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Abstract

In this paper, we give a direct approximation theorem, inverse theorem, and
equivalent theorem for a generalization of Bernstein operators in the space L,[0, 1]
(1 <p=<o0)
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1 Introduction

The Sikkema-Bézier-type generalization of Bernstein-Kantorovich operators is given by

SVI,Ot (f: x) = Sn,a (f; Sn» x)

n _k+1
+Sn

= S V)~ T2 ()] (1 + 5,4 1) f "k " fwydu, n=12,...,

k=0 n+spy+1

where ], i (x) = Z;’zk Pn,j(x) are Bézier basic functions, p,«(x) = (Z)x"(l —x)"*, a >1,and
sy is a bounded sequence of natural numbers. If & = 1 and s, = 0, then S,,, (f, %) are just the

well-known Bernstein-Kantorovich operators [1]

k+1

B,(f,x) =(n+1)2p,,,k(x)/kmf(u)du, n=12,....
k=0 T

n+l

Bézier-type operators were introduced by Chang [2], later many results were given in
[3-8], and more recent approximation results can be found in [9]. Most of these results
are on the rate of convergence of some Bézier-type operators for functions of bounded
variation, whereas in the present paper, we give direct, inverse, and equivalent approxi-
mation theorems for a generalization of Bézier-type operators in L, spaces. We showed
[5] that for Bézier-type operators, the second-order modulus cannot be used, so here we
shall use the first-order modulus too. For Sikkema-type operators, we can also see many
investigations (see [10]). Next, we state the central approximation theorem for S, (f, ) in
the spaces L,[0,1] (1 < p < o0), which will be proved in Sections 2 and 3.
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Theorem 1.1 Forf € L,[0,1] (1 <p < 00), p(x) = v/x(1 —x), and 0 < B <1, we have

B
||Sn,a(f,x)—f(x)||p=0(<%)) o w0, -0 (L)

In this theorem, we use the first-order modulus defined by

e 57) ")

which is equivalent to the K-functionals

wyu(f,t)p, = sup

O<h<t

’

p

Ky(f,0 = inf (I gl + ]og ]
and
== _ / 2 /
Kotf. 0= it (IF gl + o], + 1], )
where W), = {f|f € A.C.ioc, |f'll, < 00}. It is well known that [1]

g (f, )y ~ Ko(f £)p ~ Ky (f 1) s 1.2)

where a ~ b means that there exists C > 0 such that C"'a < b < Ca.
Throughout this paper, C denotes a constant independent of # and x, but it is not nec-
essarily the same in different cases.

Remark In [8], we obtained a pointwise approximation for S,,, (f,x). In Theorem 1 of [8],
A =1, which is the case where p = co in (1.1). So in the present paper, by the Riesz-Thorin
theorem, we shall only need to prove the case where p =1.

2 Direct theorem
To prove the direct theorem, we need the following convergence property of Bernstein-
Kantorovich-Bézier operators defined by

n k+l
By,,a(f,x):Z[ f,"k(x)—],‘;’,k+1(x)](n+1)/k fwdu, n=12,....
k=0 el

Lemma 2.1 For f € L,[0,1] (1 < p < 00), we have

“Bn,a (f,x) _f(x)Hp < Cow, (f: (2.1)

7)
v/,
Proof For p =1, we will have to split estimate (2.1) into estimates on two domains, that is,
xeE; = [0,%] Ul- %,1] andx € E, = (%, - %),

First, we choose g = g, such that
1

1 J
If gl + 7 led|, < Co, (f, ﬁ){ (2.2)
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For x € E¢, we have

k+1

! /xtg’(u) du

k+1

<a2pnkx)(n+1) L w0 ya [ lotwrg o]

dt

Bl -] < pue @or+ [

k=0 n+l

k1
50‘”‘%’”1( x)+2pnk(x n+1)/ 1(t)dt)

n+l

Noting that
1 1 4
‘1tdt</(—+ )dt< ,
/Ikw (e =< K\t V1t T Vn+1
we get
|Bia(g,%) —gx)| < C|log ||, (07" ) + V/n). (2.3)
Since

i1 1o 8

1 "
10 (x)dx§2/ —dx+2f dx < —,
sz (RVE -1 VI-x N

=

2
d =
./Ef,\/Z * \/Z
we obtain
/ |Bua(g,%) - g(x)ldx<c AL 24)

