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Abstract

In this paper, our aim is to address the existence and uniqueness of solutions for a
class of integral equations in IFMT-space. Therefore, we introduce the concept of
IFMT-spaces and prove a common fixed point theorem in a complete IFMT-space;
next we study an application.
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1 Introduction and preliminaries
First of all, we would like to introduce the concept of IFMT-space, which is a non-trivial
generalization of IFM-space introduced by Park [1] and Saadati and Park [2] and Saadati
et al. [3]; also we use results from [4-8].

We say the pair (L*, <;«) is a complete lattice whenever L* is a non-empty set and we
have the operation <;« defined by

L* = {(a,b) :(a,b) €0,1] x [0,1]and a + b < 1},
(a,b) <p+ (¢c,d) &= a <c,and b > d, for each (a,b), (c,d) € L*.

Definition 1.1 ([9]) AnIF set F, g in a universe U is an object F, g = {(ax(u), Br(u))|u €
U}, in which, for all u € U, ar(u) € [0,1], and Br(u) € [0,1] are said the membership
degree and the non-membership degree, respectively, of u in F, g, and furthermore they
satisfy or(u) + Br(u) <1.

We consider 0+ = (0,1) and 1;+ = (1, 0) as its units.

Definition 1.2 ([4]) The mapping 7 : L* x L* — L* satisfying the following conditions:
(Va e L*) (T(a,1+) = a),
(V(a,b) € L* x L*) (T (a,b) =T (b, a)),
(V(a,b,c) e L* x L* x L*) (T (a, T (b,¢c)) = T (T (a,b),c)),
M(a,d’,b,b') e L* x L* x L* x L*) (a <;+a’ and b <;» b' = T (a,b) <~ T (@, }')).

is said to be a triangular norm (¢-norm) on L*.
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T is said to be a continuous t-norm if the triple (L*, <;=,7T) is an Abelian topological
monoid with unit 1;x.

Definition 1.3 ([4]) 7 on L* is called continuous t-representable if and only if there
exist a continuous t-norm % and a continuous t-conorm ¢ on [0,1] such that, for all
a= (alyﬂ2)7b = (blrbZ) eLr,

T(ﬂ, b) = (ﬂl % bl, as ¢ bz)

For example, T (a, b) = (a1by, min(a, + by, 1)) for all a = (ay,a3) and b = (b1, by) in L* is a
continuous ¢-representable.

Definition 1.4 The decreasing mapping N : L* —> L* satisfying N'(0;+) = 1;+ and
N (1z+) = 0z« is said a negator on L*. We say A is an involutive negator if V(N (a)) = a, for
all a € L*. The decreasing mapping N : [0,1] — [0, 1] satisfying N(0) =1 and N(1) =0 is
said to be a negator on [0,1]. The standard negator on [0, 1] is defined, for all & € [0, 1], by
N;(a) = 1 - a, denoted by N;. We show (Ny(a), a) = N;(a).

Definition 1.5 If for given « € (0,1) there is 8 € (0,1) such that
Tm(/\/;(ﬂ)’:j\[s(ﬂ)) >L* ./\/;(O{), meN,
then 7 is a H-type t-norm.

A typical example of such ¢-norms is
Aa,b) = (Min(ﬂh b1), Max(a, bz)),
for every a = (a1,a5) and b = (b1, by) in L*.

Definition 1.6 The tuble (X, My, T) is said to be an I[FMT-space if X is an (non-empty)
set, T is a continuous ¢-representable, and M,y is a mapping X? x [0,+00) — L* (in
which M, N are fuzzy sets from X? x [0, +c0) to [0,1] such that M(x,y,£) + N(x,y,t) <1
forallx,y € X and ¢ > 0) satisfying the following conditions for every x,y,z € X and £,s > O:

(@) Mun(x,y,£) >1 O

(b) Man@,y,t) = Man@,x,8) =1« iff x = ;

() Mun(x,y,t) = Muyn(y,x,t) for each x,y € X;

(d) Marn(ey, K(E +38)) >1+ T(Mpan(, 2, £), Marn(2, 5 8)) for some constant K > 1;

() Murn(x,y,-):[0,00) — L* is continuous.

