

where

ϒ
j
i (A) =

{
z ∈C :

∣∣(z – ai···i)(z – aj···j) – aij···jaji···i
∣∣ ≤ |z – aj···j|rj

i(A) + |aij···j|ri
j (A)

}
.

Proof For any λ ∈ σ (A), let x = (x, . . . , xn)T ∈ C
n/{} be an eigenvector corresponding to

λ, i.e.,

Axm– = λx[m–]. ()

Let |xp| = maxi∈S{|xi|} and |xq| = maxi∈S̄{|xi|}. Then, xp �=  or xq �= . Now, let us distinguish
two cases to prove.

(i) |xp| ≥ |xq|, so |xp| = maxi∈N {|xi|} and |xp| > . For any j ∈ S̄, it follows from () that

{∑n
i,...,im= api···im xi · · ·xim = λxm–

p ,∑n
i,...,im= aji···im xi · · ·xim = λxm–

j .

Hence, we have

⎧⎪⎨
⎪⎩

∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim + ap···pxm–
p + apj···jxm–

j = λxm–
p ,

∑
δji ···im=,
δpi ···im=

aji···im xi · · ·xim + aj···jxm–
j + ajp···pxm–

p = λxm–
j ,

i.e.,

⎧⎪⎨
⎪⎩

∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim = (λ – ap···p)xm–
p – apj···jxm–

j ,
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim = (λ – aj···j)xm–
j – ajp···pxm–

p .
()
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Premultiplying by (λ – aj···j) in the first equation of () results in

(λ – aj···j)
∑

δpi ···im=,
δji ···im=

api···im xi · · ·xim

= (λ – aj···j)(λ – ap···p)xm–
p – apj···j(λ – aj···j)xm–

j . ()

Combining () and the second equation of () one derives

(λ – aj···j)
∑

δpi ···im=,
δji ···im=

api···im xi · · ·xim + apj···j
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim

= (λ – aj···j)(λ – ap···p)xm–
p – apj···jajp···pxm–

p

=
[
(λ – aj···j)(λ – ap···p) – apj···jajp···p

]
xm–

p .

Taking absolute values and using the triangle inequality yield

∣∣(λ – aj···j)(λ – ap···p) – apj···jajp···p
∣∣|xp|m–

≤ |λ – aj···j|rj
p(A)|xp|m– + |apj···j|rp

j (A)|xp|m–.

Note that |xp| > , thus

∣∣(λ – aj···j)(λ – ap···p) – apj···jajp···p
∣∣ ≤ |λ – aj···j|rj

p(A) + |apj···j|rp
j (A), ()

which implies that λ ∈ ϒ
j
p(A) ⊆ ⋃

i∈S,j∈S̄ ϒ
j
i (A) ⊆ ϒS(A).

(ii) |xp| ≤ |xq|, so |xq| = maxi∈N {|xi|} and |xq| > . For any i ∈ S, it follows from () that

{∑n
i,...,im= aii···im xi · · ·xim = λxm–

i ,∑n
i,...,im= aqi···im xi · · ·xim = λxm–

q .

Using the same method as the proof in (i), we deduce that

(λ – ai···i)
∑

δqi ···im=,
δii ···im=

aqi···im xi · · ·xim + aqi···i
∑

δii ···im=,
δqi ···im=

aii···im xi · · ·xim

= (λ – aq···q)(λ – ai···i)xm–
q – aiq···qaqi···ixm–

q

=
[
(λ – aq···q)(λ – ai···i) – aiq···qaqi···i

]
xm–

q .

Taking the modulus in the above equation and using the triangle inequality we obtain

∣∣(λ – aq···q)(λ – ai···i) – aiq···qaqi···i
∣∣|xq|m–

≤ |λ – ai···i|ri
q(A)|xq|m– + |aqi···i|rq

i (A)|xq|m–.

