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Abstract

In this paper, we present the [P mapping properties of multiple singular integrals
related to homogeneous mappings with rough kernels given by the radial function
heA, (orheU,)forsomey >1(ory > 1) and the sphere function

Q e Llog™ DA™ x $1) (or Q € Llog™ L)Y (5™ x $"1). In addition, the [P
bounds for the related maximal operators are also given. Our main results extend and
improve some known ones.
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1 Introduction

Let R® (A =m or n), A > 2, be the A-dimensional Fuclidean space, and S*~! denote the
unit sphere in R* equipped with the induced Lebesgue measure do,. For any x € R*, we
also let &’ = x/|x|. Let Q € LY(R™ x R") satisfy

/Sm_l Qi) doy() = [5 (V) do, (V) =0. (1.1)

For M, N > 2 and two suitable mappings: I' : R” — R™ and Y : R” — RY, define the mul-
tiple singular integral operators Ty oy along the surfaces Sry = {(I'(x), Y(v)) : (u,v) €
R™ x R"} by

Tharx(f)xy):=p.v. //m ]Rnf(x —T(u),y - T(V))[(h,g(u, v)dudyv, (1.2)

where K, (1, v) = Q@/,V)h(|u|, |v])|u|™|v| and h € A1 (R, x R,). Here R, = (0, 00), and
A, (R, xR}) (y = 1) is the set of all measurable functions /(r,s) on R, x R, satisfying the
condition

ok+1

9j+1 d 1y
rds
1720l 5, xR, = SUp (/ / |h(r,s)|” ) < 00,
kjeZ \J 2V ok rs

For convenience, we denote A, (R, x R,) by A, for y > 1. Obviously, A,, C A,, for y; >

y2 > 0.
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For simplicity, we denote Ty ory = Tory if i=1and Tory = Tq if M=m, N = n,
I'(#) = u, and Y (v) = v. The operator T, is the classic multiple singular integral opera-
tor, which was first introduced by Fefferman and Stein (see [1, 2]) and has been studied
extensively by many authors (see [3—6], etc.). In particular, Duoandikoetxea [4] proved
that T, is bounded on LP(R” x R") for 1 < p < oo, provided that € L4(S"! x §"~1) with
q > 1. Later on, Chen [7] improved the result of [4] to the case Q € L(log* L)>(§" x §"™1).
Subsequently, Ying and Chen [8] (resp., Al-Salman et al. [3]) extended the result of [7]
to the multiple singular integrals along polynomial curves (resp., associated with poly-
nomial mappings). We also refer the readers to [9-11], among others. Recall that Q2 €
L(log* L)*(S"! x §"1) for a > 0 is the set of all functions Q on ! x §"! satisfying

1201 Ltog+ Ly (51 x57-1 = //;m_l - \Q(u, v)| log* (2 + |Q(u, v)|) do,, (1) do,(v) < oo.
Note that, foranyg>1and 8 >a >0,
L9(S" x 8" € L(log" L)’ (8”7 x §"1) € L(log" L)* (8" x §™7).

The aim of this paper is to investigate the L” bounds for multiple singular integral op-
erators associated with homogeneous mappings and the related maximal operators. For
1eN\{0} and d = (d,, ..., d;) € R, define the family of dilations {8;};.0 on R’ by

S:(x1,. .. %)) = (tdlxl,...,td’xl).
We say that a mapping @ : R” — R! is homogeneous of degree d if
D(tx) = 8,(P(x))

for all x € R” and £ > 0. When I', T are two homogeneous mappings, Al-Qassem and Ali
[12] proved that Tqr y is bounded on LP(RM x RN) for 1 < p < 00 if Q € BEIO’D(S'”‘1 X
§"1) for some g > 1. We note that the question with regard to the relationship between
BE,O’O’*D(SW"1 x §"1) with ¢ > 1 and L(log* L)*(S”! x §"1) (for o > 0) remains open. In
2006, Al-Qassem and Ali [13] gave the following result.

Theorem A ([13]) Let T' = ® = (O, D,,...,Py) and YT =¥ = (W, ¥,,...,Wy) be two
homogeneous mappings of degrees d = (d1,...,dy) and v = (v1,...,Vvn), respectively, with
d,ve Z0 for1 <t <M and 1 <k < N. Assume that T |gmn-1 and Y |gn1 are real-analytic.
Suppose that Q € L(log* L)*(S"! x §"1) satisfies (1.1). Then, for any 1 < p < 0o, there exists
C > 0 such that

| Tarx () ||I}9(RMXRN) = Cllf llzp@mxrN)
forall f € IP(RM x RN),
A natural question, which arises from the above results, is the following:

Question 1.1 For 1 € A, withy >1,is Tj o ry bounded on LP(RM x RN) under the same

assumptions on 2,I", T as in Theorem A?
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Our investigation not only addresses this problem, but also deals with a more general
class of operators. More specially, we shall establish the following:

Theorem 1.1 Let I'(y) = ®(p(|y|)y) and Y (y) = V(¥ (|y))y), where ® = (&1, Dy, ..., Py)
and ¥V = (W1, V,,...,Vy) are given as in Theorem A, and ¢, € §1 or T, where § (resp.,
o) is the set of all functions ¢ satisfying the following condition (a) (resp., (b)):
(@) ¢:R, —> R, isan increasing C' function such that ¢’ is monotonous and
td'(t) = Cyp(t) and ¢(2t) < cyp(2) for all t > 0, where Cy and cy are independent
of t.
(b) ¢:R, — R, is a decreasing C function such that ¢' is monotonous and
td'(t) < —Cyp(t) and P(t) < cpp(2¢) for all t > 0, where Cy and cy are independent
of t.
Suppose that h € A, for some y >1 and Q € L(log* L)*(S™! x §"') satisfies (1.1). Then
for|1/p —1/2| < min{1/y’,1/2}, there exists C > 0 such that

I Th,Q,F,T(f)HLp(]RMX]RN) =< ClIRIILgog* ny2(sm-1xsm1) I Il oo @M x N
forall f € LP(RM x RN),

Remark 1.1 Theorem 1.1 represents an improvement of the corresponding results in [1,
4,7]. Also, Theorem 1.1 implies Theorem A when / =1, even in the particular case ¢(t) =
¥ () = t. There are some model examples for the class §;, such as t* Inf (1+1¢) (@ > 0, 8 > 0),
tInln(e +£), real-valued polynomials P on R with positive coefficients and P(0) = 0, and so
on (see [14]). The model examples for a function ¢ € F, are t* (§ < 0) and ¢ In(1 +1/£). We
point out that there exist a constant B, > 1 such that ¢(2t) > B,¢(¢) (or ¢(t) > B,¢(2t))
for ¢ € §; (or F2) (see [10]).

