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Abstract
In this paper, we present an optimization technique to find the optimal parameters of
the AOR iteration, which just needs to minimize the 2-norm of the residual vector and
avoids solving the spectral radius of the iteration matrix of the SOR method.
Meanwhile, numerical results are provided to indicate that the new method is more
robust than the AOR method for larger intervals of the parameters ω and γ .
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1 Introduction
In recent years, the iterative solvers of a large sparse linear system of equations

Ax = b (.)

are considered in many scientific computing and engineering problems, where the coef-
ficient matrix A ∈ Rn×n is a nonsingular matrix, b ∈ Rn is a given right-hand vector, and
x ∈Rn is an unknown vector.

The accelerated overrelaxation (AOR) method, which have been proven to be a pow-
erful tool for solving the linear system of equations (.), was introduced firstly by Had-
jidimos []. In particular, he showed that when the two parameters are easily obtainable,
the AOR method converges faster than the other methods of the same type. Thus, the
matter about the determination of the optimal acceleration and overrelaxation parame-
ters has to be further investigated. Lots of significant results about the optimal parameters
of the AOR method were given by Hadjidimos []. Analytic formulas about the optimal
parameters were put forward by Martins [] in the cases where the coefficient matrix A is a
weakly diagonally dominant matrix or an H-matrix. Besides, analytic formulas for optimal
parameters were also provided by Hadjidimos [, ] in those cases where the coefficient
matrix A is a consistently ordered -cyclic matrix, an irreducibly weakly diagonally domi-
nant matrix, an L-matrix, or a real symmetric positive definite matrix. In order to compute
the optimal parameters, the spectral radius of the corresponding SOR iteration matrix is
required, which may greatly decrease the computing efficiently of the AOR iteration. In
addition, the computation of this spectral radius is usually a difficult task. Furthermore,
the choice of an analytic formula for a general nonsymmetric matrix is little known to
us. Thus, applications of the AOR method to widespread real problems are seriously re-
stricted.
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The asymptotically optimal successive overrelaxation method of choosing the optimal
factor in a dynamic fashion according to known information at the current iterate step was
proposed by Bai and Chi []. Besides, a quasi-Chebyshev accelerated iteration method
for solving a linear system was presented by Wen, Meng, and Wang [], who obtained
the optimal parameter by an optimization model. Similarly, a method of determining the
optimal parameter of the SOR method was also introduced by Meng []. Based on the facts
mentioned, an optimization technique relating to choosing the optimal parameters is put
forward. Here, the optimal parameters ω and γ are computed by solving a lower-order
nonlinear system that is determined by the residual vector and the coefficient matrix A.
Furthermore, the optimal parameters are selected by the Newton iteration method instead
of specific analytic formulas in [, , ]. In this study, applying this optimization technique
to the AOR iteration, we present a modified method called the asymptotically optimal
AOR (AOAOR) method, which is more stable and effective for large linear systems than
the AOR method.

In Section , we first briefly review the AOR method and its properties. Then we put
forward the AOAOR method in Section . In Section , we use numerical experiments to
show the stability of the AOAOR method. We end the paper with conclusions in Section .

2 AOR method and its properties
Hadjidimos [] proposed the following splitting method with two parameters of the coef-
ficient matrix A:

A = Mγ ,ω – Nγ ,ω

with

Mγ ,ω =

ω

(AD – γ AL), Nγ ,ω =

ω

[
( – ω)AD + (ω – γ )AL + ωAU

]
, (.)

where γ ,ω �= , AD is the diagonal part of A, and –AL and –AU are strictly lower and
strictly upper triangular parts of A, respectively. The iteration format of the AOR method
for solving the linear systems (.) is

xp+ = Lγ ,ωxp + gγ ,ω,

where

Lγ ,ω = (AD – γ AL)–[( – ω)AD + (ω – γ )AL + ωAU
]
, gγ ,ω = ω(AD – γ AL)–b.

We observe the specific values of the parameters γ and ω in [] when the AOR method
can be reduced into:

• the Jacobi method if ω = , γ = ;
• the Simultaneous Overrelaxtion method if γ = ;
• the Gauss-Seidel method if ω = , γ = ;
• the Successive Overrelaxation method if ω = γ .
The various generalizations and/or modifications of the AOR method can be found in

[–, ]. More precisely, we survey the following conclusions.



