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Abstract

We assume that X; = Z,ﬁooo ai&:x is a moving average process and {&;,—00 < i < +00}
is a doubly infinite sequence of identically distributed and dependent random
variables with zero mean and finite variance and {a;, 0o < i < 400} is an absolutely
summable sequence of real numbers. Under suitable conditions of dependence, we
get the precise rates in the law of iterated logarithm for the first moment of the partial
sums of the moving average process.
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1 Introduction
Suppose that {£;, —00 < i < +00} is a doubly infinite sequence of identically distributed ran-
dom variables with zero mean and finite variance and {a;, —00 < i < +00} is an absolutely

summable sequence of real numbers and

+00

Xi= ) ain k=1, (1)

i=—00

is a moving average process based on {§;,—00 <i < +00}. Set S, = ZZ:1 Xi,n>1.

Under the assumption that {§;, —00 < i < +00} is a sequence of independent identically
distributed (i.i.d.) random variables, many limiting results have been obtained for the mov-
ing average process {X, k > 1}. Burton and Dehling [1] got a large deviation principle; Yang
[2] established the central limit theorem and the law of the iterated logarithm; Li et al. [3]
and Zhang [4] obtained the complete convergence; and complete moment convergence
was proved by Li [5] and Li and Zhang [6].

In this article we will discuss the case of ¢-mixing. Suppose that {§;, —oo0 < i < +00} is a

sequence of identically distributed and ¢-mixing random variables with

k+m

@(m) := sup{|P(B|A) - P(B)|, A € F*..,P(A) #0,Be F2,,} - 0, m— oo,
k>1
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where ]-"f =0 (&;,a <i<b).Bydefinition, we know that {Xy, k > 1} is ¢-mixing if {§;, —o0 <
i < +00} is a sequence of p-mixing distributed random variables.

Since Hsu and Robbins [7] introduced complete convergence, there have been exten-
sions in several directions. Some authors studied the precise asymptotics of complete con-
vergence on moving average. For example, Liand Zhang [8] got precise asymptotics in the
law of the iterated logarithm of moving average and Xiao and Yin [9] got moment conver-
gence rates in the law of logarithm for moving average process under dependence, etc.

Xiao and Yin [10] studied precise asymptotics in the law of iterated logarithm for the

first moment convergence of i.i.d. random variables. They got the following result.

Theorem 1.1 Let {Y,Y,,n > 1} be a sequence of i.i.d.random variables and set U, =
", Yi. N is the standard normal random variable and EY = 0,EY? = o, then, for d > 0

and B >0,
, (loglogn)’~! doE|N 2P/
281d Ry _
}?I\I‘I(I)E E N TE E{|U,| - g0 +/n(loglogm)™?} = BB d) (2)

Inspired by Xiao and Yin [10], we extend this result to moving average processes under
¢-mixing random variable. Throughout this article, logx := In(x Vv e), and the symbol ¢
denotes a positive constant which may be different in various places, and [x] denotes the
largest integer which is not greater than x, and V' is the standard normal random variable.

Now, we state the main result of this article.

Theorem 1.2 Suppose {X;,i > 1} is defined as in (1), where {a;, —00 < i < +00} is a sequence
of real numbers with Y > |a;| < 00, and {&;,—00 < i < +00} is a sequence of identically
distributed ¢-mixing random variables with zero mean and finite variance and 0 < % :=
E&Z +2) 10, B&EEr <00, Y oo 912(2™) < 00,7 :=0| Y[, ail. Then, for d >0 and > 0,

. (loglog n)f- dTE|N|2Bld+1
281d Z 3 any
11\1‘1(1)8 n32logn {|S"| ez/n(loglogn)™}, BB +d) ®)

Remark 1.3 Let a; =1 for i = 0 and a; = 0 for i # 0, that is to say, X; = & with E& =
0,E&2 <ocoand 0 <o?:=E&2 +2) 12, E& & < 00, then, for S, = Y }_, & (3) still holds for
7 = 0 when {Xj; k > 1} is a sequence of identically distributed ¢-mixing random variables.

Therefore, this result extends Theorem 1.1.