Also My is said an IFMT. Note that for an IFMT-space
Mun(x,y,8) = (M(x,y,8), N(x, 9, 1)).
(X, M n, T) is called a Menger IFMT-space if

lim MM,N(X,_)/, t) = lim MM,N()/,X, t) =1;x.
t—00 t—00
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Remark 1.7 The space of all real functions a(x), x € [0,1] such that fol | (x)|? dx < o0,
denoted by L, (0 < g < 1), is a metric type space. Consider

1 ;
d(a,ﬁ):( /0 Ia(x)—ﬁ(x)lqu) ,

1
for each o, B € L;. Then d is a metric type space with K =27,

Example 1.8 We consider the set of Lebesgue measurable functions on [0,1] such that
fol | (x)|? dx < 0o, where ¢ > 0 is a real number denoted by 9. Consider

0 ift <0,
Mpyn (9, t) = ( ‘ (fa (o)1 d) T )
1

T ift>0.
t+(f3 le@-BITd0 T t+(f la(x)-B(x)|9 dx)

1
So from Remark 1.7, we have (M, M n, A) is IEMT-space with K = 24.

Definition 1.9 Let (X, My n, 7T ) be a Menger IFMT-space.

(1) A sequence {x,}, in X is said to be convergent to x in X if, for every € >0 and 1 € 0,
there exists a positive integer N such that My (%, %,€) > 1 — A whenever n> N.

(2) A sequence {x,}, in X is called a Cauchy sequence if, for every € > 0 and LL* — {0},
there exists a positive integer N such that M n (%, %, €) > N (1) whenever
n,m=>N.

(3) A Menger IFMT-space (X, Mun, T) is said to be complete if and only if every
Cauchy sequence in X is convergent to a point in X.

Remark 1.10 Khamsi and Kreinovich [10] proved, if (X, M, 7T) is a IEMT-space and
{u,} and {v,} are sequences such that #,, — u and v, — v, then

im My (@6, Vis t) = Mpn (1, v, 8).

n—00

Remark 1.11 Let for each 0 € L* — {0;+,1;+} there exists a ¢ € L* — {0;+,1;+} (which does
not depend on #) with

T”_I(N(g),...,./\/'(g)) >; N(o) foreachne{l,2,...}. 1)

Lemma 1.12 ([11]) Let (X, Mun,T) be a Menger IEMT-space. If we define Ec 1y, *
X2 — R*U{0} by

Es"MM,N(x’y) = inf{t >0: MM,N(x,y, t) > N(g)}

foreach ¢ € L* = {0r+,1;+} and x,y € X, then we have the following:
(1) Forany o € L* —{0p+,11+}, there exists a ¢ € L* — {0+, 1+} such that

Eu,MM,N (%1, %) < KE;,MM,N (%1,%2) +K2E§,MM,N (%2, 23) + - - - +I<n71Eg,MM,N (%1, %)

Sorany x1,..., % € X.
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(2) For each sequence {x,} in X, we have My n(xy,,%,t) —> 11+ if and only if
E¢ Myn (s %) — 0. Also the sequence {x,} is Cauchy w.rt. My if and only if it is
Cauchy with E¢ ;-

2 Common fixed point theorems
In this section we study some common fixed point theorems in Menger IFMT-spaces,

ones can find similar results in others spaces at [12-19].

Definition 2.1 Let f and g be mappings from a Menger IFMT-space (X, M, T) into

itself. The mappings f and g are called weakly commuting if

My (fer, gfx, t) =1 M (fx, gx, t)

for each x in X and ¢ > 0.

Now we assume that @ is the set of all functions
¢ :[0,00) — [0, 00)

which satisfy lim,_, o, ¢"(¢) = 0 for ¢ > 0 and are onto and strictly increasing. Also, we
denote by ¢”(t) the nth iterative function of ¢(z).

