# RESEARCH



Open Access

# A geometrical interpretation of the inverse matrix

Yanping Zhou<sup>\*</sup> and Binwu He

\*Correspondence: zhouyp@i.shu.edu.cn Department of Mathematics, Shanghai University, Shanghai, 200444, China

### Abstract

Utilizing a new method to structure parallellotopes, a geometrical interpretation of the inverse matrix is given, which includes the generalized inverse of full column rank or a full row rank matrices. Further, some relational volume formulas of parallellotopes are established.

MSC: 15A15; 52A20

Keywords: parallellotope; inverse matrix; generalized inverse

## 1 Introduction and notations

Let  $\mathbb{R}^n$  denote an *n*-dimensional real Euclidean vector space, for a nonzero  $n \times 1$  vector  $x \in \mathbb{R}^n$ , the generalized inverse of *x*, denoted by  $x^+$ , has the geometrical interpretation that  $x^T$  is divided by  $||x||^2$ , that is,  $x^+ = x^T/||x||^2$ , where  $x^T$  is the transpose of *x* (see [1]). A natural question is whether a similar geometrical interpretation holds for the inverse of a matrix.

In this paper, using a new method to structure a *m*-dimensional parallellotope, the geometrical interpretation of the inverse matrix and the generalized inverse of a matrix with full column rank or full row rank are given.

Let  $[z_1, z_2, ..., z_m]$  be the *m*-dimensional parallellotope with *m* linearly independent vectors  $z_1, z_2, ..., z_m$  as its edge vectors, *i.e.*,

$$[z_1, z_2, \ldots, z_m] = \{z \in \mathbb{R}^n \mid t_1 z_1 + \cdots + t_m z_m, t_i \in [0, 1], i = 1, 2, \ldots, m\};\$$

 $[z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_m]$  denotes the facets of the *m*-parallellotope  $[z_1, z_2, \ldots, z_m]$  for an (m-1)-hyperplane,

 $\mathcal{H}_i = \operatorname{span}\{z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_m\}.$ 

 $z_i$  is the altitude vector on facet  $[z_1, \ldots, z_{i-1}, z_{i+1}, \ldots, z_m]$  (see [2, 3]) with the orthogonal component of  $z_i$  with respect to  $\mathcal{H}_i$ . If  $[z_1, z_2, \ldots, z_m]^*$  denotes the *m*-parallellotope constructed by *m* linearly independent vectors  $z_1, z_2, \ldots, z_m$  as its altitude vectors, then we will show that there exist  $z_1^*, z_2^*, \ldots, z_m^*$ , exclusive such that

$$[z_1, z_2, \ldots, z_m]^* = [z_1^*, z_2^*, \ldots, z_m^*].$$



© 2016 Zhou and He. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

#### 2 Main results

Our main results are the following theorems.

**Theorem 2.1** If M is a matrix with full row (column) rank and  $z_1, z_2, ..., z_m$  is its row (column) vectors, then the right (left) inverse of the matrix M is the matrix whose column (row) vectors are

$$\frac{z_1^*}{\|z_1\|^2}, \frac{z_2^*}{\|z_2\|^2}, \dots, \frac{z_m^*}{\|z_m\|^2},$$

where  $z_1^*, z_2^*, \ldots, z_m^*$  are *m* edge vectors of the *m*-parallellotope  $[z_1, z_2, \ldots, z_m]^*$ .

**Corollary 2.2** If M is nonsingular  $n \times n$  matrix and  $z_1, z_2, ..., z_n$  is its row (column) vectors, then the inverse of the matrix M is the matrix whose column (row) vectors are

$$\frac{z_1^*}{\|z_1\|^2}, \frac{z_1^*}{\|z_1\|^2}, \dots, \frac{z_n^*}{\|z_n\|^2},$$

where  $z_1^*, z_2^*, \ldots, z_n^*$  are *n* edge vectors of the *n*-parallellotope  $[z_1, z_2, \ldots, z_n]^*$ .