Kt j
Forx € Ey, let | [ @(u)g'(u)| du| = maxj_jjci1 | fxﬁ @(u)|g’ ()| du|, where k* is either k
or k + 1. Then we have

|Byio (g, %) — g(x)| dx
E,

k*
-1
<a Enkz;pnk Y(n+1) /k(<p (%) + (t))dt/ ]g u)]du

K
fE ank(x)< 1<x>+,/Z—ﬁ)’ / " )¢ ()| du

m k=0

dx =:aR; +aR,. (2.5)

To estimate R; and R,, we follow [3], pp. 146-147, with a similar method. We now define

D(, n,x) = {k dpon? <

<U+Dgx)n? }

k
——x
n
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Rewrite R; as follows:

K+

/n o(u) ‘g(u ‘du

Rl—/ x)z Z pnk(x

1=0 keD(l,n,x)

Similarly to [3], (9.6.11), for x € E,;, we have

> Pl = 1)4

keD(l,n,x)

We now define
11
F(l,x) = {V:VE [0,1],[v—x| <+ Dpx)n~2 + ;},
G(l,v)= {x:ern,veF(l,x)}

and by the procedure of [3], p.147, obtain

[e:¢]

Z (l+ 1)t / (x) /F(l,x)(p(V){g ()| dvdx

20:(1_”)4/ go(v)!g (v)’/ 1(x dxdv<C—”<pg ”1 (2.6)

On the other hand, for R,, we have

Z pnk w ( Z pnk Z:i) ( Z pn+1k+lx) )
keD(l,n,x)

keD(l,n,x) keD(l,n,x)
1
C 2 C
= -1 < -1 .
@ (x)<(1 " l)3> =T 07 (%)
Similarly, we get
R = Cfog] @)

Hence, by (2.5)-(2.7) we have

C
Byo(gx) —gx)|dx < —||lod |- (2.8)
| Buate ) -l = - o |
Using (2.4) and (2.8), we complete the proof of Lemma 2.1. O

Theorem 2.2 For f € L;[0,1], we have

Sl ) —f@)], < c%( le) . 2.9)
1
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Proof By Lemma 2.1 we have

[ Snalf,2) —f @),
< [ Snalfs%) = Bua(Fo )|, + | Bua(fr%) - f@)

k+1

17 kil 1
S/(; kXO:[]Z,k(x)—]Z'k+1(X)](l’l+l)/k }j(#:{_lu) —f(u)

(i),

celolit) ()

and, by (3.1.5) in [1],

(i) 2ol ),

The proof is complete.

dudx

3 Inverse theorem
Lemma 3.1 Forf € L1[0,1], ¢p(x) = /x(1 — %), and 8,(x) = (x) + ﬁ, we have

184)S,,,, ()|, < CV/nllf I,
and, furthermore, for f € W,

[84®)S,.0 (F 0, < Cll8f "]
Proof First, we prove (3.1), that is,

18:(%)S,,, (.0, < CV/nllf .

Page 5 of 10

(3.1)

(3.2)

(3.3)

Write ax(f) = (n + s, + l)fzkf(t) dt, where I = [—X kel 7. Noting that J, ,,1(x) = 0, we

n+sy+17 n+sy+1
have

n-1
1,000 < @ | @) = Jek 0 Vg @)

k=0
ra Y |a)et @) v, )]
k=0
= a(h + /o).

Then

1 1
/ |84(x)S,, . (f, %)| dx < oz/ 8a(x) (1 + Jo) dx
0 0

= a(/gg +/En)8,,(x)(]1 + ) dx.