Ren et al. Journal of Inequalities and Applications  (2016) 2016:279 Page 3 of 14

Theorem . (Theorems ., ., ., and . of []) Let A be a nonsingular matrix
with nonzero diagonal entries. Then {xp}∞p= generated by the AOR method converges to
the unique solution x∗ of the linear system (.) in the following cases:

(a) if A is an irreducibly weakly diagonally dominant matrix; for  < γ ≤ , a sufficient
condition is  < ω < γ /[ + ρ(Lγ ,γ )];

(b) if A is a real symmetric positive definite matrix; for  < γ < , a sufficient condition is
 < ω < γ /[ + ρ(Lγ ,γ )];

(c) if A is an L-matrix; for  < γ ≤ , sufficient conditions are
(i)  < ω < γ /[ + ρ(Lγ ,γ )], (ii) A is an M-matrix;

(d) if A is an M-matrix; for  ≤ γ ≤ , a sufficient condition is  < ω ≤ max{, γ

+ρ(Lγ ,γ ) }.

Remark In order to compute the optimal parameters, the ρ(Lγ ,ω) is quite expensive and
may greatly decrease the computing efficiency of the AOR iteration method from Theo-
rem .. Hence, the formulas for the optimal parameters in Theorem . are only of the-
oretical meaning and far away from practical applications. To further derive a reasonably
applicable rule for choosing the optimal parameters, the properties of the errors or resid-
uals of the AOR method need to be still investigated.

Let εp and rp denote the error and residual vectors of the AOR method at the pth iterate
step, respectively, that is, εp = xp – x∗, rp = b – Axp, and let

Hγ ,ω = AM–
γ ,ω – I, (.)

where M–
γ ,ω has been defined by (.). Then we have the following results.

Theorem . For the AOR method,
(a) if A is a symmetric positive definite matrix, then:

∥
∥εp+∥∥

A =
(
rp)THT

γ ,ωA–Hγ ,ωrp,

∂

∂γ

∥
∥εp+∥∥

A =

ω

(
rp)THT

γ ,ωM–
γ ,ωALM–

γ ,ωrp,

∂

∂ω

∥
∥εp+∥∥

A =

ω

(
rp)THT

γ ,ωM–
γ ,ωrp;

(b) if A is a general nonsymmetric matrix, then:

∥∥rp+∥∥
 =

(
rp)THT

γ ,ωHγ ,ωrp,

∂

∂γ

∥
∥rp+∥∥

 =

ω

(
rp)THT

γ ,ωAM–
γ ,ωALM–

γ ,ωrp,

∂

∂ω

∥
∥rp+∥∥

 =

ω

(
rp)THT

γ ,ωAM–
γ ,ωrp.

Proof By computing we have

∥∥εp+∥∥
A =

(
εp+, Aεp+) =

(
εp + M–

γ ,ωrp, Aεp + AM–
γ ,ωrp)

=
(
A–(–rp + AM–

γ ,ωrp), –rp + AM–
γ ,ωrp)
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=
(
A–Hγ ,ωrp,Hγ ,ωrp)

=
(
rp)THT

γ ,ωA–Hγ ,ωrp

and

∥∥rp+∥∥
 =

(
rp – AM–

γ ,ωrp, rp – AM–
γ ,ωrp)

=
(
–Hγ ,ωrp, –Hγ ,ωrp)

=
(
rp)THT

γ ,ωHγ ,ωrp.

Because of the equalities

∂(M–
γ ,ω)

∂γ
= –M–

γ ,ω
∂(Mγ ,ω)

∂γ
M–

γ ,ω and
∂(Mγ ,ω)

∂γ
= –


ω

AL,

∂(M–
γ ,ω)

∂ω
= –M–

γ ,ω
∂(Mγ ,ω)

∂ω
M–

γ ,ω and
∂(Mγ ,ω)

∂ω
= –


ω (AD – γ AL),

we have

∂(M–
γ ,ω)

∂γ
=


ω
M–

γ ,ωALM–
γ ,ω and

∂(Hγ ,ω)
∂γ

=

ω

AM–
γ ,ωALM–

γ ,ω,

∂(M–
γ ,ω)

∂ω
=


ω
M–

γ ,ω and
∂(Hγ ,ω)

∂ω
=


ω

AM–
γ ,ω.

