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1 Introduction and preliminaries
We begin by recalling the following Chebyshev functional which has been investigated by

many authors (see, e.g., [1-4]):

b b b
T(f g ab)= / f(x)g(x)dx—ﬁ / £ dx f g dx, 1)

where f, g : [a,b] — R are integrable functions on [a, b]. Here and in the following, let R
and R* be the set of real and positive real numbers, respectively, and R} := R* U {0}. Under
more conditions 7 < f(x) < N and m < g(x) < M for all x € [a, b], where n, m, N, M are
real constants, the Chebyshev functional (1.1) satisfies the following inequality, which is

known as Griiss integral inequality (see [5]; see also [6], p.236):

(M —m)(N - n), 1.2)

SN

| T(f.g;a,b)| <

where the constant } is sharp. In fact, the equality in (1.2) holds, for example, by taking

b
@) =g) = sgnx- == (v la,b]).

The Griiss inequality (1.2) has been investigated a lot and a number of its generalizations
have been presented (see, e.g., [7-10]).

Let f and g be two positive integrable functions on [a, b] such that

O<m<flx)<M<oo and O<n<f(x) <N<oo.

© 2016 Tomar et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


http://dx.doi.org/10.1186/s13660-016-1178-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-016-1178-x&domain=pdf
mailto:junesang@dongguk.ac.kr

Tomar et al. Journal of Inequalities and Applications (2016) 2016:234 Page 2 of 14

Pélya and Szego [11] established the following inequality:

ffzx)dxfbg (%) dx <\/A/I—7N+\/E>2 -
faf(x)g(x) dx)2 mn MN )’ .

which was used by Dragomir and Diamond [12] who proved the following inequality:

) (M - m)N n)
T gah) = / o) d f ) dx. (14)

Fractional calculus is a very helpful tool to perform differentiation and integration of real
or complex number orders. This subject has earned much attention from researchers and
mathematicians during the last few decades (see, e.g., [13-21]). Among a large number of
the fractional integral operators developed, due to applications in many fields of sciences,
the Riemann-Liouville fractional integral operator and Hadamard fractional integral op-
erator have been extensively investigated.

Let f € L[a, b]. Then the left-sided and the right-sided Hadamard fractional integrals of
order a > 0 and a > 0 are defined, respectively, by

a 1 ¢ £\t dr
Hf(t) = @/ (1n ;) f@= (O<a<t=b) (15)
and
b a-1
HEf(t) = ﬁft (m ;) f )— 0<a<t<b). (1.6)

The theory of k-functions has been investigated since, about a decade ago, Diaz and
Pariguan [22] introduced the following generalizations of the classical gamma and beta

functions, with a new parameter k € R*, which are called k-gamma and k-beta functions,

respectively:
o0 tk
() = f t* et dt (N(e)>0) (1.7)
0
and
1 1
Bi(a, B) = %/ tE11 - t)rl dt  (min{%(a),R(B)} > 0). (1.8)
0

The functions 'y defined on R* and B(x, ) on (0, 1) satisfy the following properties:
(1) Tilx + k) = xli(x);
(2) Tk(k)=1;
(3) Tilx)is logarithmically convex;

(4) Bilxy) = Sy,

During the past several years, certain interesting properties, identities, and inequalities
involving k-functions have been presented (see, e.g., [23—-29]). Mubeen and Habibullah

[30] used the k-gamma function I'x (1.7) to introduce the following Riemann-Liouville
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type k-fractional integral:

/ t(t —0) ) de (¢ €[a,b)). (1.9)

1
L O = @

Later, Romero et al. [31] also used the k-gamma function 't (1.7) to introduce the k-
Riemann-Liouville fractional derivative whose properties including a relationship with the
k-fractional integral (1.9) were presented.

Using the k-gamma function with the parameter k, Mubeen et al. [32] have introduced
left-sided and right-sided Hadamard k-fractional integrals of order o € R*, respectively,
as follows: For f € L[a, b] and k,a € R*,

N 1 LOoeNFT O de
Ha+'k{f}(t) = mL <1I1 ;) f(T)? (O <a<t=< b) (110)
and
L (T P O<a<t<b 111
i 1) = Tr(c )/ (n;) f("-')T (0O<a<t<b). (1.11)

Using the Hadamard k-fractional integral and Proposition 6 in [22], we have

. (In(t/a)) .
HE. (1)) = % (0<a<t=<bkaeR) (112)
and
(In(£)) % R
1+ k{l}(t)_ h (1<t§b;k,0( eR ). (1.13)

2 Some Pdlya-Szego and Chebyshev type inequalities involving the Hadamard
k-fractional integrals

In this section, we derive some new Pélya-Szego type inequalities associated with the

Hadamard k-fractional integral operators which are also used to establish some Cheby-

shev type integral inequalities.

