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Abstract
Utilizing a new method to structure parallellotopes, a geometrical interpretation of
the inverse matrix is given, which includes the generalized inverse of full column rank
or a full row rank matrices. Further, some relational volume formulas of parallellotopes
are established.
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1 Introduction and notations
Let Rn denote an n-dimensional real Euclidean vector space, for a nonzero n ×  vector
x ∈ R

n, the generalized inverse of x, denoted by x+, has the geometrical interpretation
that xT is divided by ‖x‖, that is, x+ = xT /‖x‖, where xT is the transpose of x (see []).
A natural question is whether a similar geometrical interpretation holds for the inverse of
a matrix.

In this paper, using a new method to structure a m-dimensional parallellotope, the geo-
metrical interpretation of the inverse matrix and the generalized inverse of a matrix with
full column rank or full row rank are given.

Let [z, z, . . . , zm] be the m-dimensional parallellotope with m linearly independent vec-
tors z, z, . . . , zm as its edge vectors, i.e.,

[z, z, . . . , zm] =
{

z ∈R
n | tz + · · · + tmzm, ti ∈ [, ], i = , , . . . , m

}
;

[z, . . . , zi–, zi+, . . . , zm] denotes the facets of the m-parallellotope [z, z, . . . , zm] for an
(m – )-hyperplane,

Hi = span{z, . . . , zi–, zi+, . . . , zm}.

zi is the altitude vector on facet [z, . . . , zi–, zi+, . . . , zm] (see [, ]) with the orthogonal
component of zi with respect to Hi. If [z, z, . . . , zm]∗ denotes the m-parallellotope con-
structed by m linearly independent vectors z, z, . . . , zm as its altitude vectors, then we will
show that there exist z∗

 , z∗
, . . . , z∗

m, exclusive such that

[z, z, . . . , zm]∗ =
[
z∗

 , z∗
, . . . , z∗

m
]
.
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2 Main results
Our main results are the following theorems.

Theorem . If M is a matrix with full row (column) rank and z, z, . . . , zm is its row (col-
umn) vectors, then the right (left) inverse of the matrix M is the matrix whose column (row)
vectors are

z∗


‖z‖ ,
z∗


‖z‖ , . . . ,

z∗
m

‖zm‖ ,

where z∗
 , z∗

, . . . , z∗
m are m edge vectors of the m-parallellotope [z, z, . . . , zm]∗.

Corollary . If M is nonsingular n×n matrix and z, z, . . . , zn is its row (column) vectors,
then the inverse of the matrix M is the matrix whose column (row) vectors are

z∗


‖z‖ ,
z∗


‖z‖ , . . . ,

z∗
n

‖zn‖ ,

where z∗
 , z∗

, . . . , z∗
n are n edge vectors of the n-parallellotope [z, z, . . . , zn]∗.

We may say roughly if the [z, z, . . . , zm] (z, z, . . . , zm as edge vectors) is the geometrical
interpretation of the matrix M, then [z, z, . . . , zm]∗ (z, z, . . . , zm as altitude vectors) is one
of the M–.

We list some basic facts to state the following theorems.
We write L(i), for the linear subspace spanned by z, z, . . . , zi, zi ∈ R

n ( ≤ i ≤ n). Let
ˆ〈z, L〉 be the angle between vector z and linear subspace L, where if z /∈ L, then ˆ〈z, L〉 is

the angle between z and the orthogonal projection of z on L, denoted by z|L, i.e., z|L =
((L⊥ + x) ∩ L). If z ∈ L, then ˆ〈z, L〉 = .

Theorem . Suppose y, y, . . . , yn are n row vectors of the matrix M, and z, z, . . . , zn are
column vectors of the matrix M–,

() if ‖yi‖ → , then ‖zi‖ → +∞;
() if 〈 ˆyi, L(i – )〉 → , then there is k ( ≤ k ≤ n) such that ‖zk‖ → +∞.

Theorem . will be required in the study of matrix disturbances (see [–]).
Utilizing the geometrical interpretation of the inverse matrix, we have the following

relational volume formulas of parallellotopes for the n × n real matrices M, N .

Theorem . Let [z, z, . . . , zn]∗∗ be the parallellotope structured by the edge vectors of
[z, z, . . . , zn]∗ as altitude vectors. Then

vol
(
[z, z, . . . , zn]∗

) · vol
(
[z, z, . . . , zn]

)
=

( n∏

i=

‖zi‖
)

, (.)

vol
(
[z, z, . . . , zn]∗∗)/ vol

(
[z, x, . . . , zn]

)
=

( n∏

i=

∥∥z∗
i
∥∥/‖zi‖

)

, (.)

where vol([z, . . . , zn]) denotes the volume of the parallellotope [z, . . . , zn].

The proofs of the theorems will be given in Section .
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3 Proofs of the theorems
Given m linearly independent vectors z, z, . . . , zm in R

n, if we structure an m-parallello-
tope [z, z, . . . , zm] by them as edge vectors, then [z, z, . . . , zm] has m linearly independent
altitude vectors. Conversely, for any given m linearly independent vectors z, z, . . . , zm,
can we structure an m-parallellotope by them as m altitude vectors? The following lemma
gives an affirmative answer.