2 Lemmas

To prove our main result, we need the following lemmas.

Lemma 2.1 (Burton and Dehling [1]) Let > /[ a; be an absolutely convergent series of
> a; and k > 1, then

[=—00

real numbers witha =) _

i+n

Z 4

j=i+1

lim ~ Z =lalk.
n—oo 1

i=—00
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Lemma 2.2 (Shao [11]) Let {X;,i > 1} be a sequence of @-mixing random variables with
zero means and finite second moments. Set S, = i, X;. Then

[logn]
ES? < 8,000n expi6 D e (2!‘)} max EX?. (4)

- 1<i<n
i=1

Ifthere is some C, such that max ES? < C,, then, for all q > 2, there exists a C = C(q, ¢(-))
such that o

E max [S;17 < C(CI + E max [X;|7). (5)

Lemma 2.3 (Lin and Zhou [12]) Let {X;,i > 1} be defined as in (1), and {&;,—o0 < i < +00}
be a sequence of identically distributed ¢-mixing random variables with zero means and
finite variances and 0 < 0> = E&} + 2 10, E&1& < 00,y o 912(2™) < 00, then

Su

o J\/(Ol) T=0

D
where —> denotes convergence in distribution.

3 Proof of main result
In this section, for 0 < ¢ <1 and M > 1, we set

b(e) = [exp{exp{Me~2"}}]. @)

Without loss of generality, we assume that 7 = 1.
Theorem 1.2 will be proved if we show the following propositions.

Proposition 3.1 Under the conditions of Theorem 1.2, we have

. (loglog m)f1 dRE|N|2P/d+1
1 28/d —e(logl anry _ , 8
0’ Z nlogn E{IN - ettoglogn)™}, BR2B +d) ®

loglo n)ﬂ1
. 2B/d Z (loglog )" _ any _
]V}ljgo ¢ b(e n log n { |N| S(IOg log n) }+ 0, (9)

where (9) uniformly holds true with respect to 0 < & < 1.
Proof See the proof of Proposition 1 and Proposition 3 in Xiao and Yin [10]. d

Proposition 3.2 Under the conditions of Theorem 1.2, we have

) log log n)f~
1 2B/d —e(1 1 dl2
lime E nlog 1 | {INV] - e(loglog m)™?}

n<b(e

—E{|Sn|/ﬁ—e(loglogn)d/2}+| =0. (10)
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Proof Let Ay, = sup,g |P((N| > x) =P(|S,|//n > x)|. By Lemma 2.3, then we have A, — 0
as 1 — 00. We have

B-1
g2p/d Z (loilfoggfg | {|N|_e(log10gn)d/2} {|S /71— loglogn)d/Z}Jr‘
n<b(e

log log n)?
_ 2p1d
-¢ Z nlogn

/ P(IN] > x + e(loglog m)*?) dx
0

n<b(e

o0
- f P(ISul/v/n > x + e(loglog n)*'?) dx
0

log1 ﬂ 1+d/2 o]
g28/d Z (OgL/ |1P>(|j\/| > (x+a)(log10gn)d/2)
0

nehie) nlogn

=~ P(ISul//n = (x + £)(loglog n)*?) | d

logl ﬁ 1+d/2  pl(n)
< 2Bl Z (OgL/ |1P>(|N| > (x+ 8)(10g10gn)d/2)
0

nebie) nlogn

~P(ISl// = (x + ) (loglog m)*2)| dx

log 1 B-1+d/2
+g2hld Z M[ P(IN] = (x + 8)(log10gn)d/2) dx
I(n)