Lemma 2.1 Let f and g be two positive real integrable functions defined on [a, 00). Also let
©1, 2, Y1, and Yy be integrable functions on [a, o0) such that

0<pi(t) <f(r) <ga(r) and 0<y(r) <g(r) < ¥(r) 2.1)
forall T € [a,t] (t > a). Then, for k,a € R*, and a € R{, the following inequality holds true:

HE (Yaf N OHL {19287} (8) 1 o)
(Hy gy + o292)fg} @)~ 4’ .

Proof Under the given conditions, we find

f( ) (PZ(T) and o1(7) <f(_‘17 (‘L' € [a,t] (t>ﬂ)): (2.3)

g(f) Yi(7) Ya(r) ~ g(7)
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from which we have

(wzm_@)(@ wl(r))
@ ¢ \e@ "

and so

@a(r)  @i(x) )f(r) L@ e@ea() ”

(x/fl(r) "9 ) e T 20 T @) 24
The inequality (2.4) can also be written as follows:

(e1(D)Y1(x) + @2 (T)¥2(0))f (1)g(T) = Y (D) Y2 (2)f(7) + @1(T) (7)€% (7). (2.5)

Here, multiplying each side of the inequality (2.5) by the following non-negative factor:

1 t %—11
m(lnz) - (relad@>a)

and integrating the resulting inequality with respective to t on [g, ], we obtain
He i { (o1 + a9)fg}(6) = o {unvaf 2} (6) + He j {10287} (). (2.6)
Applying the AM-GM (the arithmetic-geometric mean) inequality,
a+b>2vab (a,beRg) (2.7)

to the right-hand side of (2.6), we have

He i { (@ + o29)fg} () = 2\/7‘la+ a2 OHE ({o10287 @) (2.8)
which leads to

He (a2} OHE o10:82) () < — (He (v + 2y} (9)

-

This completes the proof. O
The following corollary is easily seen to be a special case of Lemma 2.1.

Corollary 1 Let f and g be two real positive integrable functions defined on [a,c0) such
that

O<m=f(t)<M<oo and 0<n=<g(t)<N<oo (1€lat](t>a))), (2.9)

where n, N, m, M are real constants. Then, for all t,k € R* and a € R*, we have

He A OHE (g @) ( \/W \/7>
(He 4@~ =1 (2.10)
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Lemma 2.2 Letf and g be two positive real integrable functions defined on [a, 00). Also let
01, 2, Y1, and Yy be integrable functions on [a, 00) satisfying the condition (2.1). Then, for
t>a(aeR))andk,a,p € R, the following inequality holds true:

He, do1o2 ) OHE, (v OHE. (FHOHE, (g2} 1

< -—. (2.11)
He, dofYOHE. g @) + HE {oaf JOHE, ()2 ~ 4
Proof We find from (2.1) that
(Fi3-t) =0 o (3380 =0 coctanco
which yields
@1(7) t))f(t) fz(r) @1(t)a(7) )12
(wz( ) ) o) = 20 T o)) (2.12)

Multiplying each side of the inequality (2.12) by v¥1(0)¥2(p)g%(0), we get

(D () ¥1(0)g(0) + @22 )f (D)2 (0)g(0) = Y1 (0)¥a(0)f* (1) + @1(2)pa(1)g* (p). (2.13)

Again multiplying each side of the inequality (2.13) by the following non-negative factor:

=

1 £\ 5L NF
m(“?) (1";> > (.0 €la,t](t>a)

and integrating the resulting inequality with respect to t and p on [, t], we have

He (of JOHD, (nig) () + HE oaf OHD,  {¥2g)(2)
>Hys k{fz}(t)Ha+ W) @) + H,ﬁ oM. {2} @). (2.14)

Applying the AM-GM inequality (2.7) to (2.14), we obtain

He (of JOHD, (ig) () + HE (oaf OHD,  {¥2g)(2)

> 2 JHE AP HOHE. i} OHE. (oo} OHE. [} o), (2.15)

which is easily seen to yield the desired inequality (2.11). Hence the proof is complete.
O

Corollary 2 Let f and g be two positive integrable functions on interval [a, 00) satisfying
the conditions in (2.9). Then, for t >1 and k, o, 8 € R*, we have

(o F  HEP O IS 0) ( [ /—>
< (2.16)
Tl + KTk (B + k) (HY o MO} + H1+ Ag())? 4

Lemma 2.3 Suppose that all assumptions of Lemma 2.2 are satisfied. Then, for t > a and

a, B € RY, the following inequality holds true:

M AP HOME: (g} O) < M {(@af) vn J ey HE: [ (Waf) o }(2). (2.17)
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Proof Using the conditions (2.1), we get

dr 1 L\ (1) dr
kaa) ( ) O </<rk(a)/a<ln?) @y PO

which implies

HE A0 < M1 (eafe) 19} (2). 2.18)

Similarly we have

B
" V2 (p) dp
ka(,B) ( ) )7 = k[‘k(ﬂ) ( ) 1(p)f(p)g(p)7
and so
Ha* k{ }(t) = Hm k{(‘/fzfg)kpl}(t). (2.19)

Multiplying the inequalities (2.18) and (2.19) side by side and considering all the involved
terms are non-negative real numbers, we obtain the desired inequality (2.17). O

It is easy to see from Lemma 2.3 that the assertion in Corollary 3 holds true.

Corollary 3 Let f and g be two positive integrable functions on interval [a, 00) satisfying
the conditions in (2.9). Then, for t > a and «, B € R*, we have

He APPYOHE, {g2) @) _MN
He, (R OHE. Afed () — mn’

(2.20)

Theorem 1 Let f and g be two positive integrable functions on interval [a,c0). Suppose
that there exist four positive functions ¢, a2, Y1, and r, satisfying the conditions (2.1).
Then, for t > a and k,a, B € R*, the following inequality holds true:

(ln(t/a)) (t/a)
T+ e80T T

- Hg*,k{f}(t)}[f+,k{g}(t) + k{g}(t at k{f}(t)

+k{fg}(t)

< [My(F 01, 02)(8) + Malf 01, 02)(0)| 2

x Mg, Y1, Y2)(0) + Ma(g, Y, Y2)(0)

l\JI'-'

(2.21)
where

(m&m»f(H;kKV+meﬂF

Ml(u, V,W)(t) = 4Fk(:3 +k) Z,r,k{VW}(t)

M, (b ey HE,  (u)(e)
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and

(Int/a)t (Hp. (v + W) (@)*
ATk + k) HE, fvw)(@)

My (1, v, w)(£) := HE () (OHE, {u)(©).

Proof Let

H(z,p) = (f(x) - f(p)) (g(z) - g(p)),

or, equivalently,

H(z,p) = f(1)g(7) +f(p)g(p) - f(r)g(p) —f(0)g(7). (2.22)

Upon multiplying each side of (2.22) by

;an)%'l(mf) 1
RTi@T(B)\ 7 2 14

and integrating the resulting identity with respect to v and p on [a, ], we get

1 YN YA f1 dr dp
- In< In< ki
kzmmrk(ﬁ)/a / (“r) (“p) R0

=

_ (ln(t/d)) ( ))g 5
=T p) e BN+ O Ha i8N
~ Ha s HOHG 41810 - Ha*k{f JOHG 412 (2). (2.23)

Making use of the weighted Cauchy-Schwarz inequality for double integrals in (2.23), we

1 YN VAN = dr dp
/<2rk<a)rk(ﬂ)fafao“¥> (1“E> He o)

24
K

1 toetr o gNETL _12 dr dp
5[k2rk(a>rk(ﬂ>/a/a(]“?) (“‘5) Fo=

have

Y

t ot £
1 t E\* dr d,o
S — 1 In— 2(p)— L
+k2rk(a)rk<ﬁ)/a / (“r) (“p) Flo
2 t t t t 7 dr dp
‘k2rk(a)rk(ﬂ>/a / (lnr> (1“5) Serle )__}
B

1 VAN VAN dr dp
X[/@rk(a)rk(ﬂ)fafao“?) (1“5) eOT

1 topty o Nk t 2_12 dr dp
*erkm)rk(ﬂ)/a/ao“?) (I“E> £

2 YA S
‘kzrk(a)rk(m/a / <ln?> <IHE>

(2.24)
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Then, upon using the Hadamard k-fractional integrals, we get

= dr dp
/ﬂrk(a)rkﬂ)/ f (ln_> (ln_> iy

1

(In(t/a) & n(t/a) . 2
< [Fr;( 5 el LI ( 2l +k{f2}<t>—2Ha+,k{f}<tm£+,k{f}(t>]
(ln(t/a))? o 9 (ln(t/a))F 8 )
X |:Fk(,3 + k) Ha*,k{g }(t) + Fk(Ot + k) /Ha*,k{g }(t)
“oH, (g OHE g }(t):|2. (2.25)