Remark 1.2 We remark that the one-parameter case of Theorem 1.1 was studied by many
authors (see [15-18] for examples). It follows from Example 2.2 in [17] that Theorem 1.1 is
not true if there exist d; = 0 or v; = 0 for some i € {1,2,...,M}andj € {1,2,...,N}. It should
be pointed out that the index 2 in € L(log* L)?(S”! x §"!) is best possible since it has
been shown in [3] that for any € > 0, there is Q € L(log* L)>¢(§™~! x §"~1) such that T, is
not bounded on L?(R™ x R") for any p € (1, 00).

When y > 2, the range of p in Theorem 1.1 is (1, 00), but for 1 < y < 2, the range of p is
2y 2y
]//}:-2’ ]//}:2

shrunk to ( )- In light of the aforementioned facts, it is natural to ask the following

question.
Question 1.2 Can the range of p in Theorem 1.1 be enlarged for the case 1 <y < 2?

The next aim of this paper is to address this question by imposing some more restrictive
conditions on /. Precisely, for 1 < y < oo, let U, (R, x R,) be the set of all measurable
functions # on R, x R, satisfying

Rl drds\""
Il &, xR,) = (/ / |h(r,s)|” ) < 00. 1.3)
0 0

rs

For simplicity, we denote U, (R, x R,) by U, for y > 1. Obviously, U, C A, forl1 <y < oo
and Uy, = Ay = L. The second one of our main results can be formulated as follows.
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Theorem 1.2 Let I', Y be as in Theorem 1.1. Suppose that h € U, for some y > 1 and that
Q € L(log* L)27' (8" x §"1) satisfies (1.1). Then Tyory is bounded on LP(RM x RN) if
one of the following conditions holds:

(i) ¥y =1L p=o00;

(i) y>1L,1<p<oo.

Remark 1.3 Obviously, when y = 0o, Theorem 1.2 coincides with Theorem 1.1. When
1<y <00, the condition on €2 in Theorem 1.2 is strictly weaker than that in Theorem 1.1.
Moreover, for 1 < y < 2, the range of p in Theorem 1.2 is larger than that in Theorem 1.1.
Meanwhile, we also obtain the result at the endpoint case y = 1. Therefore, it is worth to
impose the above restriction on 4. It is interesting, but not clear, whether the restriction

on /1 can be removed.

To prove Theorem 1.2, we need to consider the related maximal operators Mg i",wr de-
fined by

MY of @) = sup | Tharaf(y)

Wl <1

)

which are interesting themselves. When I'(#) = u and Y'(v) = v, we shall denote Mg )F'T by
Mg ), Historically, Ding [19] proved that the operator Mg) is bounded on L*(R” x R"),
provided that Q € L(log* L)?(S™~! x §"71). This result was greatly improved by Al-Salman
[20], who obtained the L?” boundedness of Mg) for 2 < p < co under the weaker con-
dition that € L(log* L)(S"! x §"!). Moreover, Al-Salman showed that the condi-
tion Q € L(log* L)(§™! x §"1) cannot be replaced by any condition of the form Q €
L(log" L)}=¢(§™1 x §"1),e > 0. Particularly, Al-Qassem and Pan [15] proved that the
operator Mg) is bounded on LP(R” x R") for y' < p<oo (for y =1, p=00) if Q €
L(log* L)' (§™! x §" 1y and 1 < y < 2 (also see [18] for the nonisotropic case).

The remaining main results can be formulated as follows.

Theorem 1.3 Let I', Y be as in Theorem 1.1, and let € L(log* L)' (§™! x §"1) for1 <
y <2 satisfy (1.1). Then Mg)rT is bounded on IP(RM x RN) for1 <y <2 withy' <p <0,
and it is bounded on L°(RM x RN) for y = 1.

Remark 1.4 Theorem 1.3 improves and generalizes the results of [19, 20]. Also, Theo-

rem 1.3 generalizes the result of [15].

The rest of this paper is organized as follows. In Section 2, we shall recall some nota-
tion and establish some preliminary lemmas. The proofs of the main results will be given in
Section 3. We remark that some ideas of our methods are taken from [4, 21], but our meth-
ods and technique are more delicate and complex than those used in [4, 15, 21]. Through-
out this paper, let p’ denote the conjugate index of p, that is, 1/p + 1/p’ = 1. The letter C,
sometimes with additional parameters, will stand for positive constants, not necessarily
the same at each occurrence but independent of the essential variables. We also use the

conventions » ;.;a;=0and [[,.;a;=1.
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2 Notation and auxiliary lemmas

Following the notation in [13]. Let Q € L(log* L)*(S”! x §"!) satisfy (1.1) for some o > 0.
For u € N, let @, = 2", E, = {(x,5) € S"' x "1 a,/2 < |Q(x,9)| < @y}, by = g, , and
Au=bylh.Let D={n eN:x, >2"3} and

2 (9) = 3] (bﬂ(x,y) -

sm-1

b, (u’,y) do, (u/) - / by (x, V’) do, (1/)

sn-1

+ //sm—lxsn—l b, (u/, 1/) do,, (u/) do, (v/)) (2.1)

forueD,and Q=Q2-) . pruy. Let 1o = 1. Then

neD

/ (i) do (i) = / Qu (V) doy (V) = 0, 22)
sm-1 sn-1

2l 25mtxsn1y < 4ar, and (|21 gm1 51y < 4, (2.3)
Qxy)= Y Q) (2.4)
neDU{0}
Z A+ 1) < CllQ ot Ly (sm-1xsn-1y  for any o > 0. (2.5)
ueDU{0}

The following lemma of Van der Corput type was proved by Cheng [16].