Remark 2.2 Note that ¢ € ® implies that ¢(¢) < ¢ for £ > 0. Consider ¢y > 0 with £y < ¢ ().
Since ¢ is a nondecreasing function we get £y < ¢"(t) for every n € {1,2,...}, which is a
contradiction. Also ¢(0) = 0.

Lemma 2.3 ([11]) If a Menger IFMT-space (X, M, T) obeys the condition
Muyn(x,y,6)=C, forallt>0,

then we get C =1+ and x = y.

Theorem 2.4 Counsider the complete Menger IFMT-space (X, Myn,T). Assume that f
and g are weakly commuting self-mappings of X such that:

(@) f(X) € g(X);

(b) f or g is continuous;

(©) Mun(fx, fy, d(t)) =1 Mprn(gx, gy, t) in which ¢ € ®.
(i) Now let (1) hold and let there exist a xq € X with

Emy (€0, f%0) = SUP{Ey,MMN (gxo,fxo) : vy € L* — {0+, 1L*}} <00,
therefore f and g have a common fixed point which is unique.

Proof (i) Select xo € X with E g, (gxo,fxo) < 00. Select x; € X with fxo = gx;. Now se-
lect x,,,1 such that fx, = gxus1. Now Mo (f, s, 9™ (2)) =1 Mt (@, @6ne1, @"(2)) =
M N 1, 0, @7 (8)) =1 -+ - = Marn(gxo, gx1, ).
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We have for each A € L* — {07+,1;+} (see Lemma 1.9 of [11])

Ex My B fns1) = inf{ @™ () > 0 : Mg (fon, fonar, @™ (2)) >0 N(V)}
< inf{¢"1(¢) > 0 : Mg (gxo, fro, ) >t N(W)}
< ¢"(inf{£ > 0 : My (gro.fro,£) >, N(1)})
= ¢"(Er, My (€%0.%0))

S ¢VH’1 (EMM,N(ng’fxO))'
Thus Ex, myyn (Fens frns1) < ¢”*1(EMM'N (gx0,fx0)) for each A € L* — {0y+,1;+} and so

EMM,N (fxmfan) < ¢n+1 (EMM,N (ng,fxO)) .

Let € > 0. Select 7 € {1,2,...}; therefore Enyy,  (f¥n, fXni1) < e_}ﬁ(é). For A € L* — {0+,1;+}
there exists a u € L* — {Ogx, 17+ } with

E)»,MM,N (fxn :fxn+2) < KE[L,MM,N (fxn »fxn+1) + I<Eu.,MM'N (fxn+1:fxn+2)
< 1<E/4vMM,N (fxmfxnﬂ) + ¢ (I<E;L,MM,N (fxmfxnﬂ))

= I<EMM’N (fxmfxwrl) + ¢(I(EMM,N (fxmfxnﬂ))
P 4\ 6—¢(6)>

- K K
<e€.

+ ¢(1<

We can continue this process for every A € L* — {0;+,1;+}; then
EMM'N(fxn:fxn+2) S €.
For A € L* — {0y+,1;+} there exists a u € L* — {07+, 1;+} with

EA,MM,N (fxn,xn+3) < I<EM,MM,N (fxn:fxnﬂ) + I<E/4,MM,N (fxn+lﬂfxn+3)
=< I<EM,MMyN (fxmfxnﬂ) + ¢(I<EM,MM’N (fxmfxn+2))
= I<EMM,N (fxmfxnﬂ) + ¢(1<EMM,N (fxn:fxn+2))

Se-¢(e) + p(€) =¢,

from Mun(fonir, flnis () =1 Marn(@¥ni1,8%n43:8) = Magn(fxn, fxnia,t) we have
EA,MM,N (fxn+1¢fxn+3) = ¢(E/4,MM,N (fxmfxn+2))t which lmphes that

EMM,N (fxn:fxn+3) <e€.
By using induction

Epmpn i frni) <€ forkefl,2,...},
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and we conclude that {fx,}, is a Cauchy sequence and by the completeness of X, {fx,},
converges to a point named z in X. Also {gx,}, converges to z. Now we assume that the
mapping f is continuous. Then lim, ffx, = fz and lim,, fgx, = fz. Also, since f and g are
weakly commuting,

Myt N (8% &f%ns £) =1 Matn(fns 8% ).