Setting V1 (t) = Y»(¢) = g(¢) =1 in Lemma 2.1, we obtain

(ln(t/a))é _ (ne/a)t (Haw (o + @) )0

2
l_‘k(lg k + k{f } - 4’Fk(,3 + k) HZ+,k{(P1(P2}(t)

which leads to
(In(t/a)) £
T'e(B + k)

- (ln(t/zz))? (HE (o + @2)f H2))? ~
T A4T(B + k) HZJr,k{(pl(ﬂZ}(t)

=Mi(f, @1, 02)(2) (2.26)

HE AP 1O = HE LY OHE )

He, (N OHE, 1))

and
(ln(t/a))
Fk (Ol + k)

- (In(t/a)) & (H5+,,<{(¢1 +@2)f }(9)?
T AT+ k) A1, (o) (t)

P10 =M A HE, AN

- HZ+,k{f}(t)H£+,k{f}(t)

= Ma(f, o1, 02)(2). (2.27)

Similarly, taking ¢ (t) = ¢2(£) = f(¢) =1 in Lemma 2.1, we get

B
(nt/a)t .
%Hm (22} - He. A OHE. (g} () < Malg, v, ¥2)() (2.28)
and
(In(t/a))* o
FI; (a‘i o Mol )0 = Hi RN OHE: 10 0) = Mol b, 92) 0. (2.29)

Finally, by combining the inequalities (2.25)-(2.29), we can get the desired inequality
(2.21). This completes the proof. d

The following assertion is a special case of Theorem 1 when « = B.



Tomar et al. Journal of Inequalities and Applications (2016) 2016:234 Page 9 of 14

Theorem 2 Suppose that the assumptions of Theorem 1 are satisfied. Then, for t > 1 and
a € RY, the following inequality holds true:

(In(2))
Ti(a + k)

< | M, 01, 0:) ()M (g, o1, 02)(2)

He A2 (@) = He (A O Mo 1 g} (2)

1
2, (2.30)

where

% @ 2
My, w)(0) = —IHVF (ol + wu)(0)

o 2
CATW(a+ k) HE w) () - (Mg x{u}(0)".

Remark 2.1 Setting ¢, = m, ¢, = M, Y = n, and ¥, = N, we have

M-m)? .
MIF,m, M)(E) = = (M, () 0)’
and
N— 2
MgmN)@) = M:,q) (He 4 la) ()™

Corollary 4 Let f and g be two positive integrable functions on [a, 00) satisfying the con-
dition (2.9). Then, for t > a and o« € R*, we have

1 o

_ (M —m)(N —n)

T 4/mMnN

3 Applications
In this section we apply Hadamard k-fractional integrals to a function which is bounded

Hae AN OHg 1 () (0). (2.31)

by the Heaviside functions.
The simplest piecewise continuous function is the unit step function, which is known
as the Heaviside function, defined by

1 ifu>c,
uc(t) = .
0 ifu<ec

The unit step function is basically an on-off switch which is very useful in differential
equations and piecewise functions when there is a large number of pieces, for example,
Riemann sums as in Figure 1. Using Heaviside function, a piecewise continuous function
¢1(¢) defined on an interval [a, T'] can be written as follows:

@1(8) = 1y (s (8) = 142, (8)) + 1113 (14, (8) = 142, (2)) + 1113 (141, (£) = w43, (£)) + - - + 11144, (2)

= mttyy + (Mo — my)ugy (€) + (m3 — ma)ug, () + - - - + (M — mp)uy, (£)

14
= D mpa = m)ug, (1), (3.1)
k=0
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Figure 1 Functions f, ¢, and @.

where mo =0, m; e R (i=0,1,...,p+1)anda=1ty <ty <ty <+ <l <ty = T. Similarly
we define the functions ¢,, V¥, and v, as follows:

p
02(t) = Y (Mpar — Mi)ug, (2), (3.2)
k=0
b
Vi(8) = D (s — m)uy (£), (3.3)
k=0
p
Vo) = Y (Niws — NidJuag (1), (3.4)
k=0

where ng = Ny = My =0and n;, N,M; e R(i=0,1,...,p +1).

Let f be an integrable function on [a, T] which satisfies the condition (2.1) with the
functions ¢, ¢, ¥1, and ¥, in (3.1), (3.2), (3.3) and (3.4), respectively. Then we get
mj < f(t) < M, for each t € (t),t.1) (j = 0,1,...,p). For example, Figure 1 represents
the case p = 4.