Thus,

∂

∂ω

∥∥εp+∥∥
A =

(
rp)T

(
∂Hγ ,ω

∂ω

)T

A–Hγ ,ωrp +
(
rp)THT

γ ,ωA– ∂Hγ ,ω

∂ω
rp

=

ω

((
rp)TM–T

γ ,ωHγ ,ωrp +
(
rp)THT

γ ,ωM–
γ ,ωrp)

=

ω

(
rp)THT

γ ,ωM–
γ ,ωrp,

∂

∂γ

∥∥εp+∥∥
A =

(
rp)T

(
∂Hγ ,ω

∂γ

)T

A–Hγ ,ωrp +
(
rp)THT

γ ,ωA– ∂Hγ ,ω

∂γ
rp

=

ω

((
rp)TM–T

γ ,ωAT
L M–T

γ ,ωHγ ,ωrp +
(
rp)THT

γ ,ωM–
γ ,ωALM–

γ ,ωrp)

=

ω

(
rp)THT

γ ,ωM–
γ ,ωALM–

γ ,ωrp,

∂

∂ω

∥∥rp+∥∥
 =

(
rp)T

(
∂Hγ ,ω

∂ω

)T

Hγ ,ωrp +
(
rp)THT

γ ,ω
∂Hγ ,ω

∂ω
rp

=

ω

((
rp)TM–T

γ ,ωATHγ ,ωrp +
(
rp)THT

γ ,ωAM–
γ ,ωrp)

=

ω

(
rp)THT

γ ,ωAM–
γ ,ωrp,
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∂

∂γ

∥∥rp+∥∥
 =

(
rp)T

(
∂Hγ ,ω

∂γ

)T

Hγ ,ωrp +
(
rp)THT

γ ,ω
∂Hγ ,ω

∂γ
rp

=

ω

((
rp)TM–T

γ ,ωAT
L M–T

γ ,ωATHγ ,ωrp +
(
rp)THT

γ ,ωAM–
γ ,ωALM–

γ ,ωrp)

=

ω

(
rp)THT

γ ,ωAM–
γ ,ωALM–

γ ,ωrp.

The theorem is proved. �

The asymptotically optimal AOR (AOAOR) method for both cases of symmetric posi-
tive definite and general nonsymmetric linear systems can be established by Theorem ..

3 The asymptotically optimal AOR method
In this section, we establish the asymptotically optimal AOR method by using the idea of
[–].

Since (AD – γ AL)– = (I – γ L)–A–
D with L = A–

D AL is a strictly lower triangular matrix,
Ln = O (the zero matrix), and ρ(γ L) < , (I – γ L)– can be written in the form of Taylor
expansion ([]). Then

(I – γ L)– =
n–∑

k=

(γ L)k . (.)

Therefore, M–
γ ,ω can be expressed as

M–
γ ,ω = ω(AD – γ AL)– = ω(I – γ L)–A–

D = ω

n–∑

k=

(γ L)kA–
D . (.)

Evidently, M–
γ ,ω can be approximated by a lower-order truncation of the matrix series on

the right-hand side of (.). In general,

M–
γ ,ω ≈ ω

(
I + αγ L + βγ L)A–

D ≡ μ(γ ,ω,α,β), (.)

where α and β are two real parameters.
In terms of (.) and (.), we have

Hγ ,ω = AM–
γ ,ω – I = ωA

(
I + αγ L + βγ L)A–

D – I ≡ ν(γ ,ω,α,β). (.)

