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Abstract
In the centered surround system S(2){P,Γ }, we establish the following gravity
inequalities:
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where Γ is an ellipse, P and e are one of the foci and the eccentricity of the ellipse,
respectively, and A ∈ Γ is a satellite of the centered surround system S(2){P,Γ }. We
also demonstrate the applications of the inequalities in the temperature research, and
we obtain an approximate mean temperature formula as follows:

T ≈
(
1 + 0.9095071300973198 . . . × e2

1 – e2
)( 2π

|Γ |
)2
, ∀e ∈ (0, 1),

where the T is the mean temperature on a planet.
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1 Introduction
It is well known that there are eight planets in the solar system, i.e., Mercury, Venus, Earth,
Mars, Jupiter, Saturn, Uranus, and Neptune. In space science, we are concerned with the
radiation energy of the Sun since it will directly affect our daily life. Since the temperature
on a planet is dependent on the radiation energy and the radiation energy is related to the
gravity of the Sun, we are especially interested in the gravity norm of the Sun.

In space science, we need to know the mean temperature on a planet. Unfortunately, it is
very difficult to measure the mean temperature on a planet. Therefore, it is of theoretical
significance to study the mean temperature on a planet by means of mathematics.

At present, the research of temperature on the Earth is a topic of focus in the world. In
our daily life, we are concerned with temperature change, which will directly affect our
daily life. Since the rain and the air humidity are related to the temperature and our daily
life is dependent on the rain and the air humidity, it is of value in applications to study the
mean temperature on the Earth.

© 2016 Wen et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

http://dx.doi.org/10.1186/s13660-016-1195-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1195-9&domain=pdf
http://orcid.org/0000-0001-8010-4456
mailto:yuanjun_math@126.com


Wen et al. Journal of Inequalities and Applications  (2016) 2016:264 Page 2 of 18

In this paper, our motivation is to study the mean temperature on a planet by means of
the theory of mean []. To this end, we first introduce the basic concepts in the surround
system [–], and we illustrate the background and the significance of these concepts in
space science. Next, we establish several identities and inequalities involving the centered
surround system S(){P,Γ }, in particular, the mean gravity norm formula, as well as we il-
lustrate the coefficients in these inequalities are the best constants. Next, we prove gravity
inequalities in the centered surround system S(){P,Γ }, which are also isoperimetric-type
inequalities [, ]. Finally, we demonstrate the applications of our results in the tempera-
ture research on a planet, and we obtain an approximate mean temperature formula.

2 Basic concepts and main result
In [–, ], the authors systematically studied the theory of satellite and obtained some
results which have the application value. But in space science, the centered surround sys-
tem S(){P,Γ } [–] has its special properties, that is, where the Γ is an ellipse and P is
one of the foci of the ellipse []. Therefore, it is necessary for us to do further research on
this centered surround system.

Let the particle A ∈ R
 be regarded as the Earth, and let its motion trajectory be the

ellipse

Γ �
{

xi + yj ∈ R

∣∣∣ x

a +
y

b = , x, y ∈R, a ≥ b > 
}

,

where i = (, ), j = (, ), R� (–∞,∞), R � R × R, and let the particle P � –
√

a – bi
be regarded as the Sun, which is a focus of the ellipse Γ . Then the set S(){P,Γ } � {P,Γ }
is a centered surround system [–].

We remark here that the foci of the ellipse Γ are –ci and ci, where c =
√

a – b ≥ ,
and the eccentricity of the ellipse Γ is e � c/a ∈ [, ). Note that the e in this paper is the
eccentricity of the ellipse Γ rather than the Euler constant e, that is,

e 
= e � lim
n→∞

(
 +


n

)n

= . . . . .

Let the masses of the Earth A and the Sun P be m >  and M > , respectively. Then,
according to the law of universal gravitation, the gravity of the Earth A to the Sun P is

F(A, P) =
GmM(A – P)

‖A – P‖ , ()

where the G is the gravitational constant in the solar system. Without loss of generality,
here we assume that GmM = .

We say that

∥∥F(A, P)
∥∥ =


‖A – P‖ and

∥∥F(A, P)
∥∥ � 

|Γ |
∮

Γ


‖A – P‖

are the gravity norm and the mean gravity norm of the gravity F(A, P), respectively
[, , ].