Then the Hadamard k-fractional integral of f on [, T] can be defined as follows:

p
Mool WD) = ) Hy o 4@, (3.5)
j=0
where
1 ti41 ™1 q
My sl10 = 1 s / ’ (mé)k f(s)?s (G=0,1,2,....p). (3.6)
i

Proposition 1 Let f and g be two positive integrable functions on [a, T| which satisfy the
condition (2.1) with the functions ¢y, g2, Y1, and Y, in (3.1), (3.2), (3.3), and (3.4), respec-
tively. Then, for o € R*, the following inequality holds true:

(Z 7”;+1A[/+1Ht1 tir1s k{f2 ) (Z W’1+1M]+1Htl tis1s k{g }(T)>

j=0 j=0

1 p
Z Z Vl/+1]\[j+1 + mj+1Mj+1)(Hg+,k{fg}(T))2' (37)
j=0
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Proof Using the Hadamard k-fractional integral in (3.5), we get

p
Hao i 1w J(T) = Y- maNiaHy k1N, (3:8)
j=0
P
Har i{r08” }(T) = miaMin Mg, g }(T), (3.9)
j=0
and
P
Har i { (@191 + p212f2) }( Z M1 hj + Mj+1]\[j+l)Hg,tj+l,k{fg}(T)' (3.10)
j=0

Then substituting equalities (3.8), (3.9), and (3.10) for the result in Lemma 2.1 yields the
desired result (3.7). |

Proposition 2 Suppose that assumptions of Proposition 1 are satisfied. Then, for k,a, €

R*, we have
]
(In(t/a))%  , (In(t/a))t
mHan,k{fg}(T) T+l HE, ) (T)

— Mo (Y OHL 1 (&)(T) = Hi (Y OH T

D=

< M (f, mya1, My ) (8) + M (f, mja1, My )(T)|

x |M; (g, mj41, Njsa ) (£) + M3

(3.11)

where

(nt/a)fTa@+ k) Lo+ WIHE () (0))?
ATKB+K) 30 vwl(In(e/g)] % - [In(t/t;1))¥]

— (MG ) (D) (HE, ({ul(T)),

(n(a)iTi(B+ k) Lpov+WHy, (u)(®)
Al k)52 wl(n(e/)) €~ [ne/t.0) k]

— (HE, {u}(©)) (H. () ().

M (u, v, w)(t) :=

M (u, v, w)(t) :=

Proof Since

o bir1 ds
Ht] Lis1s k{f} ka Ol) f ( ) )

(n@/)¥ - (n(e/t)E
N (o + k)

)
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we get
14
B M1 M NS Y
Har sl (T} = 1202 Tea s L In@/6)) = (in(e/t,.0)*]
and
b
B 1 1Nj N Y
Har sl Y1y HT) = ,Zo e+ o Ln(@/5)* = (in(t/5)) <]

After some computations, we have

(n(t/a) Tl + k) gmo (s + M) (HE AF1(0))?

M 3y 3 T = o o
Woer 2D = 4R B R S madal(n)TF — e/t 1)F]
— (H& (A HD) (MG, A7 HD)),
Mo o p)(T) — (/@) Tl + k) Lpeo(n + N (Hg 1 {€)()?

AT (B+K) Y0 N [(In(e/6)] % — [In(t/8,1)) ¥ ]
— (M cle)(T)) (L, 4 (£)(D)),
(n(a) Ty k) olma + M), )0

Ma(f, 1, 02)(T) =
A AT +K) 52 o Mo [n(e/5)]F - (/g0 )

— (M2 (&) (D)) (HE, dgh (D)),

and

(In(e/a)ETu(B+ k) Lrolmn + N My, A)(T))
AT +K) 52 N [(n(e/g)] ¥ — [In(e/g,0) F]

— (M 48} (D) (HE. 1g)(T)).

MZ(g’ 1/’1, wZ)(t) =

By applying the results here to Theorem 1, we obtain the desired inequality (3.11). Hence
the proof is complete. d

The special case of Proposition 2 when o = $ is seen immediately to reduce to the result
in Corollary 5.

Corollary 5 Suppose that the assumptions of Proposition 2 are satisfied. Then, for k, o €
R*, the following inequality holds true:

(In(t/a)) ¥

el + 0 HE M) (T) = He T HE N

1
=< |M* (f: mj+1er+1)(T)M* (g: 7’1]’+1,]\[]’+1)(T) 2 ) (3'12)
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where

(n(t/a)t i +wI(H;,  {u}®)

M*(u, v, w)(£) = 7 %
(u, v, w)(t) 4 Zfzo vw[(In(t/t;)]1% — [In(¢/tj1)) % ]

- (He ) (0).

We conclude this paper by remarking that all the results presented in this paper can be
converted into those for the right-sided Hadamard k-fractional integral.
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