Now, applying (.) and (.) to Theorem ., we get the following results:
(a) when A is a symmetric positive definite matrix,

∂

∂γ

∥
∥εp+∥∥

A ≈ 
ω

(
rp)T

ν(γ ,ω,α,β)Tμ(γ ,ω,α,β)ALμ(γ ,ω,α,β)rp

= 
(
–ω

(
rp)T LA–

D rp – ωγα
(
rp)T LA–

D rp + ω(rp)T A–
D ALA–

D rp

+ ωγ
(
α

(
rp)T A–

D ALA–
D rp + α

(
rp)T A–

D LT ALA–
D rp)

+ ωγ (α + β)(rp)T A–
D

(
LT)ALA–

D rp
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+ ωγ αβ(rp)T A–
D

(
LT)ALA–

D rp)

= 
(
–ηω – αηωγ + ηω

 + (αη + αη)ωγ

+
(
α + β)ηω

γ  + αβηω
γ ),

∂

∂ω

∥∥εp+∥∥
A ≈ 

ω

(
rp)T

ν(γ ,ω,α,β)Tμ(γ ,ω,α,β)rp

= 
(
–
(
rp)T A–

D rp + ω
(
rp)T A–

D AA–
D rp – γα

(
rp)T LA–

D rp

– γ β(rp)T LA–
D rp + ωγα

(
rp)T A–

D ALA–
D rp

+ ωγ (β(rp)T A–
D ALA–

D rp + α(rp)T A–
D LT ALA–

D rp)

+ ωγ αβ(rp)T A–
D

(
LT)ALA–

D rp

+ ωγ β(rp)T A–
D

(
LT)ALA–

D rp)

= 
(
–η + ηω – αηγ – βηγ

 + αηωγ +
(
βη + αη

)
ωγ 

+ αβηωγ  + βηωγ ),

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η = (rp)T A–
D rp,

η = (rp)T A–
D AA–

D rp,
η = (rp)T LA–

D rp,
η = (rp)T LA–

D rp,
η = (rp)T A–

D ALA–
D rp,

η = (rp)T A–
D ALA–

D rp,
η = (rp)T A–

D LT ALA–
D rp,

η = (rp)T A–
D (LT )ALA–

D rp,
η = (rp)T A–

D (LT )ALA–
D rp;

(b) when A is a general nonsymmetric matrix,

∂

∂γ

∥∥rp+∥∥
 ≈ 

ω

(
rp)T

ν(γ ,ω,α,β)T Aμ(γ ,ω,α,β)ALμ(γ ,ω,α,β)rp

= 
(
–ω

(
rp)T ALA–

D rp – ωγα
(
rp)T ALA–

D rp

+ ω(rp)T A–
D AT ALA–

D rp

+ ωγ
(
α

(
rp)T A–

D AT ALA–
D rp + α

(
rp)T A–

D LT AT ALA–
D rp)

+ ωγ (α + β)(rp)T A–
D

(
LT)AT ALA–

D rp

+ ωγ αβ(rp)T A–
D

(
LT)AT ALA–

D rp)

= 
(
–ξω – αξωγ + ξω

 + (αξ + αξ)ωγ

+
(
α + β)ξω

γ  + αβξω
γ ),

∂

∂ω

∥
∥rp+∥∥

 ≈ 
ω

(
rp)T

ν(γ ,ω,α,β)T Aμ(γ ,ω,α,β)rp

= 
(
–
(
rp)T AA–

D rp + ω
(
rp)T A–

D AT AA–
D rp – γα

(
rp)T ALA–

D rp
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– γ β(rp)T ALA–
D rp + ωγα

(
rp)T A–

D AT ALA–
D rp

+ ωγ (β(rp)T A–
D AT ALA–

D rp + α(rp)T A–
D LT AT ALA–

D rp)

+ ωγ αβ(rp)T A–
D

(
LT)AT ALA–

D rp

+ ωγ β(rp)T A–
D

(
LT)AT ALA–

D rp)

= 
(
–ξ + ξω – αξγ – βξγ

 + αξωγ +
(
βξ + αξ

)
ωγ 

+ αβξωγ  + βξωγ ),

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ξ = (rp)T AA–
D rp,

ξ = (rp)T A–
D AT AA–

D rp,
ξ = (rp)T ALA–

D rp,
ξ = (rp)T ALA–

D rp,
ξ = (rp)T A–

D AT ALA–
D rp,

ξ = (rp)T A–
D (LT )AT AA–

D rp,
ξ = (rp)T A–

D LT AT ALA–
D rp,

ξ = (rp)T A–
D (LT )AT ALA–

D rp,
ξ = (rp)T A–

D (LT )AT ALA–
D rp.

Our discussion can be summarized as the following theorems.