In general, the mean gravity norm ‖F(A, P)‖ cannot be expressed by the elementary
functions since it involves the elliptic integral []. Therefore, in order to facilitate the
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applications, we need to find its sharp lower and upper bounds, which can be expressed
by the elementary functions.

In this paper, our main result is as follows.

Theorem  (Gravity inequalities) Let S(){P,Γ } be a centered surround system, where
the Γ is an ellipse and the P is one of the foci of the ellipse. Then we have the following
isoperimetric-type inequalities [, ]:

(
 +


π

e

 – e

)(
π

|Γ |
)

≤ ∥∥F(A, P)
∥∥ ≤

(
 +

 – π

π

e

 – e

)(
π

|Γ |
)

, ()

where the e is the eccentricity of the ellipse. The equalities in () hold if and only if Γ is a
circle.

In [], the authors obtained the following isoperimetric inequality [, ] (see () in []):

∥∥F(A, P)
∥∥ ≥

(
π

|Γ |
)

, ()

where the Γ is a smooth and convex Jordan closed curve in R
 [–, ]. Obviously, in-

equalities () are both an improvement and an expansion of inequality ().
In space science, the orbit Γ of a satellite A is approximate to a circle [], that is, the

eccentricity e of the ellipse Γ is very small. Since the error

 – π

π
–


π

= . . . .

of the coefficients ( – π )/(π ) and /(π ) is not very large and the eccentricity e is very
small, we see that inequalities () are sharp.

We remark here that, by the isoperimetric inequalities []

πab = Area D(Γ ) ≤ |Γ |
π

and the p-mean inequality [, , , –]

|Γ |
π

=


π

∫ π



√
a sin θ + b cos θ dθ

≤
√


π

∫ π



(
a sin θ + b cos θ

)
dθ

=
√

a + b


,

we have

√
ab ≤ |Γ |

π
≤

√
a + b


. ()

Therefore, the |Γ |/(π ) is a mean of the positive real numbers a and b.
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3 Preliminaries
In order to prove Theorem , we need to establish several identities and inequalities as
follows.

According to the theory of mathematical analysis, we have Lemma .

Lemma  Let f : R →R be a periodic function with the period T . Then we have

∫ T+t

t
f (x) dx =

∫ T


f (x) dx, ∀t ∈R. ()

Lemma  For any continuous function g : [, ] →R, we have


π

∫ π


g
(
cos θ

)
dθ =


π

∫ π



g
(
cos θ

)
dθ . ()

Proof Since the function g(cos θ ) is both an even function and a periodic function with
the period π , according to Lemma , we have


π

∫ π


g
(
cos θ

)
dθ =


π

∫ π

–π

g
(
cos θ

)
dθ

=

π

∫ π


g
(
cos θ

)
dθ

=

π

∫ π


– π


g
(
cos θ

)
dθ

=

π

∫ π



g
(
cos θ

)
dθ .

This ends the proof of Lemma . �

Lemma  (Mean gravity norm formula) Under the hypotheses in Theorem , we have

∥∥F(A, P)
∥∥ =

(
π

|Γ |
)( 

π

∫ π




√
 – e cos θ dθ

)[

π

∫ π




 + e cos θ

( – e cos θ )/ dθ

]
. ()

Proof Since Γ = {xi + yj ∈ R
|x = a cos θ , y = b sin θ , θ ∈ [, π ]}, we have

‖A – P‖ =
√

(a cos θ + c) + (b sin θ )

=
√

a cos θ + ac cos θ + c +
(
a – c

)
sin θ

= a + c cos θ = a( + e cos θ ),

that is,

‖A – P‖ = a( + e cos θ ). ()

Since

ds
dθ

=

√(
dx
dθ

)

+
(

dy
dθ

)

= a
√

 – e cos θ , ()
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by () and (), we have

∥∥F(A, P)
∥∥ =


|Γ |

∮

Γ


‖A – P‖ ds

=


|Γ |
∫ π




a( + e cos θ )

√(
dx
dθ

)

