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1 Introduction

Eigenvalue problems of higher order tensors have become an important topic in the ap-
plied mathematics branch of numerical multilinear algebra, and they have a wide range
of practical applications, such as best-rank one approximation in data analysis [5], higher
order Markov chains [6], molecular conformation [7], and so forth. In recent years, tensor
eigenvalues have caused concern of lots of researchers [1, 3, 4, 8—20].

One of many practical applications of eigenvalues of tensors is that one can identify the
positive (semi-)definiteness for an even-order real symmetric tensor by using the smallest
H-eigenvalue of a tensor, consequently, one can identify the positive (semi-)definiteness
of the multivariate homogeneous polynomial determined by this tensor; for details, see
(1,21, 22].

However, as mentioned in [21, 23, 24], it is not easy to compute the smallest H-
eigenvalue of tensors when the order and dimension are very large, we always try to give a
set including all eigenvalues in the complex. Some sets including all eigenvalues of tensors
have been presented by some researchers [1-3, 21-24]. In particular, if one of these sets
for an even-order real symmetric tensor is in the right-half complex plane, then we can
conclude that the smallest H-eigenvalue is positive, consequently, the corresponding ten-
sor is positive definite. Therefore, the main aim of this paper is to study the new eigenvalue
inclusion set for tensors called the new S-type eigenvalue inclusion set, which is sharper

than some existing ones.
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For a positive integer n, N denotes the set N = {1,2,...,n}. The set of all real numbers is
denoted by R, and C denotes the set of all complex numbers. Here, we call A = (a;,..;,,) a
complex (real) tensor of order m dimension #, denoted by CI"/(RU"), if ai,...i,, € C(R),
where i; e N forj=1,2,...,m [23].

Let A € R4 and x € C". Then

a pair (&,x) € C x (C"/{0}) is called an eigenpair of A [18] if

Ax"71 = ppl )
where x"7U = (x =1 a1, am T |
both A and x are real [1].

A real tensor of order m dimension # is called the unit tensor [21], denoted by Z, if its

25]. Furthermore, we call (1,x) an H-eigenpair, if

entries are §;,..;,, for iy, ...,i,, € N, where

L ifi = =i,

Qi = 0, otherwise.

An m-order n-dimensional tensor A is called nonnegative [9, 10, 13, 14, 26], if each entry
is nonnegative. We call a tensor A a Z-tensor, if all of its off-diagonal entries are non-
positive, which is equivalent to writing A = sZ — B, where s > 0 and B is a nonnegative
tensor (B > 0), denoted by Z the set of m-order and n-dimensional Z-tensors. A Z-tensor
A =sT - Bisan M-tensor if s > p(B), and it is a nonsingular (strong) M-tensor if s > p(B)
[20, 27].

The tensor A is called reducible if there exists a nonempty proper index subset J C
N such that a;;,...,, = 0, Vi1 € J, Viy,..., iy, ¢ J. If A is not reducible, then we call A is
irreducible [19]. The spectral radius p(A) [14] of the tensor A is defined as

p(A) = max{|A] : 1 is an eigenvalue of A}.

Denote by 7(A) the minimum value of the real part of all eigenvalues of the nonsingular
M-tensor A [4]. A real tensor A = (a;,...;,,) is called symmetric [1-3, 13, 22, 23] if

Aiy iy = (i) i) Ve IT,,,

where I1,, is the permutation group of m indices.
Let A = (a;,..;,,) € R . Fori,j € N, j #i, denote

09,00l =1
ri(A) = Z | @iy i | ri(A) = Z | Gity-..iyy | = Fi(A) = ...
] Siig-vripyy =05

=0

jiz i
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Recently, much literature has focused on the bounds of the spectral radius of nonnega-
tive tensor in [2, 3, 14, 15, 17-19, 24, 28]. In addition, in [4], He and Huang obtained the
upper and lower bounds for the minimum H -eigenvalue of nonsingular M-tensors. Wang
and Wei [16] presented some new bounds for the minimum H-eigenvalue of nonsingular
M-tensors, and they showed those are better than the ones in [4] in some cases. As appli-
cations of the new S-type eigenvalue inclusion set, the other main results of this paper is to
provide sharper bounds for the spectral radius of nonnegative tensors and the minimum
H-eigenvalue of nonsingular M-tensors, which improve some existing ones.

Before presenting our results, we review the existing results that relate to the eigenvalue
inclusion sets for tensors. In 2005, Qi [1] generalized the Ger$gorin eigenvalue inclusion
theorem from matrices to real supersymmetric tensors, which can be easily extended to
general tensors [2, 13].