Theorem . Let A be a symmetric positive definite matrix. Then reasonable approxima-
tions γ p, ωp satisfying arg min>ω≥γ >‖εp+‖A are given by solving the nonlinear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–η̂ω – αη̂ωγ + η̂ω
 + (αη̂ + αη̂)ωγ + (α + β)η̂ω

γ 

+ αβη̂ω
γ  = ,

–η̂ + η̂ω – αη̂γ – βη̂γ
 + αη̂ωγ + (βη̂ + αη̂)ωγ 

+ αβη̂ωγ  + βη̂ωγ  = ,

(.)

where

ρ = A–
D rp, ρ = Lρ, ρ = Aρ,

ρ = Aρ, ρ = Lρ, ρ = Aρ.
(.)

Hence,

⎧
⎪⎨

⎪⎩

η̂ = (rp)Tρ, η̂ = ρT
 ρ, η̂ = (rp)Tρ,

η̂ = (rp)Tρ, η̂ = ρT
 ρ, η̂ = ρT

 ρ,
η̂ = ρT

 ρ, η̂ = ρT
 ρ, η̂ = ρT

 ρ.
(.)



Ren et al. Journal of Inequalities and Applications  (2016) 2016:279 Page 8 of 14

Theorem . Let A be a general nonsymmetric matrix. Then reasonable approximations
γ p, ωp satisfying arg min>ω≥γ >‖rp+‖ are given by solving the nonlinear system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–ξ̂ω – αξ̂ωγ + ξ̂ω
 + (αξ̂ + αξ̂)ωγ + (α + β)ξ̂ω

γ 

+ αβξ̂ω
γ  = ,

–ξ̂ + ξ̂ω – αξ̂γ – βξ̂γ
 + αξ̂ωγ + (βξ̂ + αξ̂)ωγ 

+ αβξ̂ωγ  + βξ̂ωγ  = ,

(.)

where

δ = A–
D rp, δ = Aδ, δ = Lδ,

δ = Aδ, δ = Lδ, δ = Aδ.
(.)

Hence,

⎧
⎪⎨

⎪⎩

ξ̂ = (rp)Tδ, ξ̂ = δT
 δ, ξ̂ = (rp)Tδ,

ξ̂ = (rp)Tδ, ξ̂ = δT
 δ, ξ̂ = δT

 δ,
ξ̂ = δT

 δ, ξ̂ = δT
 δ, ξ̂ = δT

 δ.
(.)

By Theorems .-. the asymptotically optimal AOR (AOAOR) method can be con-
structed for the cases where A is a symmetric positive definite matrix or a general non-
symmetric matrix.

Method . (AOAOR method for a symmetric positive definite matrix)
S. Given an initial vector x ∈Rn, a precision ε, and two parameters α, β , for

p = , , , . . . :
S. Compute rp = b – Axp.
S. Compute (.).
S. Compute (.).
S. Solve (.) by the Newton method (see []) for obtaining γ p, ωp.
S. Determine γ p, ωp that make the Hessian matrix positive definite.
S. Solve (AD – γ AL)yp = rp to get yp.
S. Compute xp+ = xp + ωyp.

Method . (AOAOR method for a nonsymmetric matrix)
S. Given an initial vector x ∈Rn, a precision ε, and two parameters α, β , for

p = , , , . . . :
S. Compute rp = b – Axp.
S. Compute (.).
S. Compute (.).
S. Solve (.) by the Newton method (see []) for obtaining γ p, ωp.
S. Determine γ p, ωp that make the Hessian matrix positive definite.
S. Solve (AD – γ AL)yp = rp to get yp.
S. Compute xp+ = xp + ωyp.

Methods .-. both shared the same cost. Method . requires nine vectors x, y, r, ρi

(i = , , . . . , ) stored, and each iteration requires seven matrix-vector products (Ax, Lx),



Ren et al. Journal of Inequalities and Applications  (2016) 2016:279 Page 9 of 14

Table 1 Operation forms and flops at each step of the iteration

Oper. form Number of iteration steps Total flops

Step 1 Step 2 Step 3 Step 6 Step 7 Total

Ax 1 3 0 0 0 4 4[(2m – 1)n]
Lx 0 2 0 1 0 3 3[(2ml – 1)n –ml(ml – 1)]
(x, y) 0 0 9 0 0 9 9[(2n – 1)]
ζ y 0 0 0 2 1 3 3[n]
x + y 1 0 0 1 1 3 3[n]
ζ · κ 0 0 0 0 0 0 0

nine inner products (S of Method .), three operations of the form ζx, three operations
of the form x + y, and no operations of the form ζκ , where ζ and κ are scalars. Thus, if the
number of nonzero entries on each row of the matrix A is m and that of the matrix L is
ml , then the details are listed in Table .

