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Abstract
The aim of this paper is to establish the decay estimate for the fractional wave
equation semigroup on H-type groups given by eit�

α
, 0 < α < 1. Combining the

dispersive estimate and a standard duality argument, we also derive the
corresponding Strichartz inequalities.
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1 Introduction
In this paper, we study the decay estimate for a class of dispersive equations:

i∂tu + �αu = f , u() = u, ()

where � is the sub-Laplacian on H-type groups G, α > .
The partial differential equation in () is significantly interesting in mathematics. When

α = 
 , it is reduced to the wave equation; when α = , it is reduced to the Schrödinger

equation. The two equations are most important fundamental types of partial differential
equations.

In , Bahouri et al. [] derived the Strichartz inequalities for the wave equation on
the Heisenberg group via a sharp dispersive estimate and a standard duality argument (see
[] and []). The dispersive estimate

∥
∥eit�α

ϕ
∥
∥

L∞ ≤ C|t|–θ ()

plays a crucial role, where ϕ is the kernel function on the Heisenberg group related to
a Littlewood-Paley decomposition introduced in Section  and θ > . Such an estimate
does not exist for the Schrödinger equation (see []). The sharp dispersive estimate is also
generalized to H-type groups for the wave equation and the Schrödinger equation (see [–
]). Motivated by Guo et al. [] on the Euclidean space, we consider the fractional wave
equation () on H-type groups and will prove a sharp dispersive estimate.
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Theorem . Let N be the homogeneous dimension of the H-type group G, and p the di-
mension of its center. For  < α < , we have

∥
∥eit�α

u
∥
∥∞ ≤ Cα|t|–p/‖u‖ḂN–p/

,
,

and the result is sharp in time. Here, the constant Cα >  does not depend on u, t, and Ḃρ
q,r

is the homogeneous Besov space associated to the sublaplacian � introduced in the next
section.

Following the work by Keel and Tao [] or by Ginibre and Velo [], we also get a useful
estimate on the solution of the fractional wave equation.

Corollary . If  < α <  and u is the solution of the fractional wave equation (), then for
q ∈ [(N – p)/p, +∞) and r such that

/q + N/r = N/ – ,

we have the estimate

‖u‖Lq((,T),Lr) ≤ Cα

(‖u‖Ḣ + ‖f ‖L((,T),Ḣ)
)

,

where the constant Cα >  does not depend on u, f or T .

Remark . In this article, we assume  < α < . For α = , the decay estimate has been
proved (see []). For other cases, we could investigate the problem in a similar way to
 < α ≤ .

2 Preliminaries
2.1 H-Type groups
Let g be a two step nilpotent Lie algebra endowed with an inner product 〈·, ·〉. Its center is
denoted by z. g is said to be of H-type if [z⊥, z⊥] = z, and, for every s ∈ z, the map Js : z⊥ → z⊥

defined by

〈Jsu, w〉 :=
〈

s, [u, w]
〉

, ∀u, w ∈ z
⊥,

is an orthogonal map whenever |s| = .
An H-type group is a connected and simply connected Lie group G whose Lie algebra

is of H-type.
Given  �= a ∈ z∗, the dual of z, we can define a skew-symmetric mapping B(a) on z⊥ by

〈

B(a)u, w
〉

= a
(

[u, w]
)

, ∀u, w ∈ z
⊥.

We denote by za the element of z determined by

〈

B(a)u, w
〉

= a
(

[u, w]
)

= 〈Jza u, w〉.
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Since B(a) is skew symmetric and non-degenerate, the dimension of z⊥ is even, i.e. dim z⊥ =
d.

We can choose an orthonormal basis

{

E(a), E(a), . . . , Ed(a), E(a), E(a), . . . , Ed(a)
}

of z⊥ such that

B(a)Ei(a) = |za|J za|za| Ei(a) = |a|Ei(a)

and

B(a)Ei(a) = –|a|Ei(a).