Lemma 1.1 ([1]) Let A = (a;,..;,,) € C"", n > 2. Then

o(A) () = JTiA),

ieN
where o (A) is the set of all the eigenvalues of A and
F,(.A) = {Z eC: lz—aj.i| < V,(.A)}

To get sharper eigenvalue inclusion sets than I'(A), Li et al. [2] extended the Brauer
eigenvalue localization set of matrices [29, 30] and proposed the following Brauer-type
eigenvalue localization sets for tensors.

Lemma 1.2 ([2]) Let A= (ay,..;,,) € Clmn > 2. Then

oA SkW= | Ky,

ijeN j#i
where
Kij(A) = [z € C: (12— ail = 7)(A) |z - aj..j| < lag..;Ir(A)}.

In addition, in order to reduce computations of determining the sets o (A), Li et al. [2]
also presented the following S-type eigenvalue localization set by breaking N into disjoint
subsets S and S, where S is the complement of S in N.

Lemma1.3 ([2]) Let A= (aj..,) € Cl y > 2, and S be a nonempty proper subset of N.
Then

o (A) € K5(A) = ( U Ki,j(.A)) u( U ICi,,»(A)),

ieS,jeS ieS,jeS
where K;j(A) (i€ S,jeSorieS,jeS) isdefined as in Lemma 1.2.

Based on the results of [2], in the sequel, Li et al. [3] exhibited a new tensor eigenvalue
inclusion set, which is proved to be tighter than the sets in Lemma 1.2.
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Lemmal.4 ([3]) Let A= (a;..i,) € CUmn n > 2, and S be a nonempty proper subset of N.
Then

s(A A= [ AA),

ijeN j#i
where
A’;(A) = {z eC: |(z —-a;.))(z—aj.;) - aij...jaﬁ...i| <|z- aj...,-lrjl:(A) + |alj...j|r;(A)}.

In this paper, we continue this research on the eigenvalue inclusion sets for tensors;
inspired by the ideas of [2, 3], we obtain a new S-type eigenvalue inclusion set for ten-
sors. It is proved to be tighter than the tensor Ger$gorin eigenvalue inclusion set I'(4) in
Lemma 1.1, the Brauer eigenvalue localization set K(A) in Lemma 1.2, the S-type eigen-
value localization set X5(A) in Lemma 1.3, and the set A(A) in Lemma 1.4. As applica-
tions, we establish some new bounds for spectral radius of nonnegative tensors and the
minimum H-eigenvalue of strong M-tensors. Numerical examples are implemented to
illustrate this fact.

The remainder of this paper is organized as follows. In Section 2, we recollect some
useful lemmas on tensors which are utilized in the next sections. In Section 3.1, a new S-
type eigenvalue inclusion set for tensors is given, and proved to be tighter than the existing
ones derived in Lemmas 1.1-1.4. Based on the results of Section 3.1, we propose a new
upper bound for the spectral radius of nonnegative tensors in Section 3.2; comparison
results for this new bound and that derived in [2] are also investigated in this section.
Section 3.3 is devoted to the exhibition of new upper and lower bounds for the minimum
H-eigenvalue of strong M-tensors, which are proved to be sharper than the ones obtained
by He and Huang [4]. Finally, some concluding remarks are given to end this paper in
Section 4.

2 Preliminaries
In this section, we start with some lemmas on tensors. They will be useful in the following

proofs.

Lemma 2.1 ([16]) If A € R is irreducible nonnegative, then p(A) is a positive eigen-

value with an entrywise positive eigenvector x, i.e., x > 0, corresponding to it.
Lemma 2.2 ([2]) Let A € R be a nonnegative tensor. Then p(A) > max;en{a;...;}.
Lemma 2.3 ([13]) Suppose that 0 < A <C. Then p(A) < p(C).

Lemma 2.4 ([4]) Let A be a strong M-tensor and denoted by t(A) the minimum value of
the real part of all eigenvalues of A. Then t(A) is an eigenvalue of A with a nonnegative
eigenvector. Moreover, if A is irreducible, then t(A) is a unique eigenvalue with a positive

eigenvector.

Lemma 2.5 ([4]) Let A be an irreducible strong M-tensor. Then t(A) < minen{a;..;}.
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Lemma 2.6 ([20]) A tensor A is semi-positive if and only if there exists x > 0 such that
Ax™1> 0.

Lemma 2.7 ([20]) A Z-tensor is a nonsingular M-tensor if and only if it is semi-positive.

Lemma 2.8 ([4]) Let A,B € Z, assume that A is an M-tensor and B > A. Then B is an
M-tensor, and t(A) < 1(B).