Note that |xq| > , thus

∣∣(λ – aq···q)(λ – ai···i) – aiq···qaqi···i
∣∣ ≤ |λ – ai···i|ri

q(A) + |aqi···i|rq
i (A). ()
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This means that λ ∈ ϒ i
q(A) ⊆ ⋃

i∈S̄,j∈S ϒ
j
i (A) ⊆ ϒS(A). This completes our proof of Theo-

rem .. �

Remark . Note that |S| < n, where |S| is the cardinality of S. If n = , then |S| =  and
n(n – ) = |S|(n – |S|) = , which implies that

ϒS(A) =
(
ϒ

 (A) ∪ ϒ 
(A)

)
= 
(A).

Besides, if n ≥ , |S|(n – |S|) < n(n – ), then ϒS(A) ⊂ 
(A) if 

j
i (A) ∩ 


j
i (A) = ∅ for

any i, i, j, j ∈ N , i �= i or j �= j. Furthermore, how to choose S to make ϒS(A) as sharp
as possible is very interesting and important. However, this work is difficult especially the
dimension of the tensor A is large. At present, it is very difficult for us to research this
problem, we will continue to study this problem in the future.

Next, we establish a comparison theorem for the new S-type eigenvalue inclusion set
derived in this paper and those in Lemmas .-..

Theorem . Let A = (ai···im ) ∈C
[m,n] with n ≥ . Then

ϒS(A) ⊆KS(A) ⊆K(A) ⊆ 	(A), ϒS(A) ⊆ 
(A). ()

Proof According to Remark ., it is obvious that ϒS(A) ⊆ 
(A). By Theorem . in
[], we know that KS(A) ⊆ K(A) ⊆ 	(A). Hence, we only prove ϒS(A) ⊆ KS(A). Let
z ∈ ϒS(A), then

z ∈
⋃

i∈S,j∈S̄

ϒ
j
i (A) or z ∈

⋃
i∈S̄,j∈S

ϒ
j
i (A).

Without loss of generality, we assume that z ∈ ⋃
i∈S,j∈S̄ ϒ

j
i (A) (we can prove it similarly if

z ∈ ⋃
i∈S̄,j∈S ϒ

j
i (A)). Then there exist p ∈ S and q ∈ S̄ such that z ∈ ϒ

q
p (A), that is,

∣∣(z – ap···p)(z – aq···q) – apq···qaqp···p
∣∣ ≤ |z – aq···q|rq

p(A) + |apq···q|rp
q(A).

Inasmuch as

∣∣(z – ap···p)(z – aq···q)
∣∣ – |apq···qaqp···p| ≤

∣∣(z – ap···p)(z – aq···q) – apq···qaqp···p
∣∣,

z satisfies

∣∣(z – ap···p)(z – aq···q)
∣∣ – |apq···qaqp···p| ≤ |z – aq···q|rq

p(A) + |apq···q|rp
q(A),

which yields

|z – aq···q|
(|z – ap···p| – rq

p(A)
) ≤ |apq···q|

(
rp

q(A) + |aqp···p|
)

= |apq···q|rq(A).

This means that

z ∈Kp,q(A) ⊆
⋃

i∈S,j∈S̄

Ki,j(A) ⊆KS(A),



Huang et al. Journal of Inequalities and Applications  (2016) 2016:254 Page 8 of 19

which implies that

ϒS(A) ⊆KS(A).

This proof is completed. �

3.2 A new upper bound for the spectral radius of nonnegative tensors
Based on the results of Section ., we discuss the spectral radius of nonnegative tensors,
and we give their upper bounds, which are better than those of Theorem . in [].

Theorem . Let A ∈R
[m,n] be an irreducible nonnegative tensor with n ≥ . And let S be

a nonempty proper subset of N . Then

ρ(A) ≤ ηs(A) = max
{
ηS(A),ηS̄(A)

}
,

where

ηS(A) =



max
i∈S

min
j∈S̄

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}
, ()

with


i,j(A) =
(
ai···i – aj···j + rj

i(A)
) + aij···jrj(A).