Lemma 2.1 ([16]) Letl € N\{0}, ay,...,a; € R, and vy, ..., v; be distinct nonzero real num-
bers. Let ¥ € C}([0,1]). Then there exists a positive constant C, independent of {Otj}]l-zl, such
that

/; exp(i(ont™ + -+ at™) ) (£) dt’ < C|a1|‘”’(|w(r)| + /8T|1p’(t)| dt)
forl/2 <8<t <1.
Applying Lemma 2.1, we have the following:
Lemma 2.2 Let ®(t) = pit® + puot® + - - - + W, t%, where 1, o, ..., by € R, and ay, ..., a,

are distinct nonzero real numbers. Then for any r > 1, there exists C > 0 independent of r
such that

' d
/ exp(i(cb(t)))?t‘ < C(l i rfoq/n)'llll—l/n.
1

Proof We can choose an integer [ > 0 such that 2! < r < 2/*1, By the change of variables
we have

-1

l /1 exp(i(00) L] <3

j=0

/, exp(i(CIJ(t)))ﬂ +

9 t

/2; exp(i(CID(t)))ﬂ

t

+

1 d
[, exp(i(dJ(rt)))Tt‘. 2.6)

1
1/2

<3| [ ewttoer o)
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Note that 1/2 < 2//r < 1. Applying Lemma 2.1 and using (2.6), we obtain

r -1
r
/ exp(i( ‘ ( m |—1/n 2}+1 —ay/n + |M1|—1/nr—a1/n?)
1

j=0

< C(l + r—al/n)|ull—1/n,
where C > 0 is independent of r. This proves Lemma 2.2. d

Lemma 2.3 ([18]) Let ® = (®y,..., D,,) be real analytic on S"*. Suppose that {®1,..., D,,}
is a linearly independent set. Then there exists a positive number § = §(m, @) such that

o /_/‘S”*lxsn—l |Z . ((b(x) - (I)(y)) |_(S dx dy < oo.

zesm-1

LetI', Y, ®, ¥, @, ¥ be asin Theorem 1.1. Let A; be the number of distinct d;, and A, the
number of distinct v;. Without loss of generality, we may assume that

(@1, @%,..., dM),

P =
v

(w2, w?2),

where @' = (¥,,..., P, ,,) with O, ;(¢y) = gl ®,;(y) forany 1 <t <A and1<i<( and
Ve = (W, .s Wiep,) with W, i(ty) = £« W, i(y) forany 1 <k <Ay and 1 <j <«.Obviously,
Zl a4 =M and {an, ..o ) C{L,..., M}, Zﬁilb,( =M and {B1,...,B,} C{L,...,N}. We
also assume that {®,;,..., P, } forms a basis for span{®,;,..., P, } forany 1 <: < i; and

{Wet,..., Y w, } forms a basis for span{W, 1,..., ¥, 5, } for any 1 <k < A,. Thus, there exist
two sequences of numbers {z,;;} and {b, } such that

qDL,i(x) =a,i1 CDL,I (x) te+ ﬂL,L’,o, q)t,m (?C)
foranyl <:<x;,1<i<a,and x € R” and
‘IJK,/()/) = b;«,/,1‘1/;<,1(}/) L bK,j,ZD'K q’lk,w,( (}’)

forany 1 <« <A,,1<j<b,,and y € R". Define two sequences of linear transformations
{R,}) : R* — Rand {H, ;)7 : :Rb — R as follows:

Rt,i()’) =a X1t -+ a.q,i%a, 1<i<o;

Hej) = by + -+ bepjyo, 1=j=<w.
Define two families of linear transformations {Rl}?:l1 and {H,C}ﬁz=1 by

RL = (RL,17 “en ;Rt,o, ),

HK = (HK,l, e ;Hk,w,()'
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In what follows, let ® = (®,1,...,®,,,) and V¥ = (¥, 1,..., ¥, ). Let & = (&,..., &) =

(.;;:1,”',%‘)&1) Wlth gt = (Et,l:&,Znu:Et,a,) for anY 1 E L S )‘1' Let n= (771:""77N) = (nl!"'inkz)
with 7 = (M1, Me2s+ - > Nieb,) for any 1 <k < A,. Thus,

£ =R(E) D, 1<i=<hy (2.7)

N W = He(n) - 0%, 1<k <h. (2.8)

For1<:<A; and 1 <k < Ay, we define two linear transformations £, : RM — R and
0, : RN — R7* by

L"L(E):Rt(él)l (')K(U)ZHK(WK)-
Define two families of mappings {Fl}f":lO and {T,(}ffo by

F0:(0r~~10); TOZ(O,...,O);
T =(®,...,9,0,...,0), 1<:<i; and Ty =(d),...,0");

T =(¥),...,0%0,...,0), 1<k<i and T, = (V.. 0")

Let ©,, beasin (2.1). For any r,s > 0, define two families of measures {ali’;s} and {|o}‘4"”|}
for 0 <¢ < A;and 0 <k < Ay as follows:

o= [[ | ex(ami(e 1 e0w)
+1- V(W) (V) do (i) do (V)),

and {0}, ([} is defined in the same way as {o}%, .}, but with €, replaced by [€2,,|. Clearly,
U/?;f,s =o;l';°m =0 for 0<:<XA,0 <Kk <Ay

Lemma 2.4 Let o,y € §1 0or §o. For p e DU{0}, k,j€Z,1 <1 <A, 1 <k <Ay, and
(€,1) € RM x RN, there exist positive constants e, €5, and C such that

sup|ois(6,m)| < C; (2.9)

7,5>0

a/+1
drds
/ / ‘U;Lrs(g 7] G;L;}SK(S 77)‘2

< c<u+1)2|¢(aﬁ)"“‘£t<s)|mmin{ (@) 0| 71} (2.10)
a/+1 + d d

/ | e (E,m) cni”rsl(%‘ 77)|2 2

“jt “/
<Clu+ 1?1y (d),) "™ 0. 7T min{1, o(ak)™ LE[ ), (2.11)

aﬁl k+1

/‘ / |st(g’ )|2drds

@ s
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< C(u+1)*min{1, |¢(aﬁ)da‘/j[(g)|_%,

v (, )”f'*@ |77, | (ak) ™ L&) 7 [ (@)™ @ ()71 ); (212)

2drds

a]+1
f f |%(sn O () — o e ) + o )|

1 L
;/.+1 n+1
)

< Clu+1)* min1, g (ak) ™ £.(€)

W (@) O, ()

(k)™ £.©)[7 [ ()™ ©.(n)| 7). @13)

Proof Note that for any ¢ € §; or o, there exist C,
we only prove the case ¢, ¥ € §1, and other cases are analogous. Estimate (2.9) is obvious.