4 Numerical experiments
The test example is the following two-dimensional partial differential equation with
Dirichlet boundary condition ([]):

{
– ∂u

∂t


– ∂u
∂t


+ ξ ∂u

∂t
+ ζ ∂u

∂t
+ σu = f (t, t), (t, t) ∈ �,

u(t, t) = , (t, t) ∈ ∂�,
(.)

where ξ , ζ , and σ are all constants, � is the unit square (, ) × (, ) in R, ∂� is the
boundary of the domain �, and f (t, t) : � →R is a given function.

If ui,j and fi,j denote the approximate solution of (.) and an approximation of the func-
tion f (t, t) at the grid point (ih, jh), respectively, then a discretized approximation of (.)
is the following linear system of equations:

μui+,j + ηui–,j + μui,j+ + ηui,j– + μui,j = hfi,j, i, j = , , . . . , N , (.)

where (N + )h = , and

{
μ = ( + σh), μ = –( – 

ξh), μ = –( – 
ζh),

η = –( + 
ξh), η = –( + 

ζh).

Let

xT = (u,, . . . , u,N , u,, . . . , u,N , . . . , uN ,, . . . , uN ,N ).

The linear system (.) can be written as the linear system (.) with

A =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜
⎝

T μI
ηI T μI

. . . . . . . . .
ηI T μI

ηI T

⎞

⎟⎟
⎟⎟
⎟⎟
⎟
⎠

∈Rn×n
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with

T =

⎛

⎜⎜
⎜⎜⎜
⎜⎜
⎝

μ μ

η μ μ
. . . . . . . . .

η μ μ

η μ

⎞

⎟⎟
⎟⎟⎟
⎟⎟
⎠

∈RN×N

and

bT = h(f,, . . . , f,N , f,, . . . , f,N , . . . , fN ,, . . . , fN ,N ),

where n = N × N .
In practical computations, the right-hand side b is generated by b = Ae, in which e =

(, , . . . , )T ∈Rn, the initial vector x ∈Rn is taken to be zero, and all runs are terminated
if the current iteration satisfies either the value of residual

RES ≡ ∥∥rp∥∥
 ≤ ε

∥∥r∥∥
 (.)

or the number of iteration steps exceeds ,. The iteration index p, namely, the number
of iteration steps satisfying (.), is particularly denoted as “IT”, and the running time
in seconds is denoted as “CPU”. In addition, all experiments are performed in MATLAB
Ra on PC with . GHz processor,  GB memory, and -bit operating system, “†”
indicates that the number of iterations is greater than ,, that is, the iteration fails,
“-” indicates that the computing is out of memory.

With different selections of ξ , ζ , σ , different forms of the coefficient matrix are given.
Particularly, the coefficient matrix A is a symmetric matrix when ξ = ζ = σ = . or ξ =
ζ = ., σ = ., and it is a nonsymmetric matrix for ξ = ., ζ = ., σ = . or ξ = .,
ζ = ., σ = .. In Tables -, we list the numbers of iteration steps, the -norms of the
residual vectors, and the computing times for different choices of ξ , ζ , σ .

From Tables - we can see that although the IT and CPU of the AOR method are less
than those of the AOAOR method when h– < , the AOR method is out of memory,
whereas the AOAOR method can continue to run for h– ≥ . Moreover, in the iteration
process, (AD – γ AL)– of dimension N requires to be solved for the AOR method. The
AOAOR method, however, only needs to solve the inverse of N-dimensional T . Thus, the
AOAOR method is better than the AOR method with respect to the increase of the size
of the coefficient matrix.