We set p = dim z. We can choose an orthonormal basis {ε, ε, . . . , εp} of z such that a(ε) =
|a|, a(εj) = , j = , , . . . , p. Then we can denote the element of g by

(z, t) = (x, y, t) =
d

∑

i=

(xiEi + yiEi) +
p

∑

j=

sjεj.

We identify G with its Lie algebra g by the exponential map. The group law on H-type
group G has the form

(z, s)
(

z′, s′) =
(

z + z′, s + s′ +


[

z, z′]
)

, ()

where [z, z′]j = 〈z, Ujz′〉 for a suitable skew-symmetric matrix Uj, j = , , . . . , p.

Theorem . G is an H-type group with underlying manifold R
d+p, with the group law

() and the matrix Uj, j = , , . . . , p, satisfies the following conditions:
(i) Uj is a d × d skew-symmetric and orthogonal matrix, j = , , . . . , p.

(ii) UiUj + UjUi = , i, j = , , . . . , p with i �= j.

Proof See []. �

Remark . It is well known that H-type algebras are closely related to Clifford modules
(see []). H-type algebras can be classified by the standard theory of Clifford algebras.
Specially, on H-type group G, there is a relation between the dimension of the center and
its orthogonal complement space. That is p +  ≤ d (see []).

Remark . We identify G with R
d ×R

p and denote by n = d + p its topological dimen-
sion. Following Folland and Stein (see []), we will exploit the canonical homogeneous
structure, given by the family of dilations {δr}r>,

δr(z, s) =
(

rz, rs
)

.

We then define the homogeneous dimension of G by N = d + p.
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The left invariant vector fields which agree, respectively, with ∂
∂xj

, ∂
∂yj

at the origin are
given by

Xj =
∂

∂xj
+




p
∑

k=

( d
∑

l=

zlUk
l,j

)

∂

∂sk
,

Yj =
∂

∂yj
+




p
∑

k=

( d
∑

l=

zlUk
l,j+d

)

∂

∂sk
,

where zl = xl, zl+d = yl, l = , , . . . , d. In terms of these vector fields we introduce the sub-
laplacian � by

� = –
d

∑

j=

(

X
j + Y 

j
)

.

2.2 Spherical Fourier transform
Korányi [], Damek, and Ricci [] have computed the spherical functions associated to
the Gelfand pair (G, O(d)) (we identify O(d) with O(d) ⊗ Idp). They involve, as on the
Heisenberg group, the Laguerre functions

L
(γ )
m (τ ) = L(γ )

m (τ )e–τ /, τ ∈ R, m,γ ∈ N,

where L(γ )
m is the Laguerre polynomial of type γ and degree m.

We say a function f on G is radial if the value of f (z, s) depends only on |z| and s. We
denote, respectively, by Srad(G) and Lq

rad(G),  ≤ q ≤ ∞, the spaces of radial functions
in S (G) and Lp(G). In particular, the set of L

rad(G) endowed with the convolution prod-
uct

f ∗ f(g) =
∫

G
f
(

gg ′–)f
(

g ′)dg ′, g ∈ G,

is a commutative algebra.
Let f ∈ L

rad(G). We define the spherical Fourier transform, m ∈N,λ ∈R
p,

f̂ (λ, m) =

(

m + d – 
m

)– ∫

Rd+p
eiλsf (z, s)L(d–)

m

( |λ|


|z|
)

dz ds.

By a direct computation, we have f̂ ∗ f = f̂ · f̂. Thanks to a partial integration on the
sphere S

p–, we deduce from the Plancherel theorem on the Heisenberg group its analog
for the H-type groups.

Proposition . For all f ∈ Srad(G) such that

∑

m∈N

(

m + d – 
m

)
∫

Rp

∣
∣f̂ (λ, m)

∣
∣|λ|d dλ < ∞,
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we have

f (z, s) =
(


π

)d+p ∑

m∈N

∫

Rp
e–iλ·sf̂ (λ, m)L(d–)

m

( |λ|


|z|
)

|λ|d dλ, ()

the sum being convergent in L∞ norm.

Moreover, if f ∈ Srad(G), the functions �f is also in Srad(G) and its spherical Fourier
transform is given by

�̂f (λ, m) = (m + d)|λ|f̂ (λ, m).