By the change of variables,
|GM ;T S(E n) |
//SWH o exp(-2mi(& - T, (p(r)u'))
2
+0- Ve (V)R (V) do (') do (V')

_ / /(Smlxsnl)z exp(=27i(& - (T, ((r)id) — T\ (¢(r)6))))

x exp(=27in - (e (v (s)V) = Y (¥ (s)w)))
x Q,(, 1/) Q.0,w)doy, (u’) do, (V') do(0) doy(w).

It follows that

a/+1
2drds
/’/ / E ) i,

n “u

: // |y (1,0,8) | ] (v, )|
(§m-1xsn-1)2

X |Q,L (u', v’) Q,.0,w) | do,, (u/) do, (V/) do,,(0)do,(w), (2.14)
where

ﬂlliH dr
i 0,0,8)i= [ exp(-2mit - (1 (o) - T (o 06)) -

n

, 4 . , ds
T (Vs @,1) = L exp(-2i& - (T (Y (6)V) = Y (¥ (s)w))) =

A s
By the change of variables and (2.7) we have

IHk,u(u’ﬁ,é)

21+1 k

exp(-2mi§ - (T (e(r)u') =T (¢ (V)e)))drr

2la
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W(21+1 ﬁ) d
/( exp(-2mi& - (T, (ru') - (rQ))) ’
¢

F”q“;

1o 1 e(2laf)
" 21+1 k d

S| [ expleamie (p(ety) -l o))
1=0 V1
u 2l+1 k

= Z / vl exp( ZJTLZgo 2[ k da’rdD‘IR (E’) ( ( ) CD’(Q))) ’ (2.15)
=0 171 j=1

Note that (p;?;:zk‘;) < ¢,. Combining (2.15) with Lemma 2.2 yields that

L lo(2'af) R () - (8 () - @)}

i
[Hi(w,0,6)| = Y min

1=0
< C(u +1)min{1, max{(p(afj)da’,(p(2“aﬁ)da"}7q

x |R (&) - (¥ () - 90))| '} (2.16)
for any 0 < €; < 1/A1. Similarly, we have

’fm (V/: , 77)‘ <C(u+1) min{l, max{W(a’ ) w(z’%z/ )Vﬂ'( }_52
x [He (n) - (% (V) = ¥ ()|} (2.17)

for any 0 < € < 1/Ay. For any 1 < < A; and x € §%7}, since {®,4,...,®,,,} is linear in-
dependent, x - ®'(-) is a nonzero real-analytic function. Invoking Lemma 2.3, there exists
81 > 0 such that

sup //sm 2 (P (o) - @ (9))|_(31 Aoy, (1) dou(0) < oc. (2.18)

xeSo-1

Similarly, for any 1 < x < A, there exists &, > 0 such that

sup /./sn . \IJK(«S’))|_(32 do,(u') do,(0) < oo. (2.19)

yeSPx -1

From (2.14) and (2.16)-(2.17) we have

4! ait! drds
[;/. _/k urs(g 77)|2
" ap

< Clu+1)? min{L, max{p(af) ¢ (2af) ™ | |R ()}
V(2

)"} ()

—€1

xmin{l,max{ ( )VﬁK
Rt(gl) K(77 ) ~ ; ~ 2

* //(SMIXS”I)Z IR,(§")] |[H,(n%)| ’ (\Ij (V) - (a)))

X |QM (u', V') Q,0,0) | do,, (u/) do, (V/) do,,(0)do,(w) (2.20)

(@) - 50)
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for any 0 < €; <1/X; and 0 < €3 < 1/A,. Take €; = min{1/A4,81/2} and €; = min{1/1,, ,/2}.
Using (2.3), (2.18)-(2.19) and Hoélder’s inequality along with (2.20), we obtain

a/l
zdrds
/f sl

< Caﬂ(//, +1)% min{l, max{go(aﬁ)da’,go(2“aﬁ)daj}_el |Rl (5‘) |_El}

x min{1, max{y (aL)VﬁK RV (2"41’#)”’” VO He ()|} (2.21)

We can easily check that

/<+1
/ / o LS < ey, (2.22)

ai rapt »drds
/ / ot o(6m) ~ ottt (€, T < Clu 1) (2.23)

Interpolating between (2.21) and (2.22) yields (2.12). We now prove (2.10) and (2.11). By

the change of variables,

|0i5,5(&,m) — 0, o )|

//Sm4 o (exp(-2mi& - T(p(r)u')) — exp(-2mi& - Ty (@(r)u')))

2
x exp(=27in - Y (W (V)R (,V) do (') do (V')

) / /(5"“ sr1)2 (exp(-2mik - Tu(p(r)u)) - exp(-27i& - i (9(1)u)))

x (exp(2mi& - T(¢(r)0)) — exp(-27i& - T'\_1(9(r)0)))
x exp(=27in - (Y (v (s)V) = Y (v (s)w)))
x Q,(«,v)Q,0,0) doy (') doy (V) doy(0) doy(w),

which, together with (2.7), implies that

a et o drds
2
[’/ /k o) — i €|
" an

a )R (& // i 0,m)|
§m— lxsnl

X |QM (u', V') Q,0, w)| do,, (u ) do, (V ) do,,(0)do,(w). (2.24)

< C(u +1)min{1,
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Using (2.3), (2.17), (2.19), (2.24), and Holder’s inequality, we have