Lemma . If {z, z, . . . , zm} (m ≥ ) is a given set of linearly independent vectors in R
n,

then there is an m-parallellotope [z, z, . . . , zm]∗ whose m altitude vectors are z, z, . . . , zm.

Proof If z, z, . . . , zm are linearly independent, then we have m linear functionals g, g, . . . ,
gm such that

gj(zi) = δij‖zi‖, i, j = , , . . . , m,

where δij is the Kronecker delta symbol.
From Riesz’s representation theorem for the linear functional, we get z∗

 , z∗
, . . . , z∗

m such
that

〈
zi, z∗

j
〉

= δij‖zi‖, i, j = , , . . . , m, (.)

where 〈, 〉 is the ordinary inner product in R
n.

Further, let

m∑

j=

αjz∗
j = , αj ∈ R,

by

 =

〈

zi,
m∑

j=

αjz∗
j

〉

= αi‖zi‖,

we have αi = , i = , , . . . , m. This shows that z∗
 , z∗

, . . . , z∗
m are linearly independent.

Now, we prove that z, z, . . . , zm are altitude vectors of the m-parallellotope [z∗
 , z∗

, . . . ,
z∗

m] (the edge vectors of [z∗
 , z∗

, . . . , z∗
m] are z∗

 , z∗
, . . . , z∗

m).
Suppose that [z∗

 , z∗
, . . . , z∗

i–, z∗
i+, . . . , z∗

m] are the facets of [z∗
 , z∗

, . . . , z∗
m]. From zi⊥z∗

j

(j = i), we have

zi ⊥ [
z∗

 , z∗
, . . . , z∗

i–, z∗
i+, . . . , z∗

m
]
. (.)

Thus, z, z, . . . , zm are altitude vectors of [z∗
 , z∗

, . . . , z∗
m], i.e.,

[z, z, . . . , zm]∗ =
[
z∗

 , z∗
, . . . , z∗

m
]
.

This yields the desired m-parallellotope [z, z, . . . , zm]∗. �
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Proof of Theorem . For a given m × n matrix full row rank M = (cij)m×n, let

zi = (ci, ci, . . . , cin), i = , , . . . , m.

By Lemma ., we have an unique vector set {z∗
 , z∗

, . . . , z∗
m} such that

〈
zi, z∗

j
〉

= δij‖zi‖, i = , , . . . , m; j = , , . . . , n,

i.e.,
〈
zi,

z∗
j

‖zi‖

〉
= δij, i = , , . . . , m; j = , , . . . , n, (.)

and z∗
 , z∗

, . . . , z∗
m are m edge vectors of the parallellotope [z, z, . . . , zm]∗.

Suppose

di =
z∗

i
‖zi‖ , i = , , . . . , m,

and

N = (d, d, . . . , dm).

It follows from (.) that

MN =

⎛

⎜⎜⎜⎜
⎝

z

z
...

zm

⎞

⎟⎟⎟⎟
⎠

(d, d, . . . , dm) =

⎛

⎜⎜
⎝

 
. . .

 

⎞

⎟⎟
⎠ .

Thus, the matrix N is the inverse of the matrix M, and the column vectors d, d, . . . , dm

of the matrix N are the edge vectors of [z, z, . . . , zm]∗ divided by ‖z‖,‖z‖, . . . ,‖zm‖,
respectively.

Together with Theorem . and taking M for an n × n matrix with full rank, we have
Corollary ..

Here, we will complete the proof of Theorem .. The following lemma will be required.
�

Lemma . For L(i) the linear subspace spanned by z, z, . . . , zi, i = , , . . . , m (≤ n), if
vol([z, z, . . . , zm]) is the volume of the parallellotope [z, z, . . . , zm] (see []), we have

vol
(
[z, z, . . . , zm]

)
=

m∏

i=

‖zi‖ ·
m∏

i=

sin
〈 ˆzi, L(i – )

〉
. (.)

Proof Assume that hi, pi are the orthogonal component and orthogonal projection of zi

with respect to L(i – ), respectively (i = , . . . , m, h = z, p = ). Since ‖zi‖ cos 〈 ˆzi, pi〉 =
‖pi‖, we have

cos
〈 ˆzi, L(i – )

〉
=

〈zi, pi〉
‖zi‖‖pi‖ =

〈pi, pi〉
‖zi‖‖pi‖ =

pi

‖zi‖ . (.)
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By ‖zi‖ = ‖pi‖ + ‖hi‖, it follows that

‖hi‖ =
√‖zi‖ – ‖pi‖ = ‖zi‖ sin

〈 ˆzi, L(i – )
〉
.

From the definition of the volume of the parallellotope, we get (see [–])

vol
(
[z, z, . . . , zm]

)
=

m∏

i=

‖hi‖ =
m∏

i=

‖zi‖ ·
m∏

i=

sin
〈 ˆzi, L(i – )

〉
. (.)