3 Main results
3.1 A new S-type eigenvalue inclusion set for tensors
In this section, we propose a new S-type eigenvalue set for tensors and establish the com-

parisons between this new set with those in Lemmas 1.1-1.4.

Theorem 3.1 Let A = (a;,...,,) € C"" with n > 2. And let S be a nonempty proper subset

of N. Then
o (A) S TS(A) = < U T{(A)) u( U T{(A)), 1)
ieS,jeS icS,jeS
where

TZ(A) = {Z eC: |(Z - ﬂl'...i)(Z - a,»...,) - bllj...]'tlji.“i| < |Z - tl}/|7{(./4) + |tll]/|r';(./4)}

Proof For any A € o(A), let x = (x1,...,x,)T € C"/{0} be an eigenvector corresponding to
A le.,

Ax™t =l (2)

Let |, | = max;es{|x;|} and |x,4| = max;z{|x;|}. Then, x, # 0 or x, # 0. Now, let us distinguish
two cases to prove.
(i) %yl = |x4l, s0 |x,| = maxen{lx;|} and |x,| > 0. Foranyj € S, it follows from (2) that

n . . “ e . = m71
Ziz,..‘,imzl Apinviy iy~~~ Ky = A,
n e g = hxML
Ziz,...,im=1 Ajiy iy Xy *** Kiy = A

Hence, we have

L A m-1 L=l m-1
2 iy =0r Apia iy Xy ** * Ky + ApopXy ™+ Al = Aoy,
‘Sjiz««»im:O
P . em—1 . m=1 _ 9 ,m-1
D Sjigim=0s iy ¥y * * Ky + aj. X"+ By = MK,

Bpi--

ZEI,L‘ZH
51'1‘2“

> Sy

8pia

i =0

i =0

iy =0

‘imzo,ap,»z...,«mxiz .

im=0r Kig+-im¥iy *

_ m-1 . am-l
Ky = (A = )X, = Ay,

- 3)
iy = (=@ ) — g pay
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Premultiplying by (A — g;..;) in the first equation of (3) results in

()\. — 611‘...]') Z Apiy--iggKiy = ** Ky,

5pi2<~im:0'
B/ig«»'im:()

=(A- 61,'.../‘)()\ - ap...p)x;”’l - tlp]:../'()n - a,»...j)x]’»” L

(4)
Combining (4) and the second equation of (3) one derives
()\ - ﬂj...j) E Apiy--iggKiy = * * Kiyyy T tlpj.ul' E 61/52..4,‘,”361‘2 *Kipy
8pin--im=0 Sjin iy =0
Sjig-wipn=0 Spig i =0
_ L _ m-1 _ o m-1
=(A—aj.)(x ap“p)xp Apj..Gjp-. %,

= [()x - 61/...]‘)()» - ﬂp...p) - ap,...ja,p.‘.p]x;”’l.

Taking absolute values and using the triangle inequality yield

-1
’()‘ = aj..j) (A = Ap..p) = Apj...iGjp...p | lxp|™

< A= a7 (A" + a7 (A) e, ™

Note that [x,| > 0, thus

|(}\. - a,...,»)()» - ﬂp...p) - (lp/...j(l}'p..p| <|r- 61/]|7‘;(A) + |(lp/...j|7f(¢4),

(5)
which implies that A € T,’;(A) cy

ieSjeS T{(A) < TS(-A)-

(ii) |xp] < |gl, so |x4| = max;en{|x;|} and |x4| > 0. For any i € S, it follows from (2) that

>

Using the same method as the proof in (i), we deduce that

qio -+ im=07

Siig-im=0>
Siigy-+ipn=0

5qi2~-im:0

()\ - ﬂi---i) E Agin--iggKiy ** * Kiy, T Agi-.i E Aiio iy Kiy ** " Ky
$,

m-1

-1
=(A—ag.qg)(A - aimi)x;" = Aig...qAgi--i%,

= [(}\. - aq...q)(k —dj.i) — uiq...qaqi...i]x;”’l

Taking the modulus in the above equation and using the triangle inequality we obtain
(A = g g) 0 = i) = dig..q@gi.i|1g "™
<|A- ail..ilr;(A)lqum’l + |aqi---i|r?(A)|xq|M71'

Note that |x,| > 0, thus

’(}\. - aq...q)(k —dj.;) — uiq‘..qaqi...ﬂ <|A- ('ZL‘...L'|V;(A) + |dqi..4i|V?(A). (6)
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This means that A € T(;(.A) - Uiei,jes T{(.A) C T5(A). This completes our proof of Theo-
rem 3.1. O

Remark 3.1 Note that |S| < 1, where |S]| is the cardinality of S. If #n = 2, then |S| =1 and
n(n—1) = 2|S|(n — |S]) = 2, which implies that

TS(A) = (T2(A) U THA) = A(A).