Proof Since A is an irreducible nonnegative tensor, by Lemma ., there exists x =
(x, . . . , xn)T >  such that

Axm– = ρ(A)x[m–]. ()

Let xp = maxi∈S{xi} and xq = maxi∈S̄{xi}. Below we distinguish two cases to prove.
(i) xp ≥ xq > , so xp = maxi∈N {xi}. For any j ∈ S̄, it follows from () that

{∑n
i,...,im= api···im xi · · ·xim = ρ(A)xm–

p ,∑n
i,...,im= aji···im xi · · ·xim = ρ(A)xm–

j .

Hence, we have

⎧⎪⎨
⎪⎩

∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim = (ρ(A) – ap···p)xm–
p – apj···jxm–

j ,
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim = (ρ(A) – aj···j)xm–
j – ajp···pxm–

p .
()

Premultiplying by (ρ(A) – aj···j) in the first equation of () results in

(
ρ(A) – aj···j

) ∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim

=
(
ρ(A) – aj···j

)(
ρ(A) – ap···p

)
xm–

p – apj···j
(
ρ(A) – aj···j

)
xm–

j . ()
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It follows from () and the second equation of () that

(
ρ(A) – aj···j

) ∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim + apj···j
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim

=
(
ρ(A) – aj···j

)(
ρ(A) – ap···p

)
xm–

p – apj···jajp···pxm–
p

=
[(

ρ(A) – aj···j
)(

ρ(A) – ap···p
)

– apj···jajp···p
]
xm–

p .

Note that xp ≥ xj for any j ∈ S̄ and by Lemma ., we deduce that

[(
ρ(A) – aj···j

)(
ρ(A) – ap···p

)
– apj···jajp···p

] ≤ (
ρ(A) – aj···j

)
rj

p(A) + apj···jr
p
j (A),

i.e.,

ρ(A) –
(
ap···p + aj···j + rj

p(A)
)
ρ(A) + aj···j

(
ap···p + rj

p(A)
)

– apj···jrj(A) ≤ . ()

Solving the quadratic inequality () yields

ρ(A) ≤ 

{

ap···p + aj···j + rj
p(A) + 




p,j(A)

}
. ()

It is not difficult to verify that () can be true for any j ∈ S̄. Thus

ρ(A) ≤ 


min
j∈S̄

{
ap···p + aj···j + rj

p(A) + 



p,j(A)

}
,

which implies that

ρ(A) ≤ 


max
i∈S

min
j∈S̄

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}
. ()

(ii) xq ≥ xp > , so xq = maxi∈N {xi}. For any i ∈ S, it follows from () that

{∑n
i,...,im= aii···im xi · · ·xim = ρ(A)xm–

i ,∑n
i,...,im= aqi···im xi · · ·xim = ρ(A)xm–

q .

So we obtain
⎧⎪⎨
⎪⎩

∑
δii ···im=,
δqi ···im=

aii···im xi · · ·xim = (ρ(A) – ai···i)xm–
i – aiq···qxm–

q ,
∑

δqi ···im=,
δii ···im=

aqi···im xi · · ·xim = (ρ(A) – aq···q)xm–
q – aqi···ixm–

i .
()

In a similar manner to the proof of (i)

[(
ρ(A) – aq···q

)(
ρ(A) – ai···i

)
– aiq···qaqi···i

] ≤ (
ρ(A) – ai···i

)
ri

q(A) + aqi···ir
q
i (A),

i.e.,

ρ(A) –
(
ai···i + aq···q + ri

q(A)
)
ρ(A) + ai···i

(
aq···q + ri

q(A)
)

– aqi···iri(A) ≤ , ()
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which yields

ρ(A) ≤ 

{

aq···q + ai···i + ri
q(A) + 




q,i(A)

}
. ()

It is easy to see that () can be true for any j ∈ S. Thus

ρ(A) ≤ 


min
j∈S

{
aq···q + aj···j + rj

q(A) + 



q,j(A)

}
,

which implies that

ρ(A) ≤ 


max
i∈S̄

min
j∈S

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}
. ()

This completes our proof in this theorem. �

Next, we extend the results of Theorem . to general nonnegative tensors; without the
condition of irreducibility, compare with Theorem ..