The rates of convergence of the AOR and AOAOR methods are determined by the
choice of the initial guesses ω and γ . If ω ∈ (, ) and γ ≤ ω, then the AOR method is
convergent. Therefore, we choose ω ∈ (, ) and γ ≤ ω, where ω changes with step size of
., and γ changes with step size of . in computation. It is well known that ω >  is a
wise choice since it is the overrelaxation iteration. Hence, Tables - only list the ITs of the
AOAOR and AOR methods for ω ∈ (, ). We further choose two points ω = . and ω = 
as examples to approach two extremal points and ω = . close to an intermediate point to
explain that the IT of the AOR method changes greatly and that of the AOAOR method
is almost unchanged for the larger intervals of the parameters ω and γ . In Tables -, we
have provided the gap of the iteration numbers with respect to different ξ , ζ , σ , and ε.
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Table 2 Numerical results when ξ = ζ = σ = 0.0 (ε = h2/5)

Methods h–1

32 64 128 256 288 300

AOR IT 41 89 - - - -
RES 1.9e–3 7.38e–4
CPU 0.20 4.18

AOAOR IT 216 895 3,816 16,200 † †
RES 2.1e–3 7.68e–4 2.76e–4 9.71e–5
CPU 10.84 58.96 275.80 2,300.30

Table 3 Numerical results when ξ = ζ = 0, σ = 2.5 (ε = h2/5)

Methods h–1

32 64 128 256 288 300

AOR IT 36 78 - - - -
RES 1.86e–3 7.0e–4
CPU 0.18 4.08

AOAOR IT 154 641 2,688 11,613 † †
RES 2.1e–3 7.8e–4 2.7e–4 9.75e–5
CPU 7.74 40.31 189.08 1,560.23

Table 4 Numerical results when ξ = 30.0, ζ = 0.0, σ = 10.0 (ε = h2)

Methods h–1

32 64 128 256 288 300

AOR IT 23 51 - - - -
RES 9.99e–3 3.42e–3
CPU 0.18 3.64

AOAOR IT 61 259 1,078 4,526 5,772 6,279
RES 1.18e–2 3.9e–3 1.38e–3 4.8e–4 4.1e–3 3.86e–4
CPU 2.54 13.21 52.06 288.58 379.42 434.97

Table 5 Numerical results when ξ = 0.0, ζ = 30.0, σ = 10.0 (ε = h2)

Methods h–1

32 64 128 256 288 300

AOR IT 10 20 - - - -
RES 9.36e–3 2.6e–3
CPU 0.28 5.70

AOAOR IT 30 126 537 2,261 2,884 3,137
RES 1.09e–2 3.8e–3 1.37e–3 4.8e–4 4.09e–4 3.86e–4
CPU 3.80 31.29 132.69 400.02 560.39 1,092.20

From Tables - we note that:
(a) When ω is a specific value, as for ω = . and h– = , the IT of the AOR method is

thrown into [, ,], much more than the IT of the AOAOR method in Table .
Thus, the AOAOR method is superior to the AOR method. In Table , the IT
increased from  to  for the AOR method, but it is  for the AOAOR
method. Although a lot of ITs of the AOR method are less than , the AOR
method is more efficient only by choosing an appropriate γ . Consequently, for the
same ω, the AOAOR method does not depend on γ ;
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Table 6 The gap of IT when ξ = ζ = σ = 0.0 (ε = h2/5)

Methods ω γ h–1

32 64 128 256

AOR 1.9 [1.9 : –0.01 : 0] [95, 782] [120, 2,822]
1.4 [1.4 : –0.01 : 0] [121, 1,699] [513, 8,265]
1 [1 : –0.01 : 0] [282, 573] [1,197, 2,438]

AOAOR 1.9 [1.9 : –0.01 : 0] 216 [895, 916] [3,904, 3,907] 16,200
1.4 [1.4 : –0.01 : 0] 216 [896, 903] 3,907 16,200
1 [1 : –0.01 : 0] 216 [896, 906] [3,901, 3,907] 16,200

Table 7 The gap of IT when ξ = ζ = 0.0, σ = 2.5 (ε = h2/5)

Methods ω γ h–1

32 64 128 256

AOR 1.9 [1.9 : –0.01 : 0] [95, 529] [120, 4,585]
1.4 [1.4 : –0.01 : 0] [87, 7,872] [365, 1,305]
1 [1 : –0.01 : 0] [202, 405] [852, 1,715]