Besides, if 71 > 3, 2|S|(n — |S]) < n(n 1), then TS(A) C A(A) if A} (A) N A22(A) = & for
any iy, is, j1,jo € N, iy #ip or ji # j». Furthermore, how to choose S to make Y5(A) as sharp
as possible is very interesting and important. However, this work is difficult especially the
dimension of the tensor A is large. At present, it is very difficult for us to research this
problem, we will continue to study this problem in the future.

Next, we establish a comparison theorem for the new S-type eigenvalue inclusion set
derived in this paper and those in Lemmas 1.1-1.4.

Theorem 3.2 Let A= (ay,..,) € Cl with n> 2. Then

T3(A) € K5(A) € K(A) ST (A), T5(A) € AA). (7)
Proof According to Remark 3.1, it is obvious that Y5(A) € A(A). By Theorem 2.3 in
[2], we know that K5(A) € K(A) € I'(A). Hence, we only prove Y5(A) C K5(A). Let

z € T5(A), then

z€ U TZ(A) or ze€ U T{(A).

ieSjeS ieSjes

Without loss of generality, we assume that z € ;g3 T{ (A) (we can prove it similarly if

7€ Usesjes Y/(A)). Then there exist p € S and g € S such that z € YJ(A), that s,

|(z —dp..p)(Z—ag.q) - apq...qaqpmp\ <lz-ag.4 |rZ(.A) +|Apg..q |r§(A).
Inasmuch as

(2 = ap..p) (2 = g..q)| = |apg.-qlgpp| < |2 = ap..p) (2 = ag.q) = Apgqgp.-p|
z satisfies

(2= @)z = Ag..q)| = Apg-qlgp-p| < 12— ag..qITI(A) + |apg..qlr (A),
which yields

|z — aqu.q|(|z —dp..p|l — rZ(A)) < |apq...q|(rf;(A) + |aqp...p|) = |apg..q|7g(A).
This means that

zeKpga) S | Kij(A) S K5Q),

ieS,jeS
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which implies that
T5(A) € L5 (A).
This proof is completed. O

3.2 A new upper bound for the spectral radius of nonnegative tensors
Based on the results of Section 3.1, we discuss the spectral radius of nonnegative tensors,
and we give their upper bounds, which are better than those of Theorem 3.4 in [2].

Theorem 3.3 Let A € R pe an irreducible nonnegative tensor with n > 2. And let S be
a nonempty proper subset of N. Then

p(A) < ny(A) = max{n®(A), n5(A)},
where

n5(A) = L max min{a;.; + a;.; + 1(A) + q’,-%,'(A)}: (8)

ieS jeS
with
@A) = (@i —aj.; + 1(A) +day. 7 A).

Proof Since A is an irreducible nonnegative tensor, by Lemma 2.1, there exists x =

(x1,...,%,)T > 0 such that
A1 = oA, ©)

Let x, = max;es{x;} and x, = max, 5{x;}. Below we distinguish two cases to prove.
(i) x, = x4 > 0, 50 X, = max;en{x;}. For any j € §, it follows from (9) that

Zlnz ..... imm=1 Ppig--im¥iy " Kiyy = :O(A)x,'yn_lr
-1
D i renion =1 T i+ Fiy = (AN

Hence, we have

Zapizmim:o, Apiy iy Xiy * + + Kiyy = (P(A) = ap...p)x;,”‘l - ap,:.,fx;"‘l,

8jig iy =0 (10)
D iy iom=0s Hig i Xiy Xy = (0(A) = @ )" = @1
Spizwim:()

Premultiplying by (p(A) — ;..;) in the first equation of (10) results in

(,O(.A) - dj...j) Z Apiy--iggXiy * * * Kipy,

5pi2-~im:0’
5ji2-«~im=0

= (,o(A) - a/...j) (p(.A) - ap..p)x;”_l - ap/...j(,o(A) - u/...,»)xf’_l. (11)
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It follows from (11) and the second equation of (10) that

(,O(A) - 61/...]') Z Apiy-iggXiy * ** Kiyyy T Apj...j Z Ay iy Kiny " ** Ky

‘Spiz-"im:o’ 5ji2--4im:0’
8ji i =0 Bpig-rim=0
m-1 m—1
= (p(A) = a;..;) (p(A) = ap..p)x) " = ay;..jajp..pxy

= [(o(A) = a;.j) (0(A) = @p...)) = @y jtjp..p J; ™

Note that x, > «; for any j € S and by Lemma 2.2, we deduce that

[(0(A) = a.1) (0(A) = @p...p) = @pjsjjp..p] < (P(A) = @j..j) 1, (A) + @t} (A),

P(A = (ap..p + aj.j+ 1, (A)) p(A) + aj._j(@p..p + 1 (A)) - ap;.iri(A) < 0.