The sublaplacian � is a positive self-adjoint operator densely defined on L(G). So by the
spectral theorem, for any bounded Borel function h on R, we have

ĥ(�)f (λ, m) = h
(

(m + d)|λ|)f̂ (λ, m).

2.3 Homogeneous Besov spaces
We shall recall the homogeneous Besov spaces given in []. Let R be a non-negative, even
function in C∞

c (R) such that supp R ⊆ {τ ∈R : 
 ≤ |τ | ≤ } and

∑

j∈Z
R
(

–jτ
)

= , ∀τ �= .

For j ∈ Z, we denote by ϕ and ϕj, respectively, the kernel of the operator R(�) and
R(–j�). As R ∈ C∞

c (R), Hulanicki [] proved that ϕ ∈ Srad(G) and obviously ϕj(z, s) =
Njϕ(δj (z, s)). For any f ∈ S ′(G), we set �jf = f ∗ ϕj.

By the spectral theorem, for any f ∈ L(G), the following homogeneous Littlewood-Paley
decomposition holds:

f =
∑

j∈Z
�jf in L(G).

So

‖f ‖L∞(G) ≤
∑

j∈Z
‖�jf ‖L∞(G), f ∈ L(G), ()

where both sides of () are allowed to be infinite.
Let  ≤ q, r ≤ ∞,ρ < N/q, we define the homogeneous Besov space Ḃρ

q,r as the set of
distributions f ∈ S ′(G) such that

‖f ‖Ḃρ
q,r

=
(

∑

j∈Z
jρr‖�jf ‖r

q

) 
r

< ∞,

and f =
∑

j∈Z �jf in S ′(G).
Let ρ < N/q. The homogeneous Sobolev space Ḣρ is

Ḣρ = Ḃ
,,
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which is equivalent to

u ∈ Ḣρ ⇔ �ρ/u ∈ L.

Analogous to Proposition  of [] on the Heisenberg group, we list some properties of
the spaces Ḃρ

q,r in the following proposition.

Proposition . Let q, r ∈ [,∞] and ρ < N/q.
(i) The space Ḃρ

q,r is a Banach space with the norm ‖ · ‖Ḃρ
q,r

;
(ii) the definition of Ḃρ

q,r does not depend on the choice of the function R in the
Littlewood-Paley decomposition;

(iii) for – N
q′ < ρ < N

q the dual space of Ḃρ
q,r is Ḃ–ρ

q′ ,r′ ;
(iv) for any u ∈ S ′(G) and σ > , then u ∈ Ḃρ

q,r if and only if Lσ /u ∈ Ḃρ–σ
q,r ;

(v) for any q, q ∈ [,∞], the continuous inclusion holds:

Ḃρ
q,r ⊆ Ḃρ

q,r ,

q

–
ρ

N
=


q

–
ρ

N
, ρ ≥ ρ;

(vi) for all q ∈ [,∞] we have the continuous inclusion Ḃ
q, ⊆ Lq;

(vii) Ḃ
, = L.

3 Technical lemmas
By the inversion Fourier formula (), we may write eit�α

ϕ explicitly into a sum of a list of
oscillatory integrals. In order to estimate the oscillatory integrals, we recall the stationary
phase lemma.

Lemma . (see []) Let g ∈ C∞([a, b]) be real-valued such that

∣
∣g ′′(x)

∣
∣ ≥ δ

for any x ∈ [a, b] with δ > . Then for any function h ∈ C∞([a, b]), there exists a constant C
which does not depend on δ, a, b, g or h, such that

∣
∣
∣
∣

∫ b

a
eig(x)h(x) dx

∣
∣
∣
∣
≤ Cδ–/(‖h‖∞ +

∥
∥h′∥∥



)

.

In order to prove the sharpness of the time decay in Theorem ., we describe the asymp-
totic expansion of oscillating integrals.