ﬂ/l
drds
/ / o) - o )

rs
< Cab e+ 1P minf1 o () R €9
x min{1, max{y (aL)Vﬂ“ RV (2“61’/“)% Ve H ()|} (2.25)

Estimate (2.10) follows form (2.23) and (2.25). Similarly, we can get (2.11). Estimate (2.13)
follows from the inequality

|05 (821) = G,i}sk(é n- G,‘frsl(é n)+0,‘ulsk & m)|

/:/sm—l g1 exP(—zni(f P ((,D(V)M/) +1- Y1 (W(S)V/)))

x (exp(=27i(§ - (T (@) - T ((r)u')))) - 1)
X (exp(—2ni(n . (T,( (tp(s)v/) - TK_1(¢(S)V’)))) - 1)

x Q' V) (' )]u (V) do (') do (V')

< len{

@(r)*R,(¢")]} min{1,

()" He (n)[}.
This proves Lemma 2.4. d

For any u € DU {0} and k,j € Z, we define two families of measures {rﬂ k]} and {|rﬂ /<1|}
forl <: <Xt and1 <« <A, as follows:

$2,, (', V)h( ) ' /
Mk; // u|u|m|v||:4| VI exp(=27i(& - T (¢ (Jul)u)
+n- Tx(w(|v|)v/))) dudv,
Q2
;Lk]|($ 77) // | (u|u|m|v||:t| |V|)| exp(—27n(“§ . FL(¢(|M|)M/)

+1- Yy (w(|v|)v/))) dudyv,

where (£,17) € RM x RN and

Ak = {(u, V) eR” x R": (|u|, |v|)[aﬁ,aﬁ”) X [ajt,a’“)}. (2.26)
Observe that
TS;Z]_T/Lk] 0 forO0<i:<A,0<k <A,

For convenience, for u € D U {0} and A > 1, we set

k+1

&t drd

ras

||h||u,y:=sup(/ / (rs)|” )
JkeZ
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Lemma2.5 Letu € DU{0}, k|, < oo forsomey >1andy = max{2,y’}. Suppose p, €
51 0r §o. Then for k,j € Z, there exist positive constants €1, €3, C such that, foranyl <<
and 1 <k < Ay,

[ JEm)

< Cllhlly (o + 1)¥" min{1,

(a) ™ L) T, [y ()" ©, () 70T,
|¢(“ﬁ)dﬂl£t(é)|_%|1/f(ﬂﬁ)v’3” ®K(n){_%}; (2.27)
|ruk]($ n - ;412]1(%_ 77)|

(@) L@ 7} (2.28)

, .\ L
< Cllhlly (e + D> |9 (a,) " O, ()| 7D min{L, |p(a],

T () = T (6 )|
< Cllly e+ D ()™ £,66)| 757 minfL, [ (a),)™ O, 7T }; (229)
[T (Em) — T ) — T Em) + T En)|
o(ak) e £(&)| 70,
|‘/’(ﬂ’}1)vﬂ“®x(’7)|m’| (ak) % £,(&)| 77 |y (@ ) O, ()| 7 ). (2.30)

< Cllhlly (u + 1?7 min{1,

Proof By a change of variables, (2.9), and Hélder’s inequality we have

)] = ‘f / /fsmlxsﬂe"f’ (e T (o) 50 To(W6)

drds
rs

4t ekt rdrds\""
LK Y
=< C”h”u,y (/;I ./ak |O'u;r,s(§,77)| s )
k+1
drds
< Cllhll,uy (u + 1)2maxV/y'=1/20) (/ f Oplirs (&, 77)’2 )

This inequality, together with (2.12), yields (2.27). By a change of variables again, (2.9) and

X (u/, v/) do,, (1/) do, (v/)h(r, s)

Holder’s inequality we obtain

ok () - [fk,l(é )|

a{fl ﬂ/jl
- exp(—-2mwié - T, 4
‘-/z’# /;ﬁ /_/Sm—l wsn-1 Xp( mig (‘P (Nu ))

x (exp(=2min - Ve (¥ (s)V)) —exp(-2min - Yea (¥ ()V)))

drds
rs

x Q,(«,V') doy(u') do, (V) h(r,s)

d/+1 dd
‘ / f (0786, m) — ol € )i, ) T
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a{fl ﬂﬁ“ e LK— l V d}”dS
= C”h”u,)/ /ﬂ] /k |O';Ly;r,s(ér77) oilrs &, 77)|

k+1
<cnhnww+1)2md“/y-“2°(/ / o6 m) = ot (& )|

Sdrds\""
rs

Combining this inequality with (2.11) implies (2.28). Applying similar arguments as in get-
ting (2.28) and using (2.12), we get (2.29). By a change of variables and Hélder’s inequality,

—

[Tk (&) ;kl,”(é =T &)+ T T E )

drds

ﬂ]+1 —— —
f / (o762 m) = 03t (€11) ~ 01516, m) + okt 6 m)) )

= C”h”uy</ / |U;[;I(r,s(g’77) O';Lu"lsk(é;_ 77)

rdrd
R W Y e )

< Clhll sy (e + 1010717200
aﬁl k+1 d
2drds

(f f Tra(6m) = 0l € m) — 0 6om) + 0132 6| )

This inequality, together with (2.13), yields (2.30) and finishes the proof. O

Lemma 2.6 ([22]) Let P be a polynomial mapping: R, — R”, where P(t) = (Py(2),...,
P,(t)) and P; (i =1,2,...,n) are real polynomials defined on R,. Suppose y >1 and ¢ € §,
or §a. Then the operator My defined by

2y()(+1)

M@ =sup [ (=P (o)

KEZL J2V

satisfies

|Ms(0, < CrIIfl,

for1< p < oo. The constant C is independent of y and the coefficients of P; (i =1,2,...,n)
but depends on ¢.