Take n — oo in the above inequality and we get lim, gfx, = fz, by the continuity of M.
Now, we show that z = fz. Assume that z # fz. From (c) for each ¢ > 0 we have

Mot (o 95 1(0)) =1 Mot (%0 8fn 5(8)), k€N,
Suppose that # — oo in the above inequality; we get
Man (/29 1(0) =1 Mux (2.f2, 94 (2).
Furthermore we have

Maun (/2 9"(0) =1 Mux (2.f2,¢71(2)
and

Mun (2. /2, 0(8)) =1 Mun(z.fz1).
Also

Mun (2.2 8511) =1 M (2. f2, 0.
Next, we have (see Remark 2.2)

M (2.2, 6" () <L Mun(z.f2,0).

Then My n(z,fz, t) = C and from Lemma 2.3, we conclude that z = fz. By assumption we
have f(X) € g(X); then there exists a z; in X such that z = fz = gz;. Now,

Myt @nf21,8) =1 Mt (gfn 821,67 (2)).

Take n — oo; we get
Mun(fz.fz1,t) =1 Mun(fz.821, 7' (0)) = 11+,

then fz = fz1, i.e., z = fz = fz1 = gz1. Also for each ¢ > 0 we get
Mun(fz, gz, t) = Mun(fgz, gfz1, t) =1 Mun(fz1, 821, 8) = €0(t)

since f and g are weakly commuting, from which we can conclude that fz = gz. This implies
that z is a common fixed point of f and g.
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Now we prove the uniqueness. Assume that z’  z is another common fixed point of f
and g. Now, for each £ > 0 and # € N, we have

Mun(22,¢"1(8) = My (fe.f2, ¢ (0) 21 Fage (¢"(8)) = Fo (47 (1))
Also of course we have
Mun(z2,¢" (1) =1 Mun(z.2,¢"7(0))
and
My (z2,8" (1) = My (2.2,t).
As a result
Mun(z2,¢" (1) = Mun (22, t).
On the other hand we have
My (z2,8) <L Mun (2,2, 9" (0)).

Then My n(z,7,t) = C, see Lemma 2.3, implies that z = z/, which is contradiction. Then
z is the unique common fixed point of f and g. d

3 The existence and uniqueness of solutions for a class of integral equations
Assume that X = C([1, 3], (00, 2.1443888)) and

0 ift<o,
MM,N(x’y’t) =

. t @(0)-y(0)* :
(infecn3) Fmm @ SUPeeta) aoor) 6> 0

for x,y € X, then (M, Mn, A) is a complete IFTM-space with K = 2.
We consider the mapping T : X — X by

¢
T(x(0)) =4+ / (w(w) — u*)e' ™ du.
1

Put g(x) = T(x) and f(x) = T?(x). Since fg = gf, f and g are (weakly) commuting. Now, for
x,y€Xandt>0,

MM,N(fx,fy, t)
= Mun(T(Tx(0)), T(Ty(0)), t)
( . t Ifle(Tx(u)— Ty(u))e"™ du)? )
=| inf ; , sup 7
CelL3] g4 | [0 (Toe(u) — Ty(w)el " dul|? ecns) ¢+ | [ (Tx(u) — Ty(u))e'~ dul?
_ ( t | [ (Tx(w) = Ty(w)) duf? )
T\t 1 2(Taw) - Tyw) dul? ¢+ L] [ (Ta(or) — Ty(w) duf?

= MM,N(gx)gy) t))
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then

t
My (fx, fr, (e_4) > Man(gx, gy, t).

Thus all conditions of Theorem 2.4 are satisfied for ¢ () = e% and so f and g have a unique

common fixed point, which is the unique solution of the integral equations

¢
x(0) =4 + / (x(u) - u2)el_” du
1

and

L pu
x(€) = (1-€)%" + f / (x(v) - Vz)ez_('“") dvdu.
11
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