+
(
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dθ

)

dθ

=


|Γ |
∫ π



a
√

 – e cos θ

a( + e cos θ ) dθ

=


a|Γ |
∫ π



√
 – e cos θ

( + e cos θ ) dθ

=


a|Γ |
∫ π



√
 – e cos θ

( + e cos θ )/ dθ ,

that is,

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π



√
 – e cos θ

( + e cos θ )/ dθ . ()

In (), set θ = ϑ – π . Since the cosine function cos x is a periodic function with the
period π , by Lemma , we have

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π



√
 – e cos θ

( + e cos θ )/ dθ

=


a|Γ |
∫ π+π

π

√
 – e cos(ϑ – π )

[ + e cos(ϑ – π )]/ d(ϑ – π )

=


a|Γ |
∫ π+π

π

√
 + e cosϑ

( – e cosϑ)/ dϑ

=


a|Γ |
∫ π



√
 + e cosϑ

( – e cosϑ)/ dϑ

=


a|Γ |
∫ π



√
 + e cos θ

( – e cos θ )/ dθ ,

that is,

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π



√
 + e cos θ

( – e cos θ )/ dθ . ()

By () and (), we get

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π






[ √
 – e cos θ

( + e cos θ )/ +
√

 + e cos θ

( – e cos θ )/

]
dθ

=


a|Γ |
∫ π



( – e cos θ ) + ( + e cos θ )

( – e cos θ )/ dθ

=


a|Γ |
∫ π



 + e cos θ

( – e cos θ )/ dθ ,
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that is,

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π



 + e cos θ

( – e cos θ )/ dθ . ()

On the other hand, by (), we have

|Γ | =
∫ π



√(
dx
dθ

)

+
(

dy
dθ

)

dθ = a
∫ π



√
 – e cos θ dθ . ()

According to (), (), and Lemma , we get

∥∥F(A, P)
∥∥ =


a|Γ |

∫ π



 + e cos θ

( – e cos θ )/ dθ

=


|Γ |
∫ π



√
 – e cos θ dθ

∫ π



 + e cos θ

( – e cos θ )/ dθ

=
(

π

|Γ |
)( 

π

∫ π




√
 – e cos θ dθ

)[

π

∫ π




 + e cos θ

( – e cos θ )/ dθ

]
.

That is, equation () is proved. The proof of Lemma  is completed. �

Lemma  The inequality


π

∫ π




√
 – e cos θ dθ ≥  – δe ()

holds if and only if

δ ≥  –

π

, ()

where the δ is a positive constant.

Proof Assume that () holds, we prove that () holds as follows.
By  ≤ e < ,  ≤ e cos θ <  and the Newton formula

( + x)μ =  +
∞∑

n=


n!

n∏
k=

(μ +  – k)xn, ∀x ∈ (–, ), ()

we get

√
 – e cos θ =  +

∞∑
n=


n!

n∏
k=

(



+  – k
)(

–e cos θ
)n

=  – e
∞∑

n=

(n – )!!
(n – )(n)!!

e(n–) cosn θ ,

that is,

√
 – e cos θ =  – e

∞∑
n=

(n – )!!
(n – )(n)!!

e(n–) cosn θ , ()
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where

(n)!! �  ×  ×  × · · · × (n) and (n – )!! �  ×  ×  × · · · × (n – ). ()

By (), we get


π

∫ π




√
 – e cos θ dθ =  – e

∞∑
n=

(n – )!!
(n – )(n)!!

e(n–)
(


π

∫ π



cosn θ dθ

)
. ()

Since


π

∫ π




√
 – cos θ dθ =


π

∫ π



sin θ dθ =


π

, ()

in (), letting e → , we get

∞∑
n=

(n – )!!
(n – )(n)!!

(

π

∫ π



cosn θ dθ

)
=  –


π

. ()

From (), (), (), and  ≤ e < , we get


π

∫ π




√
 – e cos θ dθ =  – e

∞∑
n=

(n – )!!
(n – )(n)!!

e(n–)
(


π

∫ π



cosn θ dθ

)

≥  – e
∞∑

n=

(n – )!!
(n – )(n)!!

(

π

∫ π



cosn θ dθ

)

=  –
(

 –

π

)
e

≥  – δe.