(3.4)

(3.5)
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Next, we estimate the four parts in (3.5):
[ s = [ 6,003 |t a(pussa) + pross(a) d
Ej; E; P
+ f 8a(%)|ao(f)|npn-1,0(x) dx
Ej,

Forx € E¢, 8,(x) < %, and since folp,,_lyk( )dx = ., we get

/E; ,(0))> dx < % Dtnss 1) /Iklf(t)|dt+ 2(’”% o]

< CVnlfls- (3.6)
Since J7'x L(x) - ]"‘kﬂ(x) <land], 1 (¥) = npy_1x(x), it is easy to see that

[ s < i 7)

To estimate fEn 8,(x)J2 dx, we recall that by [3], p.129, (9.4.15),

f (__ )2 )
[ = Cn

with p), (%) = — (5 —%)Pui(x), x € (0,1). By the Holder inequality we have

9% (x)

Pk (%) dx

‘ n |k
‘/Ensn(x)]def2;|de)|An¢(x) W‘;_'X

1
2

n k.22

fzng{ak(fﬂ(ml)%(/ 2 )) pnk(x)dx)

cyny. [ ]yl (3.8)
k=0 S

To estimate fEn 8,.(x)J1 dx, we will consider two cases, « > 2 and 1 <« <2 (J; = 0 when
a=1).

For a > 2, we have J; L(x) - nkﬂ(x) <(a -1)pyx(x), and we need a result of [4], p.375,

Pri(x) < forO<k=<n. (3.9)

_\/—«/nx(l x)

Since J, (%) = npy_14-1(x) > 0, we have

n-1
[ sz =Y Jah)| [ opuitinp, s ds
k=0 En

En

- 1
<CY |a()]—= < CVnllf Il (3.10)
k=0 Vn 1
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For 1 < « <2, applying u(a) — u(b) = u'(§)(a — b) (a < § < b), we get that there exists & (x),
Tnki1(x) < k(%) < Jyx(x) such that

T ) = T () = (@ = 1) (&) pus() < (o - DI @) ).

Hence, we have

n-1

[ sy = [ o) Y lalpusale - DIEH @ e d
En En k=0

n-1
=CY la(f)]. (3.11)

k=0

Since p, x(x) = ”fql:lf) Pn-1k(x) for k < n, from (3.9) we can deduce that

J< a—l.n(l—x)
“Jg, Wn n-k
1 1
= o= [ was
0 n—k Jo

“n-k

k 1
n{ﬁk (fo ],‘j‘];il(x)dx+ﬁ T () dx)

v (3.12)

c—— (L1 + L
n—k( 1+ L)

J ff,ﬁl(x)] e (%) dx

and

g, < (1-5)- % (313)

In order to estimate %Ll, choose [ € N such that /(o — 1) > 1. Then, for k < 1, we have

~ m+l-j)---(m—j+1)
Juka = 2 (n+0)---(n+1)

j=k+1

(n+1-k)
(m+1)

Pn+lj ()1 - x)_l

(1-x)"

Therefore, for k < n -1, we get

_ l(a-1) %
\/EL1< \/ﬁ (I’l+l k) / (l_x)—l(ot—l)dx

n-k T n-k\ n+l 0

< glle-D) Vn [( [ )l(‘“) (n _ k>l(d1)}
- Sk +
n—k{\n+1 n+l

1 o\ e
m[(l 2) ‘1]

NS R E) 1
—c, " (” k) <” k) <C (3.14)
n

n+1l n
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By (3.11)-(3.14), for 1 < « < 2, we obtain

n-1 1
Sn dx<C —<C . 3.15
/En () dx < §|ak(f)| = =CVlfl (3.15)

Estimates (3.5)-(3.8) and (3.15) imply (3.1).
Now we prove (3.2). For f € W), noting that J; ,(x) = 0, we have