Theorem . Let A ∈ R
[m,n] be a nonnegative tensor with n ≥ . And let S be a nonempty

proper subset of N . Then

ρ(A) ≤ ηs = max
{
ηS(A),ηS̄(A)

}
, ()

where

ηS(A) =



max
i∈S

min
j∈S̄

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}
,

with


i,j(A) =
(
ai···i – aj···j + rj

i(A)
) + aij···jrj(A).

Proof Let Ak = A + 
k ε, where k = , , . . . , and ε denotes the tensor with every entry be-

ing . Then Ak is a sequence of positive tensors satisfying

 ≤A < · · · < Ak+ < Ak < · · · < A.

By Lemma ., {ρ(Ak)} is a monotone decreasing sequence with lower bound ρ(A). So
ρ(Ak) has a limit. Let

lim
k→+∞

ρ(Ak) = λ ≥ ρ(A). ()

By Lemma ., we see that ρ(Ak) is the eigenvalue of Ak with a positive eigenvector yk ,
i.e., Akym–

k = ρ(Ak)y[m–]
k . In a manner similar to Theorem . in [], we have

lim
k→+∞

ρ(Ak) = ρ(A).
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And we denote �i,j(A) = 
 {ai···i + aj···j + rj

i(A) + 



i,j(A)} (i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S). Then

�i,j(Ak) =



{
ai···i + aj···j +


k

+ rj
i(A) +

nm– – 
k

+ 



i,j(Ak)

}
,

where


i,j(Ak) =
(

ai···i – aj···j + rj
i(A) +

nm– – 
k

)

+ 
(

aij···j +

k

)(
rj(A) +

nm– – 
k

)
.

As m and n are finite numbers, then by the properties of the sequence, it is easy to see that

lim
k→+∞

�i,j(Ak) = �i,j(A).

Furthermore, since Ak is an irreducible nonnegative tensor, it follows from Theorem .
that

ρ(Ak) ≤ max
{
ηS(Ak),ηS̄(Ak)

}
.

Letting k → +∞ results in

ρ(A) ≤ max
{
ηS(A),ηS̄(A)

}
,

from which one may get the desired bound (). �

Remark . Now, we compare the upper bound in Theorem . with that in Theorem .
in []. It is not difficult to see that

ηS(A) =



max
i∈S

min
j∈S̄

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}

≤ 


max
i∈S,j∈S̄

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}

and

ηS̄(A) =



max
i∈S̄

min
j∈S

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}

≤ 


max
i∈S̄,j∈S

{
ai···i + aj···j + rj

i(A) + 



i,j(A)

}
.

This shows that the upper bound in Theorem . improves the corresponding one in The-
orem . of [].

We have showed that our bound is sharper than the existing one in []. Now we take an
example to show the efficiency of the new upper bound established in this paper.

Example . Let A = (aijk) ∈ R
[,] be nonnegative with entries defined as follows: a =

a = a = a = a = a = a = , a = a = a = , a = , a = , and the
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other aijk = . It is easy to compute

r(A) = , r
 (A) = , r

 (A) = ;

r(A) = , r
(A) = , r

(A) = ;

r(A) = , r
(A) = , r

(A) = .

We choose S = {, }. Evidently, S̄ = {}. By Theorem . of [], we have

ρ(A) ≤ ..

By Theorem ., we obtain

ρ(A) ≤ .,

which means that the upper bound in Theorem . is much better than that in Theo-
rem . of [].

3.3 New upper and lower bounds for the minimum H-eigenvalue of nonsingular
M-tensors

In this section, by making use of the results in Section ., we investigate the bounds for
the minimum H-eigenvalue of strong M-tensors and derive sharper bounds for that. This
bounds are proved to be tighter than those in Theorem . of [].

Theorem . Let A ∈ R
[m,n] be an irreducible nonsingular M-tensor with n ≥ . And let

S be a nonempty proper subset of N . Then

min
{
φS(A),φS̄(A)

} ≤ τ (A) ≤ max
{
χS(A),χ S̄(A)

}
,

where

χS(A) =



max
i∈S

min
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
()

and

φS(A) =



min
i∈S

max
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
, ()

with

�i,j(A) =
(
ai···i – aj···j – rj

i(A)
) – aij···jrj(A).