1
orrd nlogn

1 1 B-1+d/2
+g2Pld Z %/ P(|Sul/v/n = (x+g)(loglogn)d/2)
I(n)

nlogn
n<b(e g

= Il + 12 + 13, (11)

where (1) = (loglog n)~%2 A;Y/2. Hence, for I, by applying Lemma 2.3, we have

B-1+d/2 I(n) B-1+d/2
I < ce?Pd Z Uoglogn) 77 / Adr < et 3 (0BloB 00y
0

o nlogn nbie) nlogn

_ 2P Z (loglog n)#- A;lq/z - cMP Z (loglog m)f~1 A}/z, 2
FerrA logn (loglog b(e))? B logn
So, by the Toeplitz lemma, we have
limI; = 0. (13)
e\0
As for I, by the Markov inequality, (12), and (13), we have
)p-lsdi2 oo
I < ce Z (loglog n) / - 1 ,
ol nlogn 1n) (% +&)*(loglogn)
-1-d/2
< ey (oglogn T,
et nlogn
< ce?Pld Z (loglogr)?~ Am — 0, ase\ 0 (14)
nlogn " ’ ’

n<b(e)
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For I3, note that S, = Y f_ i Xk = Y ione D gy Giivk = D 1eno Gi Z;+7+1 &. By Lemma 2.1,
without loss of generality, we assume Y /> |a;| <1, and set S, = > /™ a 1Hln+1 &,

where 51.’ = §1(§| < (x + &)/n(loglog n)¥?). By E& = 0, then, for all x > 0 we have
E& (& < x) = —E&I(1&] > x). So, we have

+00 i+n
|ES,,| = Z a;E Z g1(15] < (x + &)v/n(loglog m)*?)
i=—00 J=i+l
< Z ;| [E Z E1(1&] < (x + £)/n(loglog m)*”?)
i=—00 j=i+l
i+n
Z ;| EZ‘SJ 1&] > (x + £)v/n(loglog n)*/?)
i=—00 j=i+l
< nEl&I(j&] > (x + &)v/n(loglogm)™?)
= (x+¢)(loglogn)4/2’
thus for x > I(n) and 7 large enough, we have
|ES,| - cEE} - c <eA. <X (16)
(x + £)/n(loglogn)@2 = (x + &)2(loglogn)? ~ I(n)>(loglogn)d = " ~ 4’
so we obtain
/ P(ISul/v/n > (x + &)(loglog n)*'*) dx
I(n)
00 i+n
< c/ ( > a Y EI(1g]> (v +e)v/n(loglogn)®?)
L) i=—00  j=i+l
(x + &)/n(loglog n)*? )
> dx
2
i+n 1 1 d/2
/ Z“!Z é Eg (x+8)ﬁ( oglogn) dx
ln) i=—00  j=i+l 4
= 131 + 132. (17)

By (11) and (17), we have
(10 lo n)ﬂ—1+d/2
I; < ce?P Z gﬁT(Igl +130).

n<b(e)

On the one hand, by (12) and (13), we obtain

$2B1d Z (loglog m)#~1+d/2 L,

nlogn
n<b(e g

< ce2bld Z (loglog )P ~1+4/2 / nE|& (16| > (x + £)y/n(loglog ”l)d/z)
ce
nlogn 1) J/n(x + €)(loglog n)4/2

n<b(e
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< 2Pl (loglog m)#-1+d/2 /00 E&E2I(1&| > (x + &)y/n(loglog n)?2) q
c E x
nlogn 1) (x + &)%(loglog m)?

n<b(e

1 1 B-1-d/2
< cg2Pld Z —og ogn) / (x+¢&)2dx
nlogn 1)

ﬁ*l*d/Z
< cg2Pld Z (loglog m)™ 77 I(n)™!

n<b(e

ored nlogn
(logl
< e Z (loglog)” A1/2—> 0, ase\ 0. (18)
b nlogn

On the other hand, by the Markov inequality, the Holder inequality, and Lemma 2.2, and
noting that Y | ¢!2(2") < 00, we have

Zﬂ/d Z log log n)ﬁ*l+d/2

I3y
nlogn

n<b(e

IOg IOg }’l)ﬁ 1+d/2—dq/2 /
2B/d q
<ce x+¢&) 1K
Z g oy T

i+n

Zst - Eg)