(12)
Solving the quadratic inequality (12) yields
1 j i
p(A) < E{ap...p + .+ 1 (A) + dDN(A)}. (13)
It is not difficult to verify that (13) can be true for any j € S. Thus
1. . 1
p(A) < 3 rjri{;n{ap...p + .+ 1 (A) + CDj,/(A)},
which implies that
1 , . 1
p(A) < 5 max Ijrggn{aini +aj.j+1i(A) + @A)} (14)
(ii) x; > x, > 0, so ¥, = max;en{x;}. For any i € S, it follows from (9) that
Zlnz ,,,,, ip=1 Qg iy i+ Kiy = P(A)x;ﬂ*l,
Z:Iz ‘‘‘‘‘ im=1 Agin-—imFiy *** Kiy = p(.A)x;’“l
So we obtain
Zaiiz_“im:o, Wiy * *  Xiy = (P(A) = mui)xf"‘l - uiq...qx;”‘l,
‘Sin"'im:O m-1 m-1 (15)
D Saiyim=0r ginimXiy Ky = (D(A) = g )x) ™ = agiix]'".
‘Siiz«»»imro

In a similar manner to the proof of (i)

[(,O(A) - aq...q) (,O(A) - a,'.u,-) - aiq...qaql’.ui] < (,O(A) - ai“.i)r;(A) + aq,-...,-rf(.A),

P(A)? = (@i + Agoq + r;(A))p(A) +ai.i(Ageq + r;(A)) —agi..iri(A) <0, (16)
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which yields

p(A) < {aq..q +ap.i+ r;(A) + CDjl.(A)}. (17)

N =

It is easy to see that (17) can be true for any j € S. Thus

1 . ES
p(A) = o min{ag..q +aj.;+ 1, (A) + ‘Di/(A)}'

jes

which implies that

1 4 1
p(A) < —maxmin{a;.; + a;.; + rj(A) + D7 (A)}. (18)

ieS Jjes ’
This completes our proof in this theorem. g

Next, we extend the results of Theorem 3.3 to general nonnegative tensors; without the
condition of irreducibility, compare with Theorem 3.3.

Theorem 3.4 Let A € RV be a nonnegative tensor with n > 2. And let S be a nonempty
proper subset of N. Then

p(A) < e = max{n(A), 5 (A)}, (19)
where
1 , ‘ !
7S(A) = = max rjr;lsn{a,-u.,- +aj.;+r(A) + dej(A)},
with

@i,j(.A) = (tli...i —aj.j+ rJZ(A))Z + 461;7»»./’7]‘(«4).

Proof Let Ay = A+ %8, where k =1,2,..., and ¢ denotes the tensor with every entry be-

ing 1. Then Ay is a sequence of positive tensors satisfying
0<A< - <A<Ar<---<A.

By Lemma 2.3, {p(Ax)} is a monotone decreasing sequence with lower bound p(A). So
o(Ag) has a limit. Let

Jim p(AQ) =2 = p(A). (20)

By Lemma 2.1, we see that p(Ay) is the eigenvalue of A; with a positive eigenvector y,
ie., Ayl = ,O(Ak)y,[(mfl]. In a manner similar to Theorem 2.3 in [13], we have

Jim p(Ax) = p(A).
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. 1 - —
And we denote W;;(A) = 5{ai..; + a;.; + T[(A) + D (A)} (i€ S,jeSorie§, jeS). Then

m-1

-2 1
k + quj(Ak)};

n

1 2 .
Wi(Ax) = 3 {ai...i A r(A) +

where

o T o2)? 1 n -1
q)ij(Ak) = (61,’...,’ - Llj.“/' + r{(.A) + T) + 4(&!,7...]' + E) (V'/(A) + k >

As m and n are finite numbers, then by the properties of the sequence, it is easy to see that
lim \I—’L"j(.A/() = lI»’l"j(.A).
k—+00

Furthermore, since Ay is an irreducible nonnegative tensor, it follows from Theorem 3.3
that

p(A) < max{n® (A, 1 (A}
Letting kK — +o0 results in
p(A) < max{n5(A), n5(A)},
from which one may get the desired bound (19). O

Remark 3.2 Now, we compare the upper bound in Theorem 3.4 with that in Theorem 3.4
in [2]. It is not difficult to see that

PS(A) = %m%x minf.. + 4.+ (A) + o2 (A))
<1 mas far b+ (A) + o2 (A))
and
) = % maxmin{a.. + g, + HA) + 2(A)
< % ma e+ a4 A D2(A)}.