We may say roughly if the  $[z_1, z_2, ..., z_m]$   $(z_1, z_2, ..., z_m$  as edge vectors) is the geometrical interpretation of the matrix M, then  $[z_1, z_2, ..., z_m]^*$   $(z_1, z_2, ..., z_m$  as altitude vectors) is one of the  $M^{-1}$ .

We list some basic facts to state the following theorems.

We write L(i), for the linear subspace spanned by  $z_1, z_2, ..., z_i, z_i \in \mathbb{R}^n$   $(1 \le i \le n)$ . Let  $\langle \hat{z}, L \rangle$  be the angle between vector z and linear subspace L, where if  $z \notin L$ , then  $\langle \hat{z}, L \rangle$  is the angle between z and the orthogonal projection of z on L, denoted by  $z|_L$ , *i.e.*,  $z|_L = ((L^{\perp} + x) \cap L)$ . If  $z \in L$ , then  $\langle \hat{z}, L \rangle = 0$ .

**Theorem 2.3** Suppose  $y_1, y_2, ..., y_n$  are *n* row vectors of the matrix *M*, and  $z_1, z_2, ..., z_n$  are column vectors of the matrix  $M^{-1}$ ,

- (1) if  $||y_i|| \rightarrow 0$ , then  $||z_i|| \rightarrow +\infty$ ;
- (2) if  $\langle y_i, L(i-1) \rangle \to 0$ , then there is  $k \ (1 \le k \le n)$  such that  $||z_k|| \to +\infty$ .

Theorem 2.3 will be required in the study of matrix disturbances (see [4-6]).

Utilizing the geometrical interpretation of the inverse matrix, we have the following relational volume formulas of parallellotopes for the  $n \times n$  real matrices M, N.

**Theorem 2.4** Let  $[z_1, z_2, ..., z_n]^{**}$  be the parallellotope structured by the edge vectors of  $[z_1, z_2, ..., z_n]^*$  as altitude vectors. Then

$$\operatorname{vol}([z_1, z_2, \dots, z_n]^*) \cdot \operatorname{vol}([z_1, z_2, \dots, z_n]) = \left(\prod_{i=1}^n \|z_i\|\right)^2,$$
 (2.1)

$$\operatorname{vol}([z_1, z_2, \dots, z_n]^{**}) / \operatorname{vol}([z_1, x_2, \dots, z_n]) = \left(\prod_{i=1}^n \|z_i^*\| / \|z_i\|\right)^2,$$
(2.2)

where  $vol([z_1,...,z_n])$  denotes the volume of the parallellotope  $[z_1,...,z_n]$ .

The proofs of the theorems will be given in Section 3.

#### 3 Proofs of the theorems

Given *m* linearly independent vectors  $z_1, z_2, ..., z_m$  in  $\mathbb{R}^n$ , if we structure an *m*-parallellotope  $[z_1, z_2, ..., z_m]$  by them as edge vectors, then  $[z_1, z_2, ..., z_m]$  has *m* linearly independent altitude vectors. Conversely, for any given *m* linearly independent vectors  $z_1, z_2, ..., z_m$ , can we structure an *m*-parallellotope by them as *m* altitude vectors? The following lemma gives an affirmative answer.

**Lemma 3.1** If  $\{z_1, z_2, ..., z_m\}$   $(m \ge 2)$  is a given set of linearly independent vectors in  $\mathbb{R}^n$ , then there is an m-parallellotope  $[z_1, z_2, ..., z_m]^*$  whose m altitude vectors are  $z_1, z_2, ..., z_m$ .

*Proof* If  $z_1, z_2, ..., z_m$  are linearly independent, then we have *m* linear functionals  $g_1, g_2, ..., g_m$  such that

$$g_j(z_i) = \delta_{ij} ||z_i||^2$$
,  $i, j = 1, 2, ..., m$ ,

where  $\delta_{ij}$  is the Kronecker delta symbol.

From Riesz's representation theorem for the linear functional, we get  $z_1^*, z_2^*, \ldots, z_m^*$  such that

$$\langle z_i, z_j^* \rangle = \delta_{ij} ||z_i||^2, \quad i, j = 1, 2, \dots, m,$$
(3.1)

where  $\langle , \rangle$  is the ordinary inner product in  $\mathbb{R}^n$ .