That is, inequality () is proved.
Next, assume that () holds; we prove () as follows.
In (), letting e → , by (), we get


π

≥  – δ ⇔ δ ≥  –

π

.

That is, inequality () holds. This proves Lemma . �

According to the theory of mathematical analysis, we have Lemma .

Lemma  For any positive integer n, we have


π

∫ π



cosn θ dθ =

(n – )!!
(n)!!

, ()

where !! is defined by ().
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Lemma  The inequality


π

∫ π




√
 – e cos θ dθ ≤ √

 – εe ()

holds if and only if

ε ≤ 


, ()

where the ε is a positive constant.

Proof Assume that () holds, we prove () holds as follows.
By the p-mean inequality [, , , –] and Lemma , we see that, for any positive

integer n, we have


π

∫ π



cosn θ dθ ≥

(

π

∫ π



cos θ dθ

)n

=


n . ()

In (), use the following exchanges

e ↔ e√


and θ ↔ ,

we get

 – e
∞∑

n=

(n – )!!
(n – )(n)!!

e(n–) 
n =

√
 –




e. ()

From (), (), (), and (), we get


π

∫ π




√
 – e cos θ dθ

=  – e
∞∑

n=

(n – )!!
(n – )(n)!!

e(n–)
(


π

∫ π



cosn θ dθ

)

≤  – e
∞∑

n=

(n – )!!
(n – )(n)!!

e(n–) 
n

=
√

 –



e

≤ √
 – εe.

Hence inequality () is proved.
Next, assume that () holds; we prove () as follows.
Let  < e < . By (), we get

ε ≤ 
e

[
 –

(

π

∫ π




√
 – e cos θ dθ

)]
, ∀e ∈ (, ). ()
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By () and Lemma , we get

ε ≤ lim
e→


e

[
 –

(

π

∫ π




√
 – e cos θ dθ

)]

= lim
t→


t

[
 –

(

π

∫ π




√
 – t cos θ dθ

)]

= lim
t→

d
dt

[
 –

(

π

∫ π




√
 – t cos θ dθ

)]

= – lim
t→

(

π

∫ π




√
 – t cos θ dθ

)
d
dt

(

π

∫ π




√
 – t cos θ dθ

)

= – lim
t→

d
dt

(

π

∫ π




√
 – t cos θ dθ

)

= – lim
t→

(

π

∫ π




d
dt

√
 – t cos θ dθ

)

= – lim
t→

(

π

∫ π




– cos θ


√

 – t cos θ
dθ

)

=

π

∫ π



cos θ dθ

=



.

Hence inequality () holds. The proof of Lemma  is completed. �

Lemma  For any positive integer n, we have




≤ n + 
n + 

n∏
k=

(
 –


k

)
<


π

. ()

Proof Recall the following famous Euler formula:

sin x = x
∞∏

n=

(
 –

x

πn

)
, ∀x ∈R. ()

In (), set x = π/, we get

lim
n→∞

n∏
k=

(
 –


k

)
=

∞∏
n=

(
 –


n

)
=


π

. ()

Define an auxiliary sequence {un}∞n= as follows:

{un}∞n=: un �
n + 
n + 

n∏
k=

(
 –


k

)
. ()

By (), we have

lim
n→∞ un =


π

. ()
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Since

un+

un
=

n + 
n + 

× n + 
n + 

[
 –


(n + )

]
=

n + n + n + 
n + n + n + 

> ,

the sequence {un}∞n= is strictly increasing. Therefore, by (), we have




= u ≤ un < lim
n→∞ un =


π

.

That is, inequalities () holds. This ends the proof of Lemma . �

According to the theory of mathematical analysis, we have Lemma .

Lemma  Let the sequence {un}∞n= ⊂ R be convergent, and let limn→∞ un = μ. Then we
have

lim
N→∞


N

N∑
n=

un = μ. ()

Lemma  The inequality


π

∫ π




 + e cos θ

( – e cos θ )/ dθ ≤  + μ
e

 – e ()

holds if and only if

μ ≤ 
π

, ()

where the μ is a positive constant.