Proof Since A is an irreducible nonsingular M-tensor, by Lemma ., there exists x =
(x, . . . , xn)T >  such that

Axm– = τ (A)x[m–]. ()

Let xp = maxi∈S{xi} and xq = maxi∈S̄{xi}. We distinguish two cases to prove.
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(i) xp ≥ xq > , so xp = maxi∈N {xi}. For any j ∈ S̄, it follows from () that

{∑n
i,...,im= api···im xi · · ·xim = τ (A)xm–

p ,∑n
i,...,im= aji···im xi · · ·xim = τ (A)xm–

j .

Hence, we have

⎧⎪⎨
⎪⎩

–
∑

δpi ···im=,
δji ···im=

api···im xi · · ·xim = (ap···p – τ (A))xm–
p + apj···jxm–

j ,

–
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim = (aj···j – τ (A))xm–
j + ajp···pxm–

p .
()

Premultiplying by (aj···j – τ (A)) in the first equation of () results in

–
(
aj···j – τ (A)

) ∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim

=
(
aj···j – τ (A)

)(
ap···p – τ (A)

)
xm–

p + apj···j
(
aj···j – τ (A)

)
xm–

j . ()

It follows from () and the second equation of () that

–
(
aj···j – τ (A)

) ∑
δpi ···im=,
δji ···im=

api···im xi · · ·xim + apj···j
∑

δji ···im=,
δpi ···im=

aji···im xi · · ·xim

=
(
aj···j – τ (A)

)(
ap···p – τ (A)

)
xm–

p – apj···jajp···pxm–
p

=
[(

aj···j – τ (A)
)(

ap···p – τ (A)
)

– apj···jajp···p
]
xm–

p .

Combining xp ≥ xj for any j ∈ S̄ with Lemma . results in

[(
aj···j – τ (A)

)(
ap···p – τ (A)

)
– apj···jajp···p

] ≤ (
aj···j – τ (A)

)
rj

p(A) – apj···jr
p
j (A),

i.e.,

τ (A) –
(
ap···p + aj···j – rj

p(A)
)
τ (A) + aj···j

(
ap···p – rj

p(A)
)

+ apj···jrj(A) ≤ . ()

Solving the quadratic inequality () yields

τ (A) ≥ 

{

ap···p + aj···j – rj
p(A) – �



p,j(A)

}
. ()

It is not difficult to verify that () can be true for any j ∈ S̄. Thus

τ (A) ≥ 


max
j∈S̄

{
ap···p + aj···j – rj

p(A) – �


p,j(A)

}
,

and therefore

τ (A) ≥ 


min
i∈S

max
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
. ()
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(ii) xq ≥ xp > , so xq = maxi∈N {xi}. For any i ∈ S, it follows from () that

{∑n
i,...,im= aii···im xi · · ·xim = τ (A)xm–

i ,∑n
i,...,im= aqi···im xi · · ·xim = τ (A)xm–

q .

So we obtain

⎧⎪⎨
⎪⎩

–
∑

δii ···im=,
δqi ···im=

aii···im xi · · ·xim = (ai···i – τ (A))xm–
i + aiq···qxm–

q ,

–
∑

δqi ···im=,
δii ···im=

aqi···im xi · · ·xim = (aq···q – τ (A))xm–
q + aqi···ixm–

i .
()

Using the same technique as the proof of (i), we have

[(
aq···q – τ (A)

)(
ai···i – τ (A)

)
– aiq···qaqi···i

] ≤ (
ai···i – τ (A)

)
ri

q(A) – aqi···ir
q
i (A),

which is equivalent to

τ (A) –
(
aq···q + ai···i – ri

q(A)
)
τ (A) + ai···i

(
aq···q – ri

q(A)
)

+ aqi···iri(A) ≤ , ()

which results in

τ (A) ≥ 

{

aq···q + ai···i – ri
q(A) – �



q,i(A)

}
. ()

It is not difficult to verify that () can be true for any j ∈ S. Thus

τ (A) ≥ 


max
j∈S

{
aq···q + aj···j – rj

q(A) – �


q,j(A)

}
,

which implies that

τ (A) ≥ 


min
i∈S̄

max
j∈S

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
.