This shows that the upper bound in Theorem 3.4 improves the corresponding one in The-
orem 3.4 of [2].

We have showed that our bound is sharper than the existing one in [2]. Now we take an

example to show the efficiency of the new upper bound established in this paper.

Example 3.1 Let A= (a;) € R3] be nonnegative with entries defined as follows: a; =

@122 = Aoy = A3z = A1 = A3y = d333 = 1, diog = di33 = don = 2, a1z = 3, asu = 20, and the

Page 11 of 19
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other a; = 0. It is easy to compute

r(A) =5, 2 (A) = 4, r(A)=3;
rnA)=6,  ri(A)=4, BA)=5
r3(A) = 22, ry(A) =2, ra(A) = 21.

We choose S = {1,2}. Evidently, S=1{3. By Theorem 3.4 of [2], we have
p(A) <22.2819.

By Theorem 3.4, we obtain
p(A) <12.0499,

which means that the upper bound in Theorem 3.4 is much better than that in Theo-
rem 3.4 of [2].

3.3 New upper and lower bounds for the minimum H-eigenvalue of nonsingular
M-tensors

In this section, by making use of the results in Section 3.1, we investigate the bounds for

the minimum H-eigenvalue of strong M-tensors and derive sharper bounds for that. This

bounds are proved to be tighter than those in Theorem 2.2 of [4].

Theorem 3.5 Let A € R be an irreducible nonsingular M-tensor with n > 2. And let
S be a nonempty proper subset of N. Then

min{¢5(A), ¢°(A)} < 7(4) < max{x5(A), (A},

where

X5(A) = 5 max minfa.; + . 1/A) - O4(A) (21)
and

#N= minmax .+ .- /() - 010}, @2
with

O4(A) = (@i = 5.j = ri(A))” = da.jr(A).

Proof Since A is an irreducible nonsingular M-tensor, by Lemma 2.4, there exists x =
(x1,...,%,)T > 0 such that

Ax™ 1 = (Al Y, (23)

Let x, = max;es{x;} and x; = max,z{x;}. We distinguish two cases to prove.
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(i) x, = x4 > 0, 50 x, = max;en{x;}. Foranyj € S, it follows from (23) that

n _ m—1
Ziz,...,im=1 aPiZ"'imxiZ T xim - I(A)xp )
n — m—1
Ziz ..... im=1 ig--im¥iy *** Kiyy = t(A)xj .
Hence, we have

- Z‘Spizmimzor Apia iy iy *** Kiyy = (ﬂp"'P - T(A))x;ml + api"'ixlm_l’

[ — (24)
=D Bigim=0s izeimgiy Ky = (B = r(./él))x;"’1 + a]p...pr"l
Spi -im=0

Premultiplying by (g;..; — T(A)) in the first equation of (24) results in

—(dj...j - T(A)) Z Apiy iy Xiy *** Kiyy,

5pi2~-im:0'
Sjig--im=0
= (aj..j = T(A) (ap..p — T(A)x) ™ + apj(ay.; - I(A))x;"‘l. (25)

It follows from (25) and the second equation of (24) that

(@ = TA) D Apigeig iy Kigy + iy D Bjigeiy Ky i,

Bpi iy =0 8jig iy =0
51','2...,'},”:0 Bpiz-"imzo

1

(a,».“j - r(.A)) (ap...p - r(,él));vc}’:’_1 - apj...jajp...px;”_

= [(a,-...j - ‘L'(.A)) (ap...p - T(.A)) - ap,'“.ja]p...p]x;f’_l.
Combining x, > x; for any j € S with Lemma 2.5 results in

[(a/‘...j - ‘L'(.A)) (ap...p - ‘L'(.A)) - ﬂp]‘...ja/p...p] < (61,’...]‘ - T(A))Y‘L(A) - tlpj...'rf(A),

ie.,
7(A)? - (ap...p +aj.;— rf?(A))r(A) + aj..,-(ap“p - rfj(A)) + dyj..j1i(A) < 0. (26)
Solving the quadratic inequality (26) yields
1 . 1
T(A) > 5{%'"’7 +aj.j—1,(A) - @;’j(.A)}. (27)

It is not difficult to verify that (27) can be true for any j € S. Thus

() 2 5 max{ay 44y 75(A) - 6,,(A),

jes p 12
and therefore
1 , 1
(A) > = minqu{ai...i +aj.;—1i(A) - @izj(A)}. (28)
2 €S je§ ’
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(ii) x;, > x, > 0, so x; = max;en{x;}. For any i € S, it follows from (23) that

D iy iy Xiy Xy = T(AW,

m i
ZZ ,,,,, =1 Agiy iy Xin ** * Kiyy = t(A)x;"‘l.