Proof Assume that () holds, we prove () as follows.
By the Newton formula (), we get

 + e cos θ

( – e cos θ )/

= 
(
 – e cos θ

)–/ –
(
 – e cos θ

)–/

=  + 
∞∑

n=


n!

n∏
k=

(
–




+  – k
)(

–e cos θ
)n

–
∞∑

n=


n!

n∏
k=

(
–




+  – k
)(

–e cos θ
)n

=  + e
∞∑

n=

(n + )!!
(n)!!

e(n–) cosn θ

– e
∞∑

n=

(n – )!!
(n)!!

e(n–) cosn θ
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=  + e
∞∑

n=

(n + )!! – (n – )!!
(n)!!

e(n–) cosn θ

=  + e
∞∑

n=

(n + )(n – )!!
(n)!!

e(n–) cosn θ ,

that is,

 + e cos θ

( – e cos θ )/ =  + e
∞∑

n=

(n + )(n – )!!
(n)!!

e(n–) cosn θ . ()

Since

n∏
k=

(
 –


k

)
= (n + )

[
(n – )!!

(n)!!

]

, ()

by (), (), and Lemma , we get


π

∫ π




 + e cos θ

( – e cos θ )/ dθ

=  + e
∞∑

n=

(n + )(n – )!!
(n)!!

e(n–)
(


π

∫ π



cosn θ dθ

)

=  + e
∞∑

n=

(n + )(n – )!!
(n)!!

e(n–) (n – )!!
(n)!!

=  + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–),

that is,


π

∫ π




 + e cos θ

( – e cos θ )/ dθ =  + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–). ()

By (),  ≤ e < , and Lemma , we get


π

∫ π




 + e cos θ

( – e cos θ )/ dθ

=  + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–)

≤  +

π

e
∞∑

n=

e(n–)

=  +

π

e

 – e

≤  + μ
e

 – e .

Hence inequality () is proved.
Next, assume that () holds, we prove () as follows.
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Let  < e < . According to (), we see that inequality () can be rewritten as

 + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–) ≤  + μe

∞∑
n=

e(n–).

Hence

μ ≥
∑∞

n=
n+
n+

∏n
k=( – 

k )e(n–)
∑∞

n= e(n–)

=
limN→∞

∑N
n=

n+
n+

∏n
k=( – 

k )e(n–)

limN→∞
∑N

n= e(n–)

= lim
N→∞

∑N
n=

n+
n+

∏n
k=( – 

k )e(n–)

∑N
n= e(n–)

= lim
N→∞

∑N
n= une(n–)

∑N
n= e(n–)

,

that is,

μ ≥ lim
N→∞

∑N
n= une(n–)

∑N
n= e(n–)

, ∀e ∈ (, ), ()

where the sequence {un}∞n= is defined by ().
In (), letting e → , by (), (), and Lemma , we get

μ ≥ lim
e→

lim
N→∞

∑N
n= une(n–)

∑N
n= e(n–)

= lim
N→∞


N

N∑
n=

un =

π

.

This proves inequality (). The proof of Lemma  is completed. �

Lemma  The inequality


π

∫ π




 + e cos θ

( – e cos θ )/ dθ ≥  + ν
e

 – e ()

holds if and only if

ν ≤ 


, ()

where the ν is a positive constant.

Proof Assume that () holds, we prove () as follows.
By (),  ≤ e < , and Lemma , we have


π

∫ π




 + e cos θ

( – e cos θ )/ dθ

=  + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–)
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≥  +



e
∞∑

n=

e(n–)

=  +



e

 – e

≥  + ν
e

 – e .

Hence inequality () is proved.
Next, assume that () holds, we prove () as follows.
Let  < e < . According to (), we see that inequality () can be rewritten as

 + e
∞∑

n=

n + 
n + 

n∏
k=

(
 –


k

)
e(n–) ≥  + νe

∞∑
n=

e(n–).

Hence

ν ≤
∑∞

n= une(n–)
∑∞

n= e(n–) , ∀e ∈ (, ), ()

where the sequence {un}∞n= is defined by ().
In (), letting e → , we get

ν ≤ u =



.