Lemma . (see []) Suppose φ is a smooth function on R
p and has a non-degenerate

critical point at λ̄. If ψ is supported in a sufficiently small neighborhood of λ̄, then

∣
∣
∣
∣

∫

Rp
eitφ(λ)ψ(λ) dλ

∣
∣
∣
∣
∼ |t|–p/, as t → ∞.

Besides, it will involve the Laguerre functions when we estimate the oscillatory integrals.
We need the following estimates.
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Lemma . (see [])

∣
∣
∣
∣

(

τ
d

dτ

)γ

L
(d–)
m (τ )

∣
∣
∣
∣
≤ Cγ ,d(m + d)d–/

for all  ≤ γ ≤ d.

Finally, we introduce the following properties of the Fourier transform of surface-carried
measures.

Theorem . (see []) Let S be a smooth hypersurface in R
p with non-vanishing Gaussian

curvature and dμ a C∞
 measure on S. Suppose that � ⊂R

p \{} is the cone consisting of all
ξ which are normal of some point x ∈ S belonging to a fixed relatively compact neighborhood
N of supp dμ. Then

(
∂

∂ξ

)ν

d̂μ(ξ ) = O
((

 + |ξ |)–M)

, ∀M ∈N, if ξ /∈ �,

d̂μ(ξ ) =
∑

e–i(xj ,ξ )aj(ξ ), if ξ ∈ �,

where the (finite) sum is taken over all points x ∈ N having ξ as a normal and

∣
∣
∣
∣

(
∂

∂ξ

)ν

aj(ξ )
∣
∣
∣
∣
≤ Cν

(

 + |ξ |)–(p–)/–|ν|.

Here, we need the following properties of the Fourier transform of the measure dσ on
the sphere S

p–. Obviously, d̂σ is radial. By Theorem ., we have the radical decay prop-
erties of the Fourier transform of the spherical measure.

Lemma . For any ξ ∈ R
p, the estimate holds

d̂σ (ξ ) = ei|ξ |φ+
(|ξ |) + e–i|ξ |φ–

(|ξ |),

where

∣
∣φ

(k)
± (r)

∣
∣ ≤ ck( + r)–(p–)/–k , for all r > , k ∈N.

4 Dispersive estimates
Lemma . Let  < α < . The kernel of ϕ of R(�) introduced in Section  satisfies the
estimate

sup
z

∣
∣eit�α

ϕ(z, s)
∣
∣ ≤ Cα|t|–/|s|(–p)/.

Proof By the inversion Fourier formula () and polar coordinate changes, we have

eit�α
ϕ(z, s) =

(


π

)d+p ∑

m∈N

∫

Rp
e–iλ·s+it(m+d)α |λ|α

× R
(

(m + d)|λ|)L(d–)
m

( |λ|


|z|
)

|λ|d dλ
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=
(


π

)d+p ∑

m∈N

∫

Sp–

∫ +∞


e–iλε·s+it(m+d)αλα

× R
(

(m + d)λ
)

L
(d–)
m

(
λ


|z|

)

λd+p– dλdσ (ε). ()

The expression after the Sp– integral sign in () is very similar to an integral computed in
[] or [] (see the proof of Lemma .). Integrating the result over Sp– gives us

sup
z

∣
∣eit�α

ϕ(z, s)
∣
∣ ≤ Cα min

{

, |t|–/}, ()

and Lemma . will come out only if we prove the case for p ≥  and |s| > . By switching
the order of the integration in (), it follows from Lemma . that

eit�α
ϕ(z, s) =

(


π

)d+p ∑

m∈N

∫ +∞


d̂σ (λs)eit(m+d)αλα

R
(

(m + d)λ
)

×L
(d–)
m

(
λ


|z|

)

λd+p– dλ

=
(


π

)d+p ∑

m∈N

∫ +∞



(

eiλ|s|φ+
(

λ|s|) + e–iλ|s|φ–
(

λ|s|))eit(m+d)αλα

× R
(

(m + d)λ
)

L
(d–)
m

(
λ


|z|

)

λd+p– dλ

:=
(


π

)d+p ∑

m∈N

(

I+
m + I–

m
)

.