=—00  j=i+l

n<b(e

lOg IOg n)ﬁ—1+d/2—dq/2

28/d Z
<ce
1+q/2
n<b(e n*d 10gn
* g 1 1 i+n q
X/ (x+8)_qE[Z('“5'1_”('% Z(s,r_ms;)ﬂ dx
v e j=itl
< cg2Pld Z (log log )P -1+d/2-dq/2
ce
n<b(e nlral2 logn

i+n

> (& -E8)

j=i+l

—
Rl

ay 374
):|dx

00 +00 11 1—% +00 )
X/ o) B ( D el " > laila
l(n) i=—00 i=—00

- 2p1d lOg IOg n)ﬁ—1+d/2—dq/2
ce Z nl+al2 log n

n<b(e

Q+oo q

) +00 -z
X / (x + s)‘ﬂE( Z |a;| ) Z |a;]|
lm) i=—00

n /3 1+d/2—-dq/2

i+n

12 -E8)

j=i+1

< ce2bld Z (loglogn)

1+g/2]
n ogn
n<b(e g

/ (x+e) Z |ai|E

i=—00

i+n q

> (& -Eg)

j=i+1

B-1+d/2-dq/2

(loglog n)
28/d
=ce Z ynl+al2 log n

/oo(x + s)‘q((nES’f)% +nE|g/|") dx
i)

n<b(e

= I301 + I329.
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For I3y, g > 2. By (12) and (13), we have

10 log n B-1+d/2—dq/2 00
Igo; < ce?Pl? glogn) (x+e)7dx
1
n<ble nlogn I(n)
1 1 /3 1+d/2—-dq/2
< ce™ld Z {oglog ) )
nehie nlogn
28/d (loglogn)P~! a1
< ce?/ Z ] A — 0, ase\ 0.
e nlogn

For I3y;, by (12) and (13), we have

(log lOg n)f}—1+d/2—dq/2

n1'2logn

I3y < ce??/? Z
n<b(e)

I(n)

-1-d/2
<ngﬁ/d Z M

nlogn
n<b(e g

X / (x + &) PE&2(1& ] < (x + &)/n(loglog n)*?) dx
I(n)

B-1-d/2
<C€2ﬁ/d Z (loglogn) l(n)—l

nlogn
n<b(e g

(log1
—cszﬂ/dz (loglogn)” A1/2—>0 as e \( 0.

nlogn
n<b(e g

X /"O(x + &) EI&|U(1&] < (x + £)v/n(loglog n)d/2) da
(

Page 7 of 13

(19)

(20)

Thus, combining with (13), (14), and (18)-(20), we complete the proof of this proposi-

tion.

Proposition 3.3 Under the conditions of Theorem 1.2,

M—o0
n>b(e

uniformly holds true with respect to 0 < € < 1.

Proof For x > 0, M large enough, we have

IES;,| - c _.¢ 1
— <.
J/n(x + g)(loglogn)@2 ~ (x +¢)%(loglogn)? — M4 4
Then
P(|S,| = v/n(loglogn)**(x + €))

ZalZs, (11 > (x + £)/n(loglog m)*?) | >

i=—00  j=i+l

<]p<

(log]
lim £2#/d Z (log Ogn) IE{|S,4|/\/Z—a(loglogn)””z}+ =0

Jn(loglogn)¥?(x + €)

O

(21)
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gt
2
i+n i
= P( D a Y EI(&]> (v +e)v/n(loglogn)¥?)| > «/Z(IOglogzn) (x + 8))
=—00  j=i+l

+2(]5,-B5; 2 I5,| - Es;|

. Vn(loglogn)*?(x + ¢) ~ n(loglog m)#?(x + 8)>

2 4
i+n d/2
- P( > a Y EI(&] > (x +e)v/n(loglogn)?)| > ﬁ(IOglogzn) (x + 8))
=—00  j=i+l
i+n d/z
+P< 2 @26 -B5) ﬁ(loglog:) (x+8)>~ (22)
==00  j=i+l

Therefore, by (22), we obtain

Z (loglog )1

E{ISnl/ﬁ—e(loglogn)%}
nlogn *

n>b(g)

loglogn)?=t >
= Z M/ ]P’(|S,,|/\/EZx+8(10g10gn)d/2) dx
0

roble) nlogn

log1 ﬂ—1+4 o0
= Z M[ IP’(|S,,| > ﬁ(loglogn)%(x+ 8)) dx (x =y(log10gn)d/2)
0

n>b(e) }’llogn
Z (loglogn)’™'*> 1+4 /‘OO ( in 6
= 4 :
n>b(e ﬂlOgn — e
d
log1 2
> (x+ S)ﬁ(loglogn)g) S (o + S)ﬁ(zog ogn) ) &
log /3_1*'% 0 i+n
+ 3 % / .
n>b(e) nlogn =—00 j= l+l

(x + £)4/n(loglog n)% )
> m dx

=h+).