So we obtain

- Zaiiz---im=0’ Aoy Xioy * * * Kiyyy = (ai---i - ‘E(A))x;ﬂfl + aiq...qx;”‘l,

i i =0 (29)
=D gig-iym=00 Ay iy K * Ky = (A g — T(A))x;”’l +agi. X"

Biig iy =0

Using the same technique as the proof of (i), we have

[(aqmq — 'C(A)) (61[...[ - ‘L’(A)) - ﬂiqmqﬂqimi] < (ﬂimi — T(A))V;(A) - aqb“,'r?(.A),
which is equivalent to

7(A)? - (aq...q +a.;— er(A))r(A) + ai...i(aq...q - rfI(A)) + agi.iri(A) <0, (30)

which results in
1 A o
T(A) > 2 {aqmq +a.— rq(.A) - ®q,i('A)}' (31)

It is not difficult to verify that (31) can be true for any j € S. Thus

1 , 1
T(A) > 3 I%z:lsx{aq...q +aj.j—1i(A) - 07 (A},

which implies that

7(A) > %mi_nmax{ai...i +aj.j— r{:(.A) - (H)%I-(A)}.

ieS Jjes

Let x = min;es{x;} and x; = min;_z{x;}. With a strategy quite similar to the one utilized in
the above proof, we can prove that

7(A) < max{xS(A),xg(A)},

which implies this theorem. g

Remark 3.3 We next prove the bounds in Theorem 3.5 are sharper than those of Theo-
rem 2.2 in [4]; it is easy to see that

$3(A) = % min ngx{ai...i +a.j— r'j(.A) - @%(.A)}

€S je§

1

> % min {a;..; + aj..; - ri(A) - LA} =¥

ieS,jeS Y
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and
. 1 , !
#3(A) = 3 Igl;l r?easx{a,:,.,» +aj.;—ri(A) - (H)fj(.A)}
1 _

> 1 min {di-ni +aj..; — FJZ(A) - @i(A)} = WS(A),

ieS,jeS Y

which implies that

min{¢®(A), ¢°(A)} = min{y*(A), y*(A)}

> L min {ais v ay - P4 - 02(A)).

2 ijeN,iZj ‘ i
In the same manner as applied in the above proof, we can deduce the following results:
max{xS(A), XS(A)} < max{@s(.A),@g(.A)}

1 ; 1
<= i Ry -0®2 ,
-2 i,lgll\af,)i(#{a + . = 1i(A) LJ(A)}

, 1
where 05(A) = % MaX;cg jes{dii + aj..j — rf(.A) - @fl.(A)}. Therefore, the conclusions follow
from the above discussions.

Example 3.2 Consider the following irreducible nonsingular M-tensor:

A= [A(l, 51),A2,5:),A(3,:, :)] e RB3

where
7 0 0
Al,)=]10 -05 -2,
o -1 =2
-1 -58 -2
A2,5,:)=]0 12 o |1,
0 0 -0.5
-1 -2 0
AB,5:)=10 -1 -3
0 -3 50

We compare the results derived in Theorem 3.5 with those in Theorem 2.1 of [4] and
Theorem 4.5 of [16] in the correct forms. Let S = {1,2}, then S = {3}. By Theorem 2.1 of

[4], we have
1.5548 < 7(A) <11.6828.

By Theorem 4.5 of [16], we get

1.7350 < 7(A) < 11.3923.
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By Theorem 3.5, we obtain
3.0738 < 7(A) < 6.8390.

This shows that the upper and lower bounds in Theorem 3.5 are sharper than those in
Theorem 2.1 of [4] and Theorem 4.5 of [16].

In the sequel, we extend the results of Theorem 3.5 to a more general case, which needs
a weaker condition compared with Theorem 3.5.