The proof of Lemma . is completed. �

Proof of Theorem . From Theorem ., it follows that

⎛

⎜⎜⎜⎜
⎝

y

y
...

yn

⎞

⎟⎟⎟⎟
⎠

(z, z, . . . , zn) =

⎛

⎜⎜
⎝

〈y, z〉 
. . .

 〈y, z〉

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

 
. . .

 

⎞

⎟⎟
⎠ , (.)

i.e.,

〈yi, zi〉 = , i = , , . . . , n.

It follows from the Cauchy inequality that

 =
∣∣〈yi, zi〉

∣∣ ≤ ‖yi‖‖zi‖.

Thus the assertion () holds.
Let {y, y, . . . , yn} and {z, z, . . . , zn} in Lemma .. From (.), we get

( n∏

i=

‖yi‖ ·
n∏

i=

sin
〈 ˆyi, L(i – )

〉
)

·
( n∏

j=

‖zj‖ ·
n∏

j=

sin
〈 ˆzj, L(j – )

〉
)

= . (.)

From

 ≤
∣∣∣∣∣

n∏

j=

sin
〈 ˆyj, L(j – )

〉
∣∣∣∣∣
≤ 

and

n∏

i=

‖yi‖ ≤ G,

the assertion () is given. �
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Proof of Theorem . Together with Theorem ., we get

⎛

⎜⎜⎜⎜⎜
⎝

z∗


‖z‖
z∗


‖z‖

...
z∗

n
‖zn‖

⎞

⎟⎟⎟⎟⎟
⎠

(z, z, . . . , zn) =

⎛

⎜⎜
⎝

 
. . .

 

⎞

⎟⎟
⎠ . (.)

Thus

det

⎛

⎜⎜⎜⎜⎜
⎝

⎛

⎜⎜⎜⎜⎜
⎝

z∗


‖z‖
z∗


‖z‖

...
z∗

n
‖zn‖

⎞

⎟⎟⎟⎟⎟
⎠

(z, z, . . . , zn)

⎞

⎟⎟⎟⎟⎟
⎠

= ,

det

⎛

⎜⎜⎜⎜
⎝

z∗


z∗

...

z∗
n

⎞

⎟⎟⎟⎟
⎠

· det(z, z, . . . , zn) =

( n∏

i=

‖zi‖
)

.

From

[x, x, . . . , xn]∗ =
[
z∗

 , z∗
, . . . , z∗

n
]
,

and the definition of the volume of parallellotopes, the equality (.) holds.
Assume that {z∗∗

 , z∗∗
 , . . . , z∗∗

n } is a set of the edge vectors of [z, z, . . . , zn]∗∗. Together with
Theorem ., we get

⎛

⎜⎜⎜⎜
⎝

z∗


z∗

...

z∗
n

⎞

⎟⎟⎟⎟
⎠

(
z∗∗


‖z∗

 ‖ , z∗∗


‖z∗
‖ ,

..., z∗∗
n

‖z∗
n‖

)
=

⎛

⎜⎜
⎝

 
. . .

 

⎞

⎟⎟
⎠ . (.)

If follows from (.) that

det

⎛

⎜⎜⎜⎜
⎝

z∗


z∗

...

z∗
n

⎞

⎟⎟⎟⎟
⎠

· det
(
z∗∗

 , z∗∗
 , . . . , z∗∗

n
)

=

( n∏

i=

‖zi‖
)

.

Thus

vol
(
[z, z, . . . , zn]∗

) · vol
(
[z, z, . . . , zn]∗∗) =

( n∏

i=

∥
∥z∗

i
∥
∥
)

. (.)

Taking together (.) and (.), the equality (.) holds. �
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For {z, z, . . . , zn}, from Lemma ., [z, z, . . . , zn]∗ is structured by them as altitude vec-
tors. Denote [z, z, . . . , zn]∗ by z∗

 , z∗
, . . . , z∗

n.
Let

[z, z, . . . , zn]∗∗ =
[
z∗

 , z∗
, . . . , z∗

n
]∗.

Thus Theorem . denotes the relationship of volumes about [z, z, . . . , zn], [z, z, . . . , zn]∗,
and [z, z, . . . , zn]∗∗.

Remark  By (.), we get

⎛

⎜⎜⎜⎜⎜
⎝

z∗


‖z‖
z∗


‖z‖

...
z∗

n
‖zn‖

⎞

⎟⎟⎟⎟⎟
⎠

(
‖z‖

‖z∗
 ‖ z∗∗

 , ‖z‖

‖z∗
‖ z∗∗

 ,
..., ‖zn‖

‖z∗
n‖ z∗∗

n

)
=

⎛

⎜⎜
⎝

 
. . .

 

⎞

⎟⎟
⎠ , (.)

From (.) and (.), we see that

z∗∗
i =

‖z∗
i ‖

‖zi‖ zi, i = , , . . . , n. (.)

By (.), we can see that [z, z, . . . , zn]∗∗ and [z, z, . . . , zn] are two parallellotopes and
their edge vectors are of the same direction.
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