Let xk = mini∈S{xi} and xl = mini∈S̄{xi}. With a strategy quite similar to the one utilized in
the above proof, we can prove that

τ (A) ≤ max
{
χS(A),χ S̄(A)

}
,

which implies this theorem. �

Remark . We next prove the bounds in Theorem . are sharper than those of Theo-
rem . in []; it is easy to see that

φS(A) =



min
i∈S

max
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}

≥ 


min
i∈S,j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
= ψS(A)
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and

φS̄(A) =



min
i∈S̄

max
j∈S

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}

≥ 


min
i∈S̄,j∈S

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
= ψ S̄(A),

which implies that

min
{
φS(A),φS̄(A)

} ≥ min
{
ψS(A),ψ S̄(A)

}
≥ 


min

i,j∈N ,i�=j

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
.

In the same manner as applied in the above proof, we can deduce the following results:

max
{
χS(A),χ S̄(A)

} ≤ max
{
θS(A), θ S̄(A)

}
≤ 


max

i,j∈N ,i�=j

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
,

where θS(A) = 
 maxi∈S,j∈S̄{ai···i + aj···j – rj

i(A) – �


i,j(A)}. Therefore, the conclusions follow

from the above discussions.

Example . Consider the following irreducible nonsingular M-tensor:

A =
[
A(, :, :), A(, :, :), A(, :, :)

] ∈R
[,],

where

A(, :, :) =

⎛
⎜⎝

  
 –. –
 – –

⎞
⎟⎠ ,

A(, :, :) =

⎛
⎜⎝

– –. –
  
  –.

⎞
⎟⎠ ,

A(, :, :) =

⎛
⎜⎝

– – 
 – –
 – 

⎞
⎟⎠ .

We compare the results derived in Theorem . with those in Theorem . of [] and
Theorem . of [] in the correct forms. Let S = {, }, then S̄ = {}. By Theorem . of
[], we have

. ≤ τ (A) ≤ ..

By Theorem . of [], we get

. ≤ τ (A) ≤ ..
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By Theorem ., we obtain

. ≤ τ (A) ≤ ..

This shows that the upper and lower bounds in Theorem . are sharper than those in
Theorem . of [] and Theorem . of [].

In the sequel, we extend the results of Theorem . to a more general case, which needs
a weaker condition compared with Theorem ..

Theorem . Let A ∈ R
[m,n] be a nonsingular M-tensor with n ≥ . And let S be a

nonempty proper subset of N . Then

min
{
φS(A),φS̄(A)

} ≤ τ (A) ≤ max
{
χS(A),χ S̄(A)

}
,

where

χS(A) =



max
i∈S

min
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
, ()

and

φS(A) =



min
i∈S

max
j∈S̄

{
ai···i + aj···j – rj

i(A) – �


i,j(A)

}
, ()

with

�i,j(A) =
(
ai···i – aj···j – rj

i(A)
) – aij···jrj(A).

Proof Since A is a nonsingular M-tensor, A ∈ Z, by Lemma . and Lemma ., there
exists x = (x, . . . , xn)T ≥  such that Axm– > , that is, for any i ∈ N ,

n∑
i,...,im=

ai···im xi · · ·xim > .

Let

g = min
i∈N

n∑
i,...,im=

ai···im xi · · ·xim , xmax = max
i∈N

xi.