For J;, when 28 < d, we have

2] < cp2p1d Z (loglog m)f~1+d/2 /w nE|& |1(1& ] > (x + £)/n(loglog n)*?) dx
t= nlogn 0 (x + £)y/n(loglog n)42

< ce2bld Z (loglog ) ~1-"2 /°° EE21(1& | > (x + £)/n(loglog n)#?) "y
nlogn 0 (x + )2

n>b(e)

n>b(e

loglogn)f-1-4/2 oo ~
< cg?Pld —/ (x+&)2dx
Z 0

nlogn
n>b(e g
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< cg2Bld-1 Z w
n>b(e) nlogn
< cMP12,
thus
]\/}gnoo gzﬂ/djl =0 (23)

uniformly holds true with respect to 0 < ¢ < 1.
When 28 > d, we have

p-l+d/2 oo an
J<c Z (loglogn) / nE|&I(1&] > (x + ) /n(loglog n)*'?) &
0

e Hlogn (x + £)y/n(loglog n)/2
Z (loglog n) )B-1 /00 El& (& ] > (x + &) /n(loglog n)d/Z) 4
- x
> be) Vnlogn Jo x+e
> 1 (loglog n)f~1 a Jal
= E|& |1 ] 1
C/o x+sn>2b(;) Jnlogn ; &1( V/j(oglog)) e

j +1(loglog(j + 1))d/2> dx

]
Cfo x+e ) El&ll(\/j(loglog;)% < 9% < j +1(loglog(j +1))

J>ble)

(S
N——"

" (loglog n)f-!
x i
e -~ Jnlogn

Since we have (loglog n)?~*(logn)™ — 0, as n > b(¢) — oo, then we obtain

Ji < c/ — Z \/E|§1|I( i(log log j)** < "illg </j+1(loglog(j + 1))””2) dx

]>b

< C/O = ! mE ——EE (&> (x + g)\/@(]oglogb(g))d/z)

* 1
< c/ oy oy Bt (161l > e(loglog b(e)) ") dx
0
= ce ' BEXI(|&| > £ (loglog b(e)) " = M¥?).
Hence, when 28 > d,

: 28/d : 2 d/2
Jim g2/ < lim E&I(j& | > M7?) =0 (24)

uniformly holds true with respectto 0 <& <1.
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Next we consider J,, similar to the proof of I35, we have

28/d 28/d (loglog ”)ﬂfh%t% oo - 127\q/2 N\
P < gy (v +&)1((nEE'})™ + nE|g{|") dx
0

7
b ) n'*3logn
= Jo1 + Joo.

For /51, haven taken g > max{28/d + 1,2}, then we have

dq

1 1 ﬁ—1+%—§— 00
Jo < cePd Z (log og;fz) / (x+e)7dx
n>b(e) nlogn 0

.d_dg
< ce2bld-a+1 Z (loglogm)P'+5772

nlogn
n>b(e g

dq

d
< ce*?=1"1(log log l?(<»3))ﬂ+7_7

— Mﬁ+*—7q.
Thus
lim ]21 =0
M—o0

uniformly holds true with respect to 0 < ¢ < 1.
For /5, if 28 < d, we have

- ~1+4
Joa < ce*P? Z (IOgIOg”) >

> be) n? logn

x f oo(x+ ) E|& |I(|& ] < (x + &)v/n(loglog n)®?) dx
0

(loglo nﬂl
<C€2ﬂ/dZ Joglogn)” — =

frl nlogn

x / (x + &) 2B (1&1| < (x + &)/n(loglog n)**) dx
0

B- l—— 0
< ce?? Z log Log ) / (x+e)2dx
0

fr) nlogn
log log 1)f1-%
< cg2Pld1 Z (log i‘% )
n>b(e) nlogn
= cMP2,

Thus
lim ]22 =0
M—o0

uniformly holds true with respectto 0 <& <1.