Applying Lemma 2.6, we have the following:

Lemma2.7 Let u € DU{0}and ||h||,,, < oo forsomey >1.Suppose ¢,V € §1 or . Then,
forve{0,1,..., 1} and k €{0,1,..., A}, the operator r/“K satisfies

(E0a) Hp < CllAll,., (u+ DY Ifl, fory <p<oo, (2.31)

where

T ), 9) = sup||t;’;(,j| *f(x,y)‘.
kjeZ



Liu et al. Journal of Inequalities and Applications (2016) 2016:226 Page 14 of 24

Proof We define the measures {|A"

el and the maximal operator A*

by

LK

12, (', V)

e = [ w2 o) e o () dua

and

)

AL (N y) = sup|}AZ';‘k7j| * f(x,9)
kjeZ

where A is defied as in (2.26). By a change of variables we have

Af“x(f)(x»)’)

// (e (1)), y n(w(ww))% dudy

A k/

a/+1 k+1 drd
//WW/ fi e reomy - TE
X ’Qu(u,vﬂdam(u)don(v).

By the definition of ®, and W, using the iterated integration, Lemma 2.5, and Minkowski’s

= sup
kjeZ

inequality, we obtain

||AW(f)||p <C(u+1?|fll,, l<p<oo. (2.32)

By a change of variables and Holder’s inequality we have

Hruk/| *f XY }
= // f(x— T(eu'),y = Y (¥ (s)V')) lQ“(u,’vzth" V! dudy
Ak lu|™|v]
k+1
/ / // (o), y =X (¥ (s)V))|
M sm— lxsn 1

drds

x |Q,L(u/,v/)|dom(u/)da,,( )|h(r, )|

ak+l

/L 1
< cnhu,W(/ f

X |Q,4 (u,V) | doy,(u') do, (V')

/fsm smlf(x L(e),y =L (V)]

v drds)

rs

< Cllillyy ( L f N f fs mflxsmtf(x—F,(go(rm’),y—n(w(s)v/))V’

1/y
< [, V) | dor (i) dorn (V) "’”’“)

rs
< Clltly (A (U7 ) i)

Combining this inequality with (2.32) yields (2.31). O
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Forte{l,...,A}and k € {1,..., 13}, let r;, = rank(L,) and r,, = rank(®, ). By a change of
basic matrices (see also [21], Lemma 6.1), there are four nonsingular linear transformations
Hi, R — R, Hy R0 — R26, Gy RM — RM and G, : RN — RY such that

M1, GLg| < |Lu8)] < Cu|Him)G1E|  for & e RY, (2.33)

|H2,K7T,1\11Kg2,x77| S |@K(77)| 5 CN|H2,K7T,{;[,KQZ,K7I| fOI‘E € RN’ (234)

where Cy, Cy > 1, n _is a projection operator from RM to R+, and rc _is the projection
operator from RN to R’ 2k,

Now we take two radial functions ¢;,¢, € Ci°(R) such that ¢;(f) = ¢a(s) =1 for
max{|t],[s|} <1 and ¢i(t) = ¢2(s) = 0 for min{|¢|,|s|} > a,. For ¢ € {1,...,11} and x €

{L,..., 22}, we define the measures {w(%, .} and {)»,L k]} by

wu,rs(g 7’) 071;,{7,3(5» 77)1_[1(‘)1_[2(’() O—/;LE((S’ r/)nl(t - 1)H2(K)

—

o e, ML Ok - 1) + 0/ L&, Ty - DT (c — 1)

and
I (6m) = T (&, ML (O () — T/ (€ M~ DI (k)
— T E MO0 = 1) + 77 (&, )T (- Do - 1),
where
A 4
M@ = [ | ¢(|e(ay) ™ Hiiml Gk,
i=1+1
A
= 1_[ ¢2(|W(ﬂju)vﬁgHz,xﬂfikgz,w‘)o
c=k+1
Let {|w}y, |} be defined in the same way as {w}/,, }, but with {0}/, } replaced by {|o !, (|}. It

is easy to see that

A A

ope =Y N W (2.35)

=1 k=1

and

VS

A1A L
Tk = Z Z Mok (2.36)

=1 k=1

Applying Lemmas 2.4 and 2.5 and combining with the arguments similar to those in the
proof of [10], Lemma 2.7, we can obtain the following:
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Lemma 2.8 Let ¢,V € §1 or §o. For p e DU{0}, k,je€Z,1 <t <A, 1<k <Ay, and
(€,1) € RM x RN, there exist positive constants e, €5, and C such that

fi%”“’ws” <G
‘/ﬂlmwwﬁnwmﬁ
< Clu + 1 min{L g (a)“ £.()| 7 [ (a])"™ O, (n) 77,
(e )™ £, | 7w (a])"™ O, (),

L
n+l

p(ab) ™ (&),
=

¥ ()™ O
|o(ak) ™ £,(5)

€1
T+l

v ()™ Ocm)

Lemma 2.9 Let u € DU{0} and ||k, < oo for some y >1 and y = max{2,y’}. Suppose
that ¢,y € §1 or 2. Then for k,j € Z, there exist positive constants €, €3, C such that, for
anyl <1< andl <k <Xy,

stA | < CllAll,.,, (e + D>

wikyj

AT 6] = Cllly G+ 1% min{1, | (k) £,66) 75 [y () ©, (| T,
| ( )datﬁ(g)‘ ,Hl)W(a/ )Vﬂk@K(,’)"%,

o(a )"’m L }/(u+1)

[y () O[T
o)™ £L©)| T |y (a]) ™ 0, )] 7T ).

Applying Lemma 2.6 and the definition of )‘;’;(k,j’ we can establish the following:

Lemma 2.10 Let p € D U {0} and | k||, < 0o for some y > 1. Suppose that ¢, € §, or
2. Then, for 1 € {0,1,..., 1} and k € {0,1,...,L,}, there exists a constant C > 0 such that

kw”ﬁ%%ﬂhfcwmwu+wwwm,ykpsw.
JEZL

Applying Lemma 2.10, by arguments similar to those used in the proof of [21], Theo-
rem 7.5, we have the following:

Lemma 2.11 Let u € DU{0} and ||hl|,.,, < oo forsomey > 1. Suppose that ¢, € §1 or Fa.
Then, for 1 € {0,1,..., 11} and k € {0,1,..., A}, there exists a constant C > 0 such that

! (me)”

kjeZ
for p satisfying |1/p — 1/2| < min{1/y’,1/2}.