AOAOR 1.9 [1.9 : –0.01 : 0] 154 641 [2,689, 2,709] 11,613
1.4 [1.4 : –0.01 : 0] 154 641 [2,693, 2,701] 11,613
1 [1 : –0.01 : 0] 154 641 [2,688, 2,703] 11,613

Table 8 The gap of IT when ξ = 30.0, ζ = 0.0, σ = 10.0 (ε = h2)

Methods ω γ h–1

32 64 128 288 300

AOR 1.9 [1.9 : –0.01 : 0] [199, 1,824] [215, 526]
1.4 [1.4 : –0.01 : 0] [23, 2,765] [84, 1,137]
1 [1 : –0.01 : 0] [50, 96] [196, 387]

AOAOR 1.9 [1.9 : –0.01 : 0] 61 259 [1,078, 1,081] 5,772 6,279
1.4 [1.4 : –0.01 : 0] 61 259 [1,079, 1,081] 5,772 6,279
1 [1 : –0.01 : 0] 61 259 [1,079, 1,081] 5,772 6,279

Table 9 The gap of IT when ξ = 0.0, ζ = 30.0, σ = 10.0 (ε = h2)

Methods ω γ h–1

32 64 128 288 300

AOR 1.9 [1.9 : –0.01 : 0] [68, 1,860] [82, 534]
1.4 [1.4 : –0.01 : 0] [10, 1,039] [48, 3,191]
1 [1 : –0.01 : 0] [31, 92] [160, 388]

AOAOR 1.9 [1.9 : –0.01 : 0] 30 126 537 2,884 [3,137, 3,139]
1.4 [1.4 : –0.01 : 0] 30 126 537 2,884 3,137
1 [1 : –0.01 : 0] 30 126 537 2,884 3,137

(b) When ω is variable and γ is a suitable fixed value, the minimal IT of the AOR
method is  for ω = . and h– = , and it is  for ω =  and h– =  in Table .
Therefore, the result for ω =  is better. But whether ω =  or ω = ., the minimal IT
(ω = ., IT = ) is not reached. Thus, the IT of the AOR method can reach the
minimum point only when ω is appropriate, whereas the ITs of the AOAOR method
for ω = ., ω = ., and ω =  are fixed at . Hence, the AOAOR method is
independent of the choice of ω.
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Figure 1 Curves of the IT for ω = 1.9, h–1 = 32 in Table 8.

Figure 2 Curves of the IT for ω = 1.9, h–1 = 32 in Table 7.

Figure 3 Curves of the IT for ω = 1.9, ω = 1.4, and ω = 1 with h–1 = 32 in Table 8.

Consequently, we obtain the obvious conclusion that the IT of the AOR method is sensi-
tive to the guesses of ω and γ . Furthermore, Figures - according to Tables - are given
to distinctly illustrate the sensitivity of the AOR and AOAOR methods.
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Figure  clearly depicts the variation with respect to ω. We notice that the graph of the
AOR method is vertically descending, whereas that of the AOAOR method is completely
flat, which shows that the IT of the AOAOR method is independent of the choice of γ . So
does Figure .

When ω is not an exact value, the numbers of IT of the AOR method are dramatically
different for invariable γ , that is, it depends on the choice of ω. However, the IT of the
AOAOR method remains at . Therefore, the conclusion that the IT of the AOAOR
method is independent of the choice of ω is illustrated in Figure .

Thus, from Figures - we see that both AOR and AOAOR methods are sensitive to
the parameters ω and γ . For the larger intervals of the parameters ω and γ , the IT of the
AOR method varies according to the curve wave; however, that of the AOAOR method is
almost at the same level. This means that the AOR method is more sensitive to the initial
guesses of the optimal parameters ω and γ , whereas the AOAOR method is more stable.

5 Conclusions
The asymptotically optimal accelerated overrelaxation (AOAOR) method for linear sys-
tems (.) has been presented. Especially, the optimal parameters are discussed. The nu-
merical experiments have shown that the AOAOR method is efficient when the dimension
of the coefficient matrix is over . Furthermore, the AOAOR method is more stable with
respect the initial guesses of relaxation factors ω and γ .
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