Hence inequality () is proved. This ends the proof of Lemma . �

Lemma  The inequality

[
 –

(
 –


π

)
e

](
 +




e

 – e

)
≥  + η

e

 – e ()

holds if and only if

η ≤ 
π

, ()

where the η is a positive constant.

Proof Let  < e < . Then inequality () can be rewritten as

η ≤  – e

e

{[
 –

(
 –


π

)
e

](
 +




e

 – e

)
– 

}
=


π

+



–



(
 –


π

)
e.

Hence inequality () holds if and only if

η ≤ inf
<e<

{

π

+



–



(
 –


π

)
e

}
=


π

+



–



(
 –


π

)
=


π

.

That is, () holds if and only if () holds. This proves Lemma . �
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Lemma  The inequality

√
 –

e



(
 +


π

e

 – e

)
≤  + τ

e

 – e ()

holds if and only if

τ ≥  – π

π
, ()

where τ is a positive constant.

Proof Let

 < e < , ϕ(e) � –
 + ( 

π
– )e

(
√

 – e
 + )

+

π

.

Then inequality () can be rewritten as

τ ≤  – e

e

[√
 –

e



(
 +


π

e

 – e

)
– 

]
= –

 + ( 
π

– )e

(
√

 – e
 + )

+

π

= ϕ(e).

Since  < π < , the functions

 +
(


π

– 
)

e and
[


(√

 –
e


+ 

)]–

are strictly increasing, we see that the function ϕ(e) is strictly decreasing. So we see that
inequality () holds if and only if the inequality

τ ≥ sup
<e<

{
ϕ(e)

}
= ϕ() =

 – π

π

holds. That is, () holds if and only if () holds. This ends the proof of Lemma . �

Remark  According to Lemmas  and , we see that

 –
(

 –

π

)
e ≤ 

π

∫ π




√
 – e cos θ dθ ≤

√
 –




e, ()

where the coefficients  – /π and / of e are the best constants. Set

ω(t) �
√

 –



t –
[

 –
(

 –

π

)
t
]

, t ∈ [, ),

then

ω′(t) = –



√

 – t
+  –


π

> ω′() = –



√


+  –


π

= . . . . > .
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Therefore, the error

√
 –




e –
[

 –
(

 –

π

)
e

]
= ω

(
e) < ω() =

√


–

π

= . . . .

is very small.

Remark  According to Lemmas  and , we see that

 +



e

 – e ≤ 
π

∫ π




 + e cos θ

( – e cos θ )/ dθ ≤  +

π

e

 – e , ()

where the coefficients / and /π of e/( – e) are the best constants, and the error


π

–



= . . . .

is also very small.

Remark  According to Lemma , we see that

[
 –

(
 –


π

)
e

](
 +




e

 – e

)
≥  +


π

e

 – e , ()

where the coefficient /(π ) of e/( – e) is the best constant.

Remark  According to Lemma , we know that

√
 –

e



(
 +


π

e

 – e

)
≤  +

 – π

π

e

 – e , ()

where the coefficient ( – π )/(π ) of e/( – e) is also the best constant.

4 Proof of Theorem 1
Proof According to Lemma , and Remarks , , and , we have

∥∥F(A, P)
∥∥ =

(
π

|Γ |
)( 

π

∫ π




√
 – e cos θ dθ

)[

π

∫ π




 + e cos θ

( – e cos θ )/ dθ

]

≥
(

π

|Γ |
)[

 –
(

 –

π

)
e

](
 +




e

 – e

)

≥
(

π

|Γ |
)(

 +


π

e

 – e

)
.

Hence the first inequality in () is proved.
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According to Lemma , and Remarks , , and , we have

∥∥F(A, P)
∥∥ =

(
π

|Γ |
)( 

π

∫ π




√
 – e cos θ dθ

)[

π

∫ π




 + e cos θ

( – e cos θ )/ dθ

]

≤
(

π

|Γ |
)√

 –



e
(

 +

π

e

 – e

)

≤
(

π

|Γ |
)(

 +
 – π

π

e

 – e

)
.