< Cllhll,i,y (1 + 1)
p

i ) 1/2
Z |)‘u.;k,j *gk,ji

kjeZ

p
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Lemma 2.12 Let Q,, be as in (2.1) for u € D U {0}. Suppose that ¢, € §1 or Fo. For 1 €
{1,....,. 0} and k € {1,..., )y}, define the operator U by

Lo 5) = sup /fi’/‘fl /aﬁ+ #”| o x,y)| drds
kjeZJd, Ja
Then there exists a constant C > 0 such that
[, < Cl+ 12171,
forall f € IP(RM x RN) and 1< p < .
Proof Define the operator H by
dr ds

kjeZ

“;:1 uﬁ*
H(F)w,9) = sup / f ot )|
4
Then

H(f)x,y) = sup/ /
kjeZ

flr= @ ().y =9 (V)

sm=1, gn-1
< @u(w, V)| do () do (v)| 22
e dr ds
Sc//sm-lxsn—l /f,?g%/g/“ /a‘ﬁ V(x_(bt(u )’y_q”‘(v ))‘ rs

X |Qu («,V) | do (u') do (V).

Invoking Lemma 2.6, using the iterated integration and Minkowski’s inequality, we can
obtain

||7—[(f) ||P <C(u+ 1)2|[f||p, l<p<oo.
This, together with the definition of w5, ., implies Lemma 2.12. O

3 Proofs of main results

Proof of Theorem 1.1 We only prove the case ¢, ¢ € §1, and the other cases are analogous.
By Remark 1.1 there exist B, By > 1 such that ¢(2¢) > B,¢(t) and v (2¢) > By (¢) for all
t > 0. It follows form (2.4) and (2.36) that

Tharx(f) < Z A Thg,rx(f), (3.1)

neDU{0}

Ao A Ao A

TRNETD DTV 35 35 DLTITIE 5 DA MY

kjeZ =1 k=1 kjeZ =1 k=1
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Then by (2.5), (3.1), and (3.2), to prove Theorem 1.1, it suffices to show that, for any ¢ €
{1,...,)\,1} and k € {1,...,)@},

I Tho.r Y(f)||p <Cu+1>|fl, for[1/p—1/2| <min{l/y’,1/2}. (3.3)

Without loss of generality, we may assume that {dal} 2, and {vg, },(21 are two sequences of
positive numbers. For fixed ¢t € {1,...,A1} and x € {1,..., A}, we can choose two collections
of C* functions {¢;};cz and {n;};cz on (0, c0) with the following properties:
(i) supp(&y) C [o(@is") o, g(ai; )], supp(n) C [y (@) o, v (al:)~"sc
(i) 0<&hm <13z 6(6) = 3 1czm®)? = 1;
(iii) |(d/dr)s¢i(t)] < Ci/t, |(dldt)sn(t)| < Cy/t, where Cy, C, are independent of i, /, .
Define the multiplier operator S;; on RM x RN by

S/lzf(x:y) = gi(|Hl,tnﬁgl,1x|)nl(’HZKﬂ,{;{KgZ,Ky|)f(x’y)~

We can write

h Q“ T, T(f Z Z Si+k,l+j (AZ:H« * Si+k,l+jf) = Z Ti,lf' (34)

ileZ kjel ilel

Now we consider the L”-boundedness of T;;. Applying the Littlewood-Paley theory and
Lemma 2.11, we have that, for any p satisfying |1/p — 1/2| < min{1/y’,1/2},

1/2
(S ISass0i )

kjeZ

y e 12
Z |)"[L;k,j * Sz+k,l+;f|

kjEZ

IITi,szIpSC’

p

-

p

(Z |Sisstaif |2>1/2

kjeZ

< CllAlluy (w + D |f |l (3.5)

< Cllhll,.,, (u +1)¥"

p

On the other hand, by the Littlewood-Paley theory and Plancherel’s theorem we have

17212
” Tl,Lf”% =< o (Z |)\;LK]<] *Si+k,l+if}2)
kjeZ 2
S O | ARSI )
kjeZ

X nl+j(’H2,K7T,{;[Kg2,Ky|) m}?@» 77)’2 dé dn

<cX [ i el dean

kjeZ Eivk A+
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where
Euukiey = (6.1 € BY x B : (@) % < 3 G & | < p(alth)

¥ (@) < Ry, Gaen| < (@)} (3.6)

Using Lemma 2.9 and (2.33)-(2.34), we have

I T:tf 2 < Cllally (e + 1> Bigllf N2 (3.7)
where
_idy 17 ~—lvg. 17
B 7B i1,
B TRy 1<,
B, = i€1da, 17 = 17 . (3.8)
B, B . i<-1,1>-1,
ie1de, 17 ple2vp 7.
By, BT, < -1

Here y = max{2,y’}. Interpolating (3.5) and (3.7), for any p satisfying |1/p — 1/2| <
min{1/y’,1/2}, there exists § € (0,1] such that

ITiaf Iy < Clllly (e + DX BNl 11/p =172 < min{1/y’,1/2}.

L

Then we have for any p satisfying |1/p —1/2| < min{1/y’,1/2},

/ —ide, 817 =g 81V —id, 817 leavp, 817
S ITuaf lp < Cllklluy (e + DY (Z BB, Y BB

LleZ i1>-1 i>-1l<-1

i€ dy, 817 —lVﬂKS/); i€1dy, 817 lEzVﬁK(S/);
+ Y BB, + Y BB, I£1L,

i<-1,1>-1 il<-1

< CllAllu, (w + D27 |f |l

This, combined with (3.4) and Minkowski’s inequality, implies that, for any ¢ € {1,...,;}
and k € {1,..., A2},

I T,g;gwm(f)np < Cllhlluy (e + Y7 |f1l,  for [1/p—1/2| < min{1/y’,1/2}. (3.9)

Estimate (3.3) follows from (3.9) and the fact ||/]|,,, < (1 +1)*7 4]l a, - This proves The-
orem 1.1. (I

Proof of Theorem 1.3 We only prove the case ¢, ¥ € §1, and the other cases are analogous.
It follows from (2.4) that

(r) (r)
Mor~(f) = Z Mg, -y (f)-
neDU{0}

Hence, by (2.5), to prove Theorem 1.3, it suffices to show that

1M - (], = Cle+ D If1, (3.10)
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for y <p<ooifl1 <y <2 and for p = oo if y = 1. By duality, Holder’s inequality,
Minkowski’s inequality, and (2.35) we have

Rl drds
ME () = sup / f #0782  htr )
e, <1 0
s(/ / 0222 ()| d”“)
0 0
(o] 00 VS ES) /drds 1/)//
- / / DIPPCNCR)
0 0 =1 k-1 rs
< v drds
SR [ e2)”
=1 k=1
M A
=Y > M), y). (3.11)
=1 k=1

We shall consider the following three cases.