Theorem 3.6 Let A € R be a nonsingular M-tensor with n > 2. And let S be a
nonempty proper subset of N. Then

min{¢5(A), % (A)} < 7(4) < max{x5(A), x*(A)},

where
K5(A) = %%x%n{a, sra 1A - O5(A), (32)
and
#A= Iglsnmasx{al s+ ap - - OL(A), (33)
with

@z’,j(.A) = (ﬂiu.l’ —aj..j— rf(.A))z - 461,7...;)’/(.4),

Proof Since A is a nonsingular M-tensor, A € Z, by Lemma 2.7 and Lemma 2.6, there
exists x = (x1,...,%,)7 > 0 such that Ax"! > 0, that is, for any i; € N,

E Ay oy Kin * Ky > 0.

i9eenim=1
Let
222 E Ajy iy Kin * * * Kipys Xmax = rg?—\;(xz
ol =1
S0 Xmax > 0 by x > 0. By replacing the zero entries of A with ——, where k is a positive

integer, we see that the Z-tensor Ay is irreducible. Here, we use a;,...;,, (— ,1<) to denote the

entries of Ay. We choose k > [%] +1, then, for any i; € N, we have



Huang et al. Journal of Inequalities and Applications (2016) 2016:254 Page 17 of 19

which implies that Azx”! > 0 and, by Lemma 2.6 and Lemma 2.7, we infer that 4 is an

S ]

irreducible nonsingular M-tensor if k > [(" + 1. It follows from the above discus-

m—1_1),m-1
sions that Ay (k > [%] + 1) is a sequence of irreducible nonsingular M-tensors
satisfying

A>--->Ak+1>Ak.

By Lemma 2.8, {t(Ax)} is a monotone increasing sequence with upper bound 7 (A) so that
7(A) has a limit. Let

kErPOO T(Ap) =2 < 1(A). (34)
By Lemma 2.4, we see that 7(Ay) is the eigenvalue of Ay with a positive eigenvector y,
ie, Ayt =1 (Ak)y,[(m_l]. As homogeneous multivariable polynomials, we can restrict
¥k to a ball; that is, ||yk|l = 1. Then {y;} is a bounded sequence, so it has a convergent
subsequence. Without loss of generality, we can suppose it is the sequence itself. Let yx — y
as k — +00, we get y > 0 and ||y|| = 1. By Agyp*" = t(.Ak)yg(m_l] and letting k — +00, we
have Ay = Ay"~11, Thus A is an eigenvalue of A, thus A > t(A). Together with (34) this
results in A = 7(A), which means that

klim t(Ap) = t(A).

Besides, fori€ S,je S (fori € S, j € S, we can define Mi and M; similarly), we define the
following sets:

Jj . s
Mi = {ﬂiiz'"im |aii2wim =0, 8,’,’2“.% =0and (SjiZ"'im =0, 1,0y € N},

Mj = {ﬂjiz...im |ﬂji2---im =0 and 5/'i2~~~im =0,i3,...,0, € N}

Let the numbers of entries in Mi and M; be n’l and #;, respectively, and we denote A;;(A) =
. 1
%{ai---i +aj.j— r{(.A) - G)l?I(A)} Then

1 : AN
A[,j(.Ak) = 5 {ﬂimi t+aj.;— r/l(A) - /_<l - @é(.Ak)},

where
A e 0
®i,j(-Ak) = (ﬂ,’...i - 61/...]‘ - i’Jl(A) - ?) - 4(&10‘...} - %) (V,(.A) + f),
with
1, if&lij...j = 0,
8ij = .
O, lféll'j...j 7{0

By the properties of the sequence, it is not difficult to verify that

lim_ xS(Ap) = x5(A), Jim 5 (Ax) = ¢5(A).

k
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Furthermore, since A is an irreducible nonsingular M-tensor for k > +1, by

Theorem 3.5, we have
min{¢S(A), (A0} < (A < max{ x5 (Ao, x5 (A0)}.

Letting k — +00 results in

min{¢*(A), $*(A)} < 7(4) < max{x*(A), x*(A)}.
This completes our proof of Theorem 3.6. O

4 Concluding remarks

In this paper, a new S-type eigenvalue inclusion set for tensors is presented, which is
proved to be sharper than the ones in [2, 3]. As applications, we give new bounds for
the spectral radius of nonnegative tensors and the minimum H-eigenvalue of strong M-
tensors, these bounds improve some existing ones obtained by Li et al. [2] and He and
Huang [4]. In addition, we extend these new bounds to more general cases.

However, the new S-type eigenvalue inclusion set and the derived bounds depend on the
set S. How to choose S to make T5(A) and the bounds exhibited in this paper as tight as
possible is very important and interesting, while if the dimension of the tensor A is large,
this work is very difficult. Therefore, future work will include numerical or theoretical

studies for finding the best choice for S.
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