Hence the second inequalities in () also hold.
Based on the above analysis, we see that equalities in () hold if and only if e = , that is,

Γ is a circle. This completes the proof of Theorem . �

5 Mean temperature on a planet
Let S(){P,Γ } be a centered surround system, where Γ is an ellipse and P is one of the foci
of the ellipse. Then we may think that of A ∈ Γ as a planet and of P as the Sun, and of the
ellipse Γ as the motion trajectory of the planet. Assume that the radiation energy of the
Sun P to the planet A is , then, according to the optical laws, the radiant energy received
by the planet A is

C
∥∥F(A, P)

∥∥ =
C

‖A – P‖ ,

where C >  is a constant of the radiation energy, and we can measure this constant C by
means of the physical methods.

As everyone knows, the radiant energy C‖F(A, P)‖ is important to us. Since the rain and
the air humidity are related to the radiation energy, we might think that there exist two
constants C∗, C∗ > , such that C∗‖F(A, P)‖ is the mean air humidity and C∗‖F(A, P)‖ is
the mean temperature on the Earth in a year. Therefore, Theorem  can be used to estimate
the mean air humidity and the mean temperature on the Earth in a year.

Suppose that the planet A is regarded as a particle, and the temperature on the planet
A at a certain moment is T = T(A), and the mean temperature on the planet is T . Then,
based on the above analysis, there exists a constant C∗ >  such that

T : Γ → (,∞), T(A) = C∗∥∥F(A, P)
∥∥, ()

and we can measure the constant C∗ by means of some tests. Without loss of generality,
here we assume that C∗ = . Then, by (), we have

T =
∥∥F(A, P)

∥∥. ()

We remark here that, if the above planet is regarded as a sphere, then the point A will be
regarded as the center of the sphere, and the T = T(A) will be regarded as the maximum
temperature on the planet at the moment. In addition, T can also be regarded as the mean
of the air humidity on the Earth at a certain moment.
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According to Theorem  and (), we have

(
 +


π

e

 – e

)(
π

|Γ |
)

≤ T ≤
(

 +
 – π

π

e

 – e

)(
π

|Γ |
)

. ()

By (), we see that there exists a real function τ (e) such that

T =
∥∥F(A, P)

∥∥ =
(

 + τ (e)
e

 – e

)(
π

|Γ |
)

, ()

where

. . . . =


π
≤ τ (e) ≤  – π

π
= . . . . . ()

Hence

τ (e) ≈ 


(


π
+

 – π

π

)
=

 – π

π
= . . . . , ∀e ∈ (, ). ()

According to () and (), we get the following approximate mean temperature for-
mula:

T ≈
(

 + . . . . × e

 – e

)(
π

|Γ |
)

, ∀e ∈ (, ). ()

According to (), we know that if the eccentricity e ∈ (, ) is very small, then the mean
temperature T on the planet is also small. Conversely, if the eccentricity e ∈ (, ) is very
large, then the mean temperature T on the planet is also very large. In particular, we have

lim
e→

T =
(

π

|Γ |
)

and lim
e→

T = ∞. ()

This is the significance of Theorem  in the temperature research.
Suppose that the ellipses Γ and Γ∗ are the motion trajectories of two planets, and the

Sun P is one of the foci of the two ellipses; e and e∗ are the eccentricities of the two ellipses,
respectively. Then, by inequality (), we have

(
 +


π

e

 – e

)(
π

|Γ |
)

>
(

 +
 – π

π

e∗
 – e∗

)(
π

|Γ∗|
)

⇒ T > T∗, ()

where T and T∗ are the mean temperatures on the two planets, respectively. This is also
the significance of Theorem  in the temperature research.

6 Conclusions
In this paper, we establish the gravity inequalities in the centered surround system
S(){P,Γ }, which are both an improvement and an expansion of inequality (), where the
Γ is an ellipse and P is one of the foci of the ellipse. We also demonstrate the applications
of the inequalities in the temperature research on a planet, and we obtain an approximate
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mean temperature formula; we illustrate the significance of the formula in the temperature
research on a planet.

The theoretical significance of this paper is to establish the geometric and physics theo-
ries on satellite motion, and the application value is to estimate the mean air humidity and
the mean temperature on the Earth in a year. Large pieces of analysis, geometry, physics,
and inequality theories are used in this paper, especially the mathematical analysis, and
the series [] is the crucial one.
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