Further, let

$$\sum_{j=1}^m lpha_j z_j^* = 0, \quad lpha_j \in \mathbb{R},$$

by

$$0 = \left\langle z_i, \sum_{j=1}^m \alpha_j z_j^* \right\rangle = \alpha_i ||z_i||^2,$$

we have  $\alpha_i = 0, i = 1, 2, ..., m$ . This shows that  $z_1^*, z_2^*, ..., z_m^*$  are linearly independent.

Now, we prove that  $z_1, z_2, \ldots, z_m$  are altitude vectors of the *m*-parallellotope  $[z_1^*, z_2^*, \ldots, z_m^*]$  (the edge vectors of  $[z_1^*, z_2^*, \ldots, z_m^*]$  are  $z_1^*, z_2^*, \ldots, z_m^*$ ).

Suppose that  $[z_1^*, z_2^*, ..., z_{i-1}^*, z_{i+1}^*, ..., z_m^*]$  are the facets of  $[z_1^*, z_2^*, ..., z_m^*]$ . From  $z_i \perp z_j^*$   $(j \neq i)$ , we have

$$z_i \perp \left[ z_1^*, z_2^*, \dots, z_{i-1}^*, z_{i+1}^*, \dots, z_m^* \right].$$
(3.2)

Thus,  $z_1, z_2, \ldots, z_m$  are altitude vectors of  $[z_1^*, z_2^*, \ldots, z_m^*]$ , *i.e.*,

 $[z_1, z_2, \ldots, z_m]^* = [z_1^*, z_2^*, \ldots, z_m^*].$ 

This yields the desired *m*-parallellotope  $[z_1, z_2, \ldots, z_m]^*$ .

*Proof of Theorem* 2.1 For a given  $m \times n$  matrix full row rank  $M = (c_{ij})_{m \times n}$ , let

$$z_i = (c_{i1}, c_{i2}, \dots, c_{in}), \quad i = 1, 2, \dots, m$$

By Lemma 3.1, we have an unique vector set  $\{z_1^*, z_2^*, \dots, z_m^*\}$  such that

$$\langle z_i, z_j^* \rangle = \delta_{ij} ||z_i||^2, \quad i = 1, 2, \dots, m; j = 1, 2, \dots, n,$$

i.e.,

$$\left\langle z_{i}, \frac{z_{j}^{*}}{\|z_{i}\|^{2}} \right\rangle = \delta_{ij}, \quad i = 1, 2, \dots, m; j = 1, 2, \dots, n,$$
(3.3)

and  $z_1^*, z_2^*, \dots, z_m^*$  are *m* edge vectors of the parallellotope  $[z_1, z_2, \dots, z_m]^*$ .

Suppose

$$d_i = \frac{z_i^*}{\|z_i\|^2}, \quad i = 1, 2, \dots, m,$$

and

$$N = (d_1, d_2, \ldots, d_m).$$

It follows from (3.3) that

$$MN = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix} (d_1, d_2, \dots, d_m) = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix}.$$

Thus, the matrix N is the inverse of the matrix M, and the column vectors  $d_1, d_2, \ldots, d_m$  of the matrix N are the edge vectors of  $[z_1, z_2, \ldots, z_m]^*$  divided by  $||z_1||^2, ||z_2||^2, \ldots, ||z_m||^2$ , respectively.

Together with Theorem 2.1 and taking *M* for an  $n \times n$  matrix with full rank, we have Corollary 2.2.