Page 10 0of 13

(26)
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If 28 > d, we divide J5; into two parts:

2pid 3 (10g10gn)ﬁ 5=
) nt logn

Joo < ce

« / e+ o) EI (1] < (x + £) Yilloglog m)¥?) dx

log 1 B- 1+2 %}
< ez 3 Uoglog ) f (¢ + &) El& [ 1(1&1] < v/lloglog n)e)
0

bie) n? logn
+1(v/n(loglog m)*s < |&1] < (x + &)/n(loglogm)™?)] dx

= Joo1 + 222

For J551, since g > 2, so we have

2 (loglog n)?- 144 d
Jom < c?Plaant 3 S0R08 E|sl|q1(|sl|<¢b(s (loglogb(e)) *¢)
>be) n2logn

144 _d4
4 ce2Pld-a+1 Z (loglogm)f1+3772
q
be) n2logn

x Z Elé191(y/j~ 1(loglog(i - 1)) P < &1] < y/j(loglog)) P )

j=b(e)+1

B-1-
s (OB 0BbEOV 8 oy g logble)) o)
log b(e)
b4l S B 97(,/f=1(loglog— 1)) 2e < [&1] < jlloglog/) P )
j=b(e)+1

©_ (loglog m)f-1+9-%
Xz(og ogn)

ni logn

n=j

26/d-1 1
loglog b(e)

<ce

o]

r et 3 Elg91(,/f=(loglogl - D) e < 1] < Vjlloglog)) e

j=b(e)+1

(loglog))* 14~
. Uoglogy) 1372
logj

* (loglogj)f-1-%
< cePld-1vdl2 g1 | o 2pld-1 Z g1og)

j=b(e)+1 1Og]

x EE2I(y/j —1(loglog(j — 1)) s<|$1|</ (loglog))? e)

<M + cEEI(|& | > v/b(e) (loglog b(e))ie > M%)
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Thus
. . PR ) d
Jim Joy < lim M7+ lim EE1(JE| > M?) =0 (27)

uniformly holds true with respect to 0 < ¢ < 1.

Finally we consider /»2,, since 28 > d and g > 2, we have

)/S 1+

28/d Z (1oglogn
> b(e) nt logn

E|sl|qf(|sl|>f (loglogn)? )

Jaoo < ce

X /Oo(x+ &) U(|&] < (x+ s)ﬁ(loglogn)%)dx

(log1 p-1+§-
< ce2ria y Uogloen) El& (|6 | > Vrlloglogn)t e)
ioble) n2logn

X / (x+e)?dx
BY .

7=

/n(loglogn) 2
(logl
< et 30 °g "g” E|sl|1(|a|>ﬁ(loglogn>%e)
n>b(e)

< el Z (loglog m)P~
n>b(e) \/—logn

M\&.

X ZE|§1|1 loglog/)Zs <&l <Vj l(loglog(] +1) ) )

M\&.

< el Z El&1( \/(loglog])%s <&l < v/j+1(loglog(j +1)) 2 €)

j=b(e)

Z (loglogm)P~
0 ~ Jnlogn

MI&.

<t Y Rl (jloglog) e < 6] < T 1(loglogl+ 1)

j=b(e)

J

N\&.

< cgPld-1 Z ]ESIZI f(loglog])%s <&l <Vj+ (loglog(] + 1))

j=b(e)

< cszﬁ/d_lEélzl(Eﬂ > &4/ b(s)(log log b(s)) s > M%)

¢)

Hence,
: : 2B/d-1 2 d/2 : 2 d/2
Jim oy < lim e PITREN (& | > M ) < lim E&'I(j&] > M) =0 (28)

uniformly holds true with respectto 0 <& <1.

Thus, combining with (23)-(28), we complete the proof of this proposition. d
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Combining with Proposition 3.1, Proposition 3.2, and Proposition 3.3 we complete the
proof of Theorem 1.2.
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