Then it suffices to study

I±
m =

∫ +∞


ei(±λ|s|+t(m+d)αλα )φ±

(

λ|s|)R
(

(m + d)λ
)

L
(d–)
m

(
λ


|z|

)

λd+p– dλ.

Performing the change of variables, μ = (m + d)λ, recall that R ∈ C∞
c (R),

I±
m =

∫ 

/
eitg±

m,s,t (μ)hm,s,z(μ) dλ,

where

g±
m,s,t(μ) = ± μ|s|

(m + d)t
+ μα ,

hm,s,z(μ) = φ±
(

μ|s|
m + d

)

R(μ)L(d–)
m

(
μ|z|

(m + d)

)
μd+p–

(m + d)d+p .

By Lemma . and Lemma ., we get

‖hm,s,z‖∞ +
∥
∥h′

m,s,z
∥
∥

 ≤ C(m + d)–(p+)/|s|–(p–)/.

Since |(g±
m,s,t)′′| ≥ α|α – |–α–, applying Lemma . on I±

m gives us

∣
∣I±

m
∣
∣ ≤ Cα(m + d)–(p+)/|t|–/|s|–(p–)/. ()
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To conclude it suffices to sum these estimates since

∑

m∈N
(m + d)–(p+)/ < +∞.

The decay estimate of time is sharp in the joint space-time cone

{

(s, t) ∈R
p ×R : s = Ct

}

. �

We will prove the sharp dispersive estimate.

Lemma . Let  < α < . The kernel of ϕ of R(�) introduced in Section  satisfies the
estimate

sup
z,s

∣
∣eit�α

ϕ(z, s)
∣
∣ ≤ Cα|t|–p/.

Proof From (), it suffices to show the inequality |t| > . Recall from () that

eit�α
ϕ(z, s) =

(


π

)d+p ∑

m∈N

∫

Sp–
Im,ε dσ (ε),

where

Im,ε =
∫ +∞


e–iλε·s+it(m+d)αλα

R
(

(m + d)λ
)

L
(d–)
m

(
λ


|z|

)

λd+p– dλ

=
∫ 

/
eitGm,ε,s,t (μ)Hm,z(μ) dμ

with

Gm,ε,s,t(μ) = μα –
μ

(m + d)t
ε · s,

Hm,z(μ) = R(μ)L(d–)
m

(
μ|z|

(m + d)

)
μd+p–

(m + d)d+p .

We will try to apply Q times a non-critical phase estimate to the oscillatory integral Im,ε .
Case : |s| ≥ α–α–(m + d)|t|. By (),

∣
∣
∣
∣

∫

Sp–
Im,ε dσ (ε)

∣
∣
∣
∣

=
∣
∣I+

m + I–
m
∣
∣ ≤ Cα(m + d)–p–/|t|–p/.

Case : |s| ≤ α–α–(m + d)|t|. We get

G′
m,ε,s,t(μ) = αμα– –

ε · s
(m + d)t

≥ α–α– –
|s|

(m + d)|t| ≥ α–α–.

Here the phase function Gm,ε,s,t has no critical point on [/, ]. By Q-fold ( ≤ Q ≤ d)
integration by parts, we have

Im,ε = (it)–Q
∫ 

/
eitGm,ε,s,t (μ)DQ(

Hm,z(μ)
)

dμ,
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where the differential operator D is defined by

DHm,z =
d

dμ

(
Hm,z(μ)

G′
m,ε,s,t(μ)

)

.

By a direct induction,

DQHm,z =
Q
∑

k=Q

∑

�β�=k

C(β , k, Q)
H (β)

m,z (G′′
m,ε,s,t)β · · · (G(Q+)

m,ε,s,t)βQ+

(G′
m,ε,s,t)k ,

where β = (β, . . . ,βQ+) ∈ {, . . . , Q} ×N
Q and �β� =

∑Q+
j= jβj.

A direct calculation shows that

∣
∣G(l)

m,ε,s,t(μ)
∣
∣ = α

l–
∏

j=

(j – α)μ–l+α ≤ l+αα

l–
∏

j=

(j – α) ≤ C(α, Q), l ≥ .