Case 1 (y = 2). By Minkowski’s inequality we have

o drd
M2 (f) x,y)-< / If * ol ()| 4 S)

k+1
([ )
kjeZ
drd
HVS (Zsl+kl+j z+kl+ )(x’y)‘ : S)

ileZ

ak+l

(=L

kjeZ

a/+1
<Z<Z/ v/a urs l+kl+, l+kl+1f %,y ’2drds>

ileZ “kjel

=) Gulf)). (3.12)

ileZ

By Plancherel’s theorem we have

||Gzl(f)H2 ,//RMxRN Z/ f s % (SivkoSisk1if ) (%) |2d dsd dy

kjel

= Z/ /M/ |wites &) [PF )| d&‘dndrds

kjeZ Eiik, 1+j

- / / |wurs(é§n)|2drdslf(€n|dédn,

kjeZ z+kl+/
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where E; x ,; is as in (3.6). Without loss of generality, we may assume {d, }f\:ll and {vg, ﬁil
are two sequences of positive numbers. Applying Lemma 2.8, we get

1Giifll2 < Clie + DBygf Il -
where
By B};’Vﬁx R il
B B;ldm /ZBJZVﬂK /2, i> —l,l < _1, (3 14‘)
yyl = . — '
i prqd“‘/zB lvg, /2’ i<-1,1>-1,

i€1dg, 12 yév 2 .
B, B, < -1

Here By, By are as in the proof of Theorem 1.1. Next, for p > 2, let ¢ = (p/2)’. Then there
exists a function g € L1(RM x RY) with ||g||, <1 such that

|Gu],
nt';l ulkfl
-I[ MX]RNW% /4 / ol SiisSkinf ) )| dxdy
< supflayt|
d d
X Z/ / f/ |(Sl+kl+] z+kl+ (x u,y— V)| da);frs( V =
ket R xRA

x |g(x,y)| dxdy

< C//RMXRN > IStk Sicrisif @)U (1g1) (~x, —y) dxc dy

kjeZ

1/2
2
(Z |Si+k,l+jSi+k,l+jf| )

kjel

2

pllu (g,

=c|

where U is as in Lemma 2.12. By the Littlewood-Paley theory and Lemma 2.12 we have
|1Gii(f) Hp =Cu+DIf Nl p>2. (3.15)

Interpolating between (3.13) and (3.15), for any fixed p > 2, we can choose §, € (0,1] such
that

|G, < Clu + DB IF 1,

This, combined with (3.12) and Minkowski’s inequality, yields that

IM2() ” - C( Z B—tdm 5p/2 Bzvm Bpi2 Z B;idm 8pl2 Bf;2vﬂk 8p12

iI>-1 i>-1,l<-1

i€1do, 8p/2 —lV/gK5p/2 i€1de, Sp/2 1621/)3,(81;/2
e D BB ) BB IA,

i<-1,/>-1 il<-1

=< Clu+DIf Nl
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which, together with (3.11), leads to
|ME) (), < Clw+ DIfIl, forp>2. (3.16)
Case2 (y =1). For f € L°(RM x RN) and & € U, we have

Thgpro ()9 = ‘ [T [wea [[ | srey-re)

drds
rs

x Q, (V) doy (1) doy (V)

=< ClILyllpr(sm-1 xsny 1l [f 1l oo

< Cllflloo

for every (x,y) € RM x RN, We get from (2.3) that
MY (@) = sup| Tha, rx (N9)] < Clf loos
hellh
which implies
M(D <C
|ME) )] = Cllf -

Case 3 (1 < y <2). For convenience, we set F (f) = f aﬁ},’fs‘z. By Cases 1 and 2 we have
”F(f) ||LPO(RMXRN,L2(R+xR+,r—1s—1 drds)) = Clu+Dlf llpy Lo >25
”F(f)HLOO(RMxRN,LOC(R+xRﬂrlrl drds)) = Cllf llee-

The real interpolation theorem for Lebesgue mixed norm spaces tells us that
21y’
”F(f)||LP(RM><RN,LV’(R+xR+,rlrl drds)) = Clu+D" Ifllp, v <p<oo.
This yields (3.10) and completes the proof. d

Proof of Theorem 1.2 We shall prove Theorem 1.2 by considering the following two cases.
Case1 (1 <y <2). We may assume without loss of generality that ||/[|z;, = 1. Then

| Tharx®dll, = MO, = CIFIl,

Applying Theorem 1.3, we obtain

| Tharx ()], <Clflle fory=1

and

I Th,Q,F,T(f)Hp <Clfllp, v <p<ooforl<y<2,
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which, together with a standard duality argument, implies that

| Tharx () Hp <Clfllp, l<p=<y,dforl<y=<2.

Hence, the interpolation theorem tells us that

|| Tnarx(f) Hp <Clfll,, l<p<oo.

Case 2 (y >2). By (3.1)-(3.2), (3.9), and Minkowski’s inequality we have

| Thara®l, =C 3" Mullhlluy (e + D7 Il forl<p<oo.
neDU{0}

Combining this inequality with (2.5) and the fact that ||4|,, < ||/]ly, implies

|| Th,Q,F,T (f) Hp = C“Q”L(long L2y (sm-1x gn-1) ”f”p for1l <p < oo

This finishes the proof of Theorem 1.2. g
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