Here, we will complete the proof of Theorem 2.3. The following lemma will be required.  $\hfill \Box$ 

**Lemma 3.2** For L(i) the linear subspace spanned by  $z_1, z_2, ..., z_i, i = 1, 2, ..., m (\leq n)$ , if  $vol([z_1, z_2, ..., z_m])$  is the volume of the parallellotope  $[z_1, z_2, ..., z_m]$  (see [7]), we have

$$\operatorname{vol}([z_1, z_2, \dots, z_m]) = \prod_{i=1}^m ||z_i|| \cdot \prod_{i=2}^m \sin\langle z_i, L(i-1) \rangle.$$
(3.4)

*Proof* Assume that  $h_i, p_i$  are the orthogonal component and orthogonal projection of  $z_i$  with respect to L(i - 1), respectively  $(i = 2, ..., m, h_1 = z_1, p_1 = 0)$ . Since  $||z_i|| \cos \langle z_i, p_i \rangle = ||p_i||$ , we have

$$\cos\langle \hat{z_{i}, L(i-1)} \rangle = \frac{\langle z_{i}, p_{i} \rangle}{\|z_{i}\| \|p_{i}\|} = \frac{\langle p_{i}, p_{i} \rangle}{\|z_{i}\| \|p_{i}\|} = \frac{p_{i}}{\|z_{i}\|}.$$
(3.5)

$$\|h_i\| = \sqrt{\|z_i\|^2 - \|p_i\|^2} = \|z_i\| \sin \langle z_i, L(i-1) \rangle.$$

From the definition of the volume of the parallellotope, we get (see [7–9])

$$\operatorname{vol}([z_1, z_2, \dots, z_m]) = \prod_{i=1}^m \|h_i\| = \prod_{i=1}^m \|z_i\| \cdot \prod_{i=2}^m \sin\langle z_i, L(i-1) \rangle.$$
(3.6)

The proof of Lemma 3.2 is completed.

Proof of Theorem 2.3 From Theorem 2.1, it follows that

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} (z_1, z_2, \dots, z_n) = \begin{pmatrix} \langle y_1, z_1 \rangle & 0 \\ & \ddots & \\ 0 & \langle y_1, z_1 \rangle \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix},$$
(3.7)

i.e.,

$$\langle y_i, z_i \rangle = 1, \quad i = 1, 2, \dots, n.$$

It follows from the Cauchy inequality that

$$1 = |\langle y_i, z_i \rangle| \leq ||y_i|| ||z_i||.$$

Thus the assertion (1) holds.

Let  $\{y_1, y_2, ..., y_n\}$  and  $\{z_1, z_2, ..., z_n\}$  in Lemma 3.2. From (3.7), we get

$$\left(\prod_{i=1}^{n} \|y_i\| \cdot \prod_{i=1}^{n} \sin\left\langle y_i, L(i-1) \right\rangle\right) \cdot \left(\prod_{j=1}^{n} \|z_j\| \cdot \prod_{j=1}^{n} \sin\left\langle z_j, L(j-1) \right\rangle\right) = 1.$$
(3.8)

From

$$0 \le \left| \prod_{j=1}^{n} \sin \left\langle y_{j}, L(j-1) \right\rangle \right| \le 1$$

and

$$\prod_{i=1}^n \|y_i\| \le G,$$

the assertion (2) is given.

Proof of Theorem 2.4 Together with Theorem 2.1, we get

$$\begin{pmatrix} \frac{z_1^*}{\|z_1\|^2} \\ \frac{z_2^*}{\|z_2\|^2} \\ \vdots \\ \frac{z_n^*}{\|z_n\|^2} \end{pmatrix} (z_1, z_2, \dots, z_n) = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}.$$
(3.9)

Thus

$$\det \begin{pmatrix} \begin{pmatrix} \frac{z_1^*}{\|z_1\|^2} \\ \frac{z_2^*}{\|z_2\|^2} \\ \vdots \\ \frac{z_n^*}{\|z_n\|^2} \end{pmatrix} (z_1, z_2, \dots, z_n) \\ = 1,$$
$$\det \begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix} \cdot \det(z_1, z_2, \dots, z_n) = \left(\prod_{i=1}^n \|z_i\|\right)^2.$$

From

$$[x_1, x_2, \dots, x_n]^* = [z_1^*, z_2^*, \dots, z_n^*],$$

and the definition of the volume of parallellotopes, the equality (2.1) holds.