So xmax >  by x ≥ . By replacing the zero entries of A with – 
k , where k is a positive

integer, we see that the Z-tensor Ak is irreducible. Here, we use ai···im (– 
k ) to denote the

entries of Ak . We choose k > [ (nm––)xm–
max

g ] + , then, for any i ∈ N , we have

n∑
i,...,im=

ai···im

(
–


k

)
xi · · ·xim

≥ min
i∈N

n∑
i,...,im=

ai···im xi · · ·xim –
(nm– – )xm–

max
k

= g –
(nm– – )xm–

max
k

> ,
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which implies that Akxm– >  and, by Lemma . and Lemma ., we infer that Ak is an
irreducible nonsingular M-tensor if k > [ (nm––)xm–

max
g ] + . It follows from the above discus-

sions that Ak (k > [ (nm––)xm–
max

g ] + ) is a sequence of irreducible nonsingular M-tensors
satisfying

A > · · · > Ak+ > Ak .

By Lemma ., {τ (Ak)} is a monotone increasing sequence with upper bound τ (A) so that
τ (Ak) has a limit. Let

lim
k→+∞

τ (Ak) = λ ≤ τ (A). ()

By Lemma ., we see that τ (Ak) is the eigenvalue of Ak with a positive eigenvector yk ,
i.e., Akym–

k = τ (Ak)y[m–]
k . As homogeneous multivariable polynomials, we can restrict

yk to a ball; that is, ‖yk‖ = . Then {yk} is a bounded sequence, so it has a convergent
subsequence. Without loss of generality, we can suppose it is the sequence itself. Let yk → y
as k → +∞, we get y ≥  and ‖y‖ = . By Akym–

k = τ (Ak)y[m–]
k and letting k → +∞, we

have Ay = λy[m–]. Thus λ is an eigenvalue of A, thus λ ≥ τ (A). Together with () this
results in λ = τ (A), which means that

lim
k→+∞

τ (Ak) = τ (A).

Besides, for i ∈ S, j ∈ S̄ (for i ∈ S̄, j ∈ S, we can define Mj
i and Mj similarly), we define the

following sets:

Mj
i = {aii···im |aii···im = , δii···im =  and δji···im = , i, . . . , im ∈ N},

Mj = {aji···im |aji···im =  and δji···im = , i, . . . , im ∈ N}.

Let the numbers of entries in Mj
i and Mj be nj

i and nj, respectively, and we denote �i,j(A) =

 {ai···i + aj···j – rj

i(A) – �


i,j(A)}. Then

�i,j(Ak) =



{
ai···i + aj···j – rj

i(A) –
nj

i
k

– �


i,j(Ak)

}
,

where

�i,j(Ak) =
(

ai···i – aj···j – rj
i(A) –

nj
i

k

)

– 
(

aij···j –
εi,j

k

)(
rj(A) +

nj

k

)
,

with

εi,j =

{
, if aij···j = ,
, if aij···j �= .

By the properties of the sequence, it is not difficult to verify that

lim
k→+∞

χS(Ak) = χS(A), lim
k→+∞

φS(Ak) = φS(A).
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Furthermore, since Ak is an irreducible nonsingular M-tensor for k > [ (nm––)xm–
max

g ] + , by
Theorem ., we have

min
{
φS(Ak),φS̄(Ak)

} ≤ τ (Ak) ≤ max
{
χS(Ak),χ S̄(Ak)

}
.

Letting k → +∞ results in

min
{
φS(A),φS̄(A)

} ≤ τ (A) ≤ max
{
χS(A),χ S̄(A)

}
.

This completes our proof of Theorem .. �

4 Concluding remarks
In this paper, a new S-type eigenvalue inclusion set for tensors is presented, which is
proved to be sharper than the ones in [, ]. As applications, we give new bounds for
the spectral radius of nonnegative tensors and the minimum H-eigenvalue of strong M-
tensors, these bounds improve some existing ones obtained by Li et al. [] and He and
Huang []. In addition, we extend these new bounds to more general cases.

However, the new S-type eigenvalue inclusion set and the derived bounds depend on the
set S. How to choose S to make ϒS(A) and the bounds exhibited in this paper as tight as
possible is very important and interesting, while if the dimension of the tensor A is large,
this work is very difficult. Therefore, future work will include numerical or theoretical
studies for finding the best choice for S.
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