Using Lemma .,

∣
∣H (β)

m,z (μ)
∣
∣ ≤ C(β)(m + d)–p–/.

Hence, we have

|Im,ε| ≤ C(α, Q)|t|–Q sup
≤β≤Q

∥
∥H (β)

m,z
∥
∥∞ ≤ C(α, Q)|t|–Q(m + d)–p–/.

Taking Q = d, since |t| >  and p ≤ d – , which implies p/ < d, it follows that

|Im,ε| ≤ Cα|t|–p/(m + d)–p–/.

It immediately leads to

∣
∣
∣
∣

∫

Sp–
Im,ε dσ (ε)

∣
∣
∣
∣
≤ Cα|t|–p/(m + d)–p–/.

Combining the two cases, by a straightforward summation

∣
∣eit�α

ϕ(z, s)
∣
∣ ≤ Cα|t|–p/

∑

m∈N
(m + d)–p–/ ≤ Cα|t|–p/.

The lemma is proved. �

Proof of Theorem . The dispersive inequality in Theorem . is a direct consequence of
Lemma . (see []). It suffices to show the sharpness of the estimate. Let Q ∈ C∞

c ([/, ])
with Q() = . Choose u such that

û(λ, m) =

⎧

⎨

⎩

Q(|λ|), m = ,

, m ≥ .
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By the inversion Fourier formula (), then we have

eit�α
u(z, s) =

(


π

)d+p ∫

Rp
e–iλ·s+itdα |λ|α Q

(|λ|)e–|λ||z|/|λ|d dλ.

Consider eit�α u(, ts̄) for a fixed s̄ = αdα(, . . . , , ). The above oscillatory integral has a
phase

�(λ) = –λ · s̄ + dα|λ|α

with a unique non-degenerate critical point λ̄ = α–d–α s̄ = (, . . . , , ). Indeed, the Hessian
is equal to

H(λ̄) = αdα|λ̄|α–((α – )λ̄kλ̄l + |λ̄|δk,l
)

≤k,l≤p = αdα

⎛

⎜
⎜
⎜
⎜
⎝


. . .


α – 

⎞

⎟
⎟
⎟
⎟
⎠

.

So by Lemma ., it yields

eit�α
u(, ts̄) ∼ C|t|–p/. �

5 Strichartz inequalities
In this section, we shall prove the Strichartz inequalities by the decay estimate in
Lemma .. We obtain the intermediate results as follows. We omit the proof and refer to
[, ].

Theorem . Let  < α < . For i = , , let qi, ri ∈ [,∞] and ρi ∈R such that

() /qi = p(/ – /ri);

() ρi = –(N – p/)(/ – /ri),

except for (qi, ri, p) = (,∞, ). Let q′
i, r′

i denote the conjugate exponent of qi, ri for i = , .
Then the following estimates are satisfied:

∥
∥eit�α

u
∥
∥

Lq (R,Ḃρ
r,) ≤ C‖u‖L ,

∥
∥
∥
∥

∫ t


ei(t–τ )�α

f (τ ) dτ

∥
∥
∥
∥

Lq ((,T),Ḃρ
r,)

≤ C‖f ‖
Lq′

 ((,T),Ḃ–ρ
r′,

)
,

where the constant C >  does not depend on u, f or T .

Consider the non-homogeneous fractional wave equation (). The general solution is
given by

u(t) = eit�α
u – i

∫ t


ei(t–τ )�α

f (τ ) dτ .
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Theorem . Under the same hypotheses as in Theorem ., the solution of the fractional
wave equation () satisfies the following estimate:

‖u‖Lq ((,T),Ḃρ
r,) ≤ C

(‖u‖L + ‖f ‖
Lq′

 ((,T),Ḃ–ρ
r′,

)

)

,

where the constant C >  does not depend on u, f or T .

Applying Proposition ., by direct Besov space injections, we immediately obtain the
Strichartz inequalities on Lebesgue spaces in Corollary ..
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