Assume that  $\{z_1^{**}, z_2^{**}, \dots, z_n^{**}\}$  is a set of the edge vectors of  $[z_1, z_2, \dots, z_n]^{**}$ . Together with Theorem 2.1, we get

.

$$\begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix} \begin{pmatrix} \frac{z_1^{**}}{\|z_1^*\|^2}, \frac{z_2^{**}}{\|z_2^*\|^2}, \vdots, \frac{z_n^{**}}{\|z_n^*\|^2} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & \ddots \\ 0 & 1 \end{pmatrix}.$$
(3.10)

If follows from (3.10) that

$$\det \begin{pmatrix} z_1^* \\ z_2^* \\ \vdots \\ z_n^* \end{pmatrix} \cdot \det (z_1^{**}, z_2^{**}, \dots, z_n^{**}) = \left(\prod_{i=1}^n \|z_i\|\right)^2.$$

Thus

$$\operatorname{vol}([z_1, z_2, \dots, z_n]^*) \cdot \operatorname{vol}([z_1, z_2, \dots, z_n]^{**}) = \left(\prod_{i=1}^n ||z_i^*||\right)^2.$$
(3.11)

Taking together (2.1) and (3.11), the equality (2.2) holds.

For  $\{z_1, z_2, \dots, z_n\}$ , from Lemma 3.1,  $[z_1, z_2, \dots, z_n]^*$  is structured by them as altitude vectors. Denote  $[z_1, z_2, \dots, z_n]^*$  by  $z_1^*, z_2^*, \dots, z_n^*$ .

Let

$$[z_1, z_2, \dots, z_n]^{**} = [z_1^*, z_2^*, \dots, z_n^*]^*.$$

Thus Theorem 2.4 denotes the relationship of volumes about  $[z_1, z_2, ..., z_n]$ ,  $[z_1, z_2, ..., z_n]^*$ , and  $[z_1, z_2, ..., z_n]^{**}$ .

Remark 1 By (3.10), we get

$$\begin{pmatrix} \frac{z_1^*}{\|z_1\|^2} \\ \frac{z_2^*}{\|z_2\|^2} \\ \vdots \\ \frac{z_n^*}{\|z_n\|^2} \end{pmatrix} \begin{pmatrix} \frac{\|z_1\|^2}{\|z_1^*\|^2} z_1^{**}, \frac{\|z_2\|^2}{\|z_2^*\|^2} z_2^{**}, \vdots, \frac{\|z_n\|^2}{\|z_n^*\|^2} z_n^{**} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ & \ddots & \\ 0 & 1 \end{pmatrix},$$
(3.12)

From (3.9) and (3.12), we see that

$$z_i^{**} = \frac{\|z_i^*\|^2}{\|z_i\|^2} z_i, \quad i = 1, 2, \dots, n.$$
(3.13)

By (3.13), we can see that  $[z_1, z_2, ..., z_n]^{**}$  and  $[z_1, z_2, ..., z_n]$  are two parallellotopes and their edge vectors are of the same direction.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### Acknowledgements

The authors would like to acknowledge the support from the National Natural Science Foundation of China (11371239).

#### Received: 26 April 2016 Accepted: 5 October 2016 Published online: 19 October 2016

#### References

- 1. Perose, A: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406-413 (1955)
- 2. Berger, M: Geometry I. Springer, New York (1987)
- 3. Veljan, D: The sine theorem and inequalities for volume of simplices and determinants. Linear Algebra Appl. 219, 79-91 (1995)
- 4. Horn, RA, Johnson, CR: Matrix Analysis. Cambridge University Press, Cambridge (1988)
- 5. Golub, GH, Van Loan, CF: Matrix Computations, 2nd edn. Johns Hopkings University Press, Baltimore (1989)
- 6. Golub, GH, Van Loan, CF: Matrix Computations, 4th edn. Johns Hopkings University Press, Baltimore (2013)
- 7. Ben-Israel, A: A volume associated with  $m \times n$  matrices. Linear Algebra Appl. **167**, 87-111 (1992)
- 8. Ben-Israel, A: An application of the matrix volume in probability. Linear Algebra Appl. 321, 9-25 (2000)
- 9. Ben-Israel, A: The change of variables formula using matrix volume. SIAM J. Matrix Anal. Appl. 21, 300-312 (1999)