Spalfs)
—a{Zak(f) L) () — Zak W2 x)]nk(x)}

_k+l _K__
_aZ(n+sn +1) [ / T f)du- / kf f(w) du] T @)

n+sp+l n+sp+l

= ; m 7/( _k_l a-1 /
_a;(n-”” +1)/0 [f<n+sn 1 +”) —f<n+5n .l +u>]du]n,k ()1 (%)

n _1 L
n+sp+1 misptl k-1 o— /
=« Z(n +8, + 1)/0 /0 f <m tu+ V) dvdu i ()], ().
k=1 "

Hence,

e k
S50 /)] SakZ;/O P<n+sn+1 )

Auf, 1 ()

- “(fo—l ') ], /1 P (an — u) du), (%)
3 f ot P(L R u) duf;,k+1(x))
2 J, nrs, +1 :
- Qi+ Qo+ Q). (3.16)

First we estimate folé x)Qzdx.Forl<k<n-2andO<u< VHSZ” we have 5(1 - 5) <

+1’
C(——= +u)1 - — u) and (similarly to [1], p.155)

n+sy +1 n+sy +1

[t
————+u
0 n+s,+1
2
TS k k
SC/ ol ——+ul)f| ———+u
0 n+s,+1 n+s,+1

k+2

k ntsp+1
')/

n+sp+l

du

k
dmp‘l (—()
n

Q()f' ()| du.

Therefore,

n-2 k+2

1 n+sp+l
/0 3n(x)Q3dx§CnZ/ .

k=1 n+sp+1

1
ot o] du [ snoc)w-l(f)pn_l,k(x) .
0 n
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Noting that <p‘1(§) </nfor0<k<n—1,weget

1 1 L[k )
‘/0 (‘P(x) + ﬁ)‘p <;)pn1,k(x) X
2 (! 1 k 3
=7 (/O ((ﬂz(x) + ;)¢_2<;)pn_1,k(x) dx>
C 1 1 L
=< ﬁ (/(; (ﬂz(x)%ﬁpn—l,k(ﬁc) dx +/(‘) Pu_1i(x) dx)

1
c /(! 1\2 1
< ﬁ</0 Pt (%) dx + Z) < CZ’

Hence, we have
18,Qsll < Cllef ||, = C|l8.f] -

Since v/n8,(u) > 1, for Q;, we write

_2
n+sp

5,(x)Q1 = 8,() /0 1 )| duy ()

2
e
< Su(@)n / V|8, (w)f ()| dupy_1,0(%)
0
3
< [6uf ]| 8u®)n2 Py o ().
Therefore, we have

1 3
f an(x)Qldx§c||anf’H1( fE Hpnro(X)da+ fE w(x)mpn_l,o(x)dx)
0 f, n

SCIIM/IIl[Hn( /E (02(96)19;11,0(96)61?6) ]

1
) 1 2 /
= C||871f ||1|:1 + H(Ln mpnﬂ,l(x)dx) i| S C||8’1f ”1

Similarly, we have

1
/ 8x(x)Qdx < C| 8,/ |-
0
By (3.16)-(3.19) we obtain
|8l < Clou"]-

This is (3.2). The proof of Lemma 3.1 is complete.

Theorem 3.2 Letf € L,[0,1] (1 <p < 00), p(x) =/x(1—x),and 0 < B <1. Then

[Snalf, ) -1 @], = (%)

implies w,(f,t), = O(t”).

Page 9 of 10

(3.17)

(3.18)

(3.19)
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Proof By Lemma 3.1, for appropriate g, we have

Ky(f )y < ”f = Lo (f) ||p + t”‘SnL;a ) ||p
<O 4 t([8uLLy (f - 2) |, + [8:Lra@],)

<o+ ce(Vallf - gl + |8ng’ ()
<ot v If gl + 2= logl, + 5 1e
= &lip Jn P&, + 18,
< C(ng + ‘r
=
< C<n‘§ + —
which by the Berens-Lorentz lemma implies that
K,(f,t), = O(¢"). (3.20)

From relation (1.2) and (3.20) we see that the proof of Theorem 